U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

National Research Council; Division of Behavioral and Social Sciences and Education; Commission on Behavioral and Social Sciences and Education; Committee on Basic Research in the Behavioral and Social Sciences; Gerstein DR, Luce RD, Smelser NJ, et al., editors. The Behavioral and Social Sciences: Achievements and Opportunities. Washington (DC): National Academies Press (US); 1988.

Cover of The Behavioral and Social Sciences: Achievements and Opportunities

The Behavioral and Social Sciences: Achievements and Opportunities.

  • Hardcopy Version at National Academies Press

5 Methods of Data Collection, Representation, and Analysis

This chapter concerns research on collecting, representing, and analyzing the data that underlie behavioral and social sciences knowledge. Such research, methodological in character, includes ethnographic and historical approaches, scaling, axiomatic measurement, and statistics, with its important relatives, econometrics and psychometrics. The field can be described as including the self-conscious study of how scientists draw inferences and reach conclusions from observations. Since statistics is the largest and most prominent of methodological approaches and is used by researchers in virtually every discipline, statistical work draws the lion’s share of this chapter’s attention.

Problems of interpreting data arise whenever inherent variation or measurement fluctuations create challenges to understand data or to judge whether observed relationships are significant, durable, or general. Some examples: Is a sharp monthly (or yearly) increase in the rate of juvenile delinquency (or unemployment) in a particular area a matter for alarm, an ordinary periodic or random fluctuation, or the result of a change or quirk in reporting method? Do the temporal patterns seen in such repeated observations reflect a direct causal mechanism, a complex of indirect ones, or just imperfections in the data? Is a decrease in auto injuries an effect of a new seat-belt law? Are the disagreements among people describing some aspect of a subculture too great to draw valid inferences about that aspect of the culture?

Such issues of inference are often closely connected to substantive theory and specific data, and to some extent it is difficult and perhaps misleading to treat methods of data collection, representation, and analysis separately. This report does so, as do all sciences to some extent, because the methods developed often are far more general than the specific problems that originally gave rise to them. There is much transfer of new ideas from one substantive field to another—and to and from fields outside the behavioral and social sciences. Some of the classical methods of statistics arose in studies of astronomical observations, biological variability, and human diversity. The major growth of the classical methods occurred in the twentieth century, greatly stimulated by problems in agriculture and genetics. Some methods for uncovering geometric structures in data, such as multidimensional scaling and factor analysis, originated in research on psychological problems, but have been applied in many other sciences. Some time-series methods were developed originally to deal with economic data, but they are equally applicable to many other kinds of data.

  • In economics: large-scale models of the U.S. economy; effects of taxation, money supply, and other government fiscal and monetary policies; theories of duopoly, oligopoly, and rational expectations; economic effects of slavery.
  • In psychology: test calibration; the formation of subjective probabilities, their revision in the light of new information, and their use in decision making; psychiatric epidemiology and mental health program evaluation.
  • In sociology and other fields: victimization and crime rates; effects of incarceration and sentencing policies; deployment of police and fire-fighting forces; discrimination, antitrust, and regulatory court cases; social networks; population growth and forecasting; and voting behavior.

Even such an abridged listing makes clear that improvements in methodology are valuable across the spectrum of empirical research in the behavioral and social sciences as well as in application to policy questions. Clearly, methodological research serves many different purposes, and there is a need to develop different approaches to serve those different purposes, including exploratory data analysis, scientific inference about hypotheses and population parameters, individual decision making, forecasting what will happen in the event or absence of intervention, and assessing causality from both randomized experiments and observational data.

This discussion of methodological research is divided into three areas: design, representation, and analysis. The efficient design of investigations must take place before data are collected because it involves how much, what kind of, and how data are to be collected. What type of study is feasible: experimental, sample survey, field observation, or other? What variables should be measured, controlled, and randomized? How extensive a subject pool or observational period is appropriate? How can study resources be allocated most effectively among various sites, instruments, and subsamples?

The construction of useful representations of the data involves deciding what kind of formal structure best expresses the underlying qualitative and quantitative concepts that are being used in a given study. For example, cost of living is a simple concept to quantify if it applies to a single individual with unchanging tastes in stable markets (that is, markets offering the same array of goods from year to year at varying prices), but as a national aggregate for millions of households and constantly changing consumer product markets, the cost of living is not easy to specify clearly or measure reliably. Statisticians, economists, sociologists, and other experts have long struggled to make the cost of living a precise yet practicable concept that is also efficient to measure, and they must continually modify it to reflect changing circumstances.

Data analysis covers the final step of characterizing and interpreting research findings: Can estimates of the relations between variables be made? Can some conclusion be drawn about correlation, cause and effect, or trends over time? How uncertain are the estimates and conclusions and can that uncertainty be reduced by analyzing the data in a different way? Can computers be used to display complex results graphically for quicker or better understanding or to suggest different ways of proceeding?

Advances in analysis, data representation, and research design feed into and reinforce one another in the course of actual scientific work. The intersections between methodological improvements and empirical advances are an important aspect of the multidisciplinary thrust of progress in the behavioral and social sciences.

  • Designs for Data Collection

Four broad kinds of research designs are used in the behavioral and social sciences: experimental, survey, comparative, and ethnographic.

Experimental designs, in either the laboratory or field settings, systematically manipulate a few variables while others that may affect the outcome are held constant, randomized, or otherwise controlled. The purpose of randomized experiments is to ensure that only one or a few variables can systematically affect the results, so that causes can be attributed. Survey designs include the collection and analysis of data from censuses, sample surveys, and longitudinal studies and the examination of various relationships among the observed phenomena. Randomization plays a different role here than in experimental designs: it is used to select members of a sample so that the sample is as representative of the whole population as possible. Comparative designs involve the retrieval of evidence that is recorded in the flow of current or past events in different times or places and the interpretation and analysis of this evidence. Ethnographic designs, also known as participant-observation designs, involve a researcher in intensive and direct contact with a group, community, or population being studied, through participation, observation, and extended interviewing.

Experimental Designs

Laboratory experiments.

Laboratory experiments underlie most of the work reported in Chapter 1 , significant parts of Chapter 2 , and some of the newest lines of research in Chapter 3 . Laboratory experiments extend and adapt classical methods of design first developed, for the most part, in the physical and life sciences and agricultural research. Their main feature is the systematic and independent manipulation of a few variables and the strict control or randomization of all other variables that might affect the phenomenon under study. For example, some studies of animal motivation involve the systematic manipulation of amounts of food and feeding schedules while other factors that may also affect motivation, such as body weight, deprivation, and so on, are held constant. New designs are currently coming into play largely because of new analytic and computational methods (discussed below, in “Advances in Statistical Inference and Analysis”).

Two examples of empirically important issues that demonstrate the need for broadening classical experimental approaches are open-ended responses and lack of independence of successive experimental trials. The first concerns the design of research protocols that do not require the strict segregation of the events of an experiment into well-defined trials, but permit a subject to respond at will. These methods are needed when what is of interest is how the respondent chooses to allocate behavior in real time and across continuously available alternatives. Such empirical methods have long been used, but they can generate very subtle and difficult problems in experimental design and subsequent analysis. As theories of allocative behavior of all sorts become more sophisticated and precise, the experimental requirements become more demanding, so the need to better understand and solve this range of design issues is an outstanding challenge to methodological ingenuity.

The second issue arises in repeated-trial designs when the behavior on successive trials, even if it does not exhibit a secular trend (such as a learning curve), is markedly influenced by what has happened in the preceding trial or trials. The more naturalistic the experiment and the more sensitive the meas urements taken, the more likely it is that such effects will occur. But such sequential dependencies in observations cause a number of important conceptual and technical problems in summarizing the data and in testing analytical models, which are not yet completely understood. In the absence of clear solutions, such effects are sometimes ignored by investigators, simplifying the data analysis but leaving residues of skepticism about the reliability and significance of the experimental results. With continuing development of sensitive measures in repeated-trial designs, there is a growing need for more advanced concepts and methods for dealing with experimental results that may be influenced by sequential dependencies.

Randomized Field Experiments

The state of the art in randomized field experiments, in which different policies or procedures are tested in controlled trials under real conditions, has advanced dramatically over the past two decades. Problems that were once considered major methodological obstacles—such as implementing randomized field assignment to treatment and control groups and protecting the randomization procedure from corruption—have been largely overcome. While state-of-the-art standards are not achieved in every field experiment, the commitment to reaching them is rising steadily, not only among researchers but also among customer agencies and sponsors.

The health insurance experiment described in Chapter 2 is an example of a major randomized field experiment that has had and will continue to have important policy reverberations in the design of health care financing. Field experiments with the negative income tax (guaranteed minimum income) conducted in the 1970s were significant in policy debates, even before their completion, and provided the most solid evidence available on how tax-based income support programs and marginal tax rates can affect the work incentives and family structures of the poor. Important field experiments have also been carried out on alternative strategies for the prevention of delinquency and other criminal behavior, reform of court procedures, rehabilitative programs in mental health, family planning, and special educational programs, among other areas.

In planning field experiments, much hinges on the definition and design of the experimental cells, the particular combinations needed of treatment and control conditions for each set of demographic or other client sample characteristics, including specification of the minimum number of cases needed in each cell to test for the presence of effects. Considerations of statistical power, client availability, and the theoretical structure of the inquiry enter into such specifications. Current important methodological thresholds are to find better ways of predicting recruitment and attrition patterns in the sample, of designing experiments that will be statistically robust in the face of problematic sample recruitment or excessive attrition, and of ensuring appropriate acquisition and analysis of data on the attrition component of the sample.

Also of major significance are improvements in integrating detailed process and outcome measurements in field experiments. To conduct research on program effects under field conditions requires continual monitoring to determine exactly what is being done—the process—how it corresponds to what was projected at the outset. Relatively unintrusive, inexpensive, and effective implementation measures are of great interest. There is, in parallel, a growing emphasis on designing experiments to evaluate distinct program components in contrast to summary measures of net program effects.

Finally, there is an important opportunity now for further theoretical work to model organizational processes in social settings and to design and select outcome variables that, in the relatively short time of most field experiments, can predict longer-term effects: For example, in job-training programs, what are the effects on the community (role models, morale, referral networks) or on individual skills, motives, or knowledge levels that are likely to translate into sustained changes in career paths and income levels?

Survey Designs

Many people have opinions about how societal mores, economic conditions, and social programs shape lives and encourage or discourage various kinds of behavior. People generalize from their own cases, and from the groups to which they belong, about such matters as how much it costs to raise a child, the extent to which unemployment contributes to divorce, and so on. In fact, however, effects vary so much from one group to another that homespun generalizations are of little use. Fortunately, behavioral and social scientists have been able to bridge the gaps between personal perspectives and collective realities by means of survey research. In particular, governmental information systems include volumes of extremely valuable survey data, and the facility of modern computers to store, disseminate, and analyze such data has significantly improved empirical tests and led to new understandings of social processes.

Within this category of research designs, two major types are distinguished: repeated cross-sectional surveys and longitudinal panel surveys. In addition, and cross-cutting these types, there is a major effort under way to improve and refine the quality of survey data by investigating features of human memory and of question formation that affect survey response.

Repeated cross-sectional designs can either attempt to measure an entire population—as does the oldest U.S. example, the national decennial census—or they can rest on samples drawn from a population. The general principle is to take independent samples at two or more times, measuring the variables of interest, such as income levels, housing plans, or opinions about public affairs, in the same way. The General Social Survey, collected by the National Opinion Research Center with National Science Foundation support, is a repeated cross sectional data base that was begun in 1972. One methodological question of particular salience in such data is how to adjust for nonresponses and “don’t know” responses. Another is how to deal with self-selection bias. For example, to compare the earnings of women and men in the labor force, it would be mistaken to first assume that the two samples of labor-force participants are randomly selected from the larger populations of men and women; instead, one has to consider and incorporate in the analysis the factors that determine who is in the labor force.

In longitudinal panels, a sample is drawn at one point in time and the relevant variables are measured at this and subsequent times for the same people. In more complex versions, some fraction of each panel may be replaced or added to periodically, such as expanding the sample to include households formed by the children of the original sample. An example of panel data developed in this way is the Panel Study of Income Dynamics (PSID), conducted by the University of Michigan since 1968 (discussed in Chapter 3 ).

Comparing the fertility or income of different people in different circumstances at the same time to find correlations always leaves a large proportion of the variability unexplained, but common sense suggests that much of the unexplained variability is actually explicable. There are systematic reasons for individual outcomes in each person’s past achievements, in parental models, upbringing, and earlier sequences of experiences. Unfortunately, asking people about the past is not particularly helpful: people remake their views of the past to rationalize the present and so retrospective data are often of uncertain validity. In contrast, generation-long longitudinal data allow readings on the sequence of past circumstances uncolored by later outcomes. Such data are uniquely useful for studying the causes and consequences of naturally occurring decisions and transitions. Thus, as longitudinal studies continue, quantitative analysis is becoming feasible about such questions as: How are the decisions of individuals affected by parental experience? Which aspects of early decisions constrain later opportunities? And how does detailed background experience leave its imprint? Studies like the two-decade-long PSID are bringing within grasp a complete generational cycle of detailed data on fertility, work life, household structure, and income.

Advances in Longitudinal Designs

Large-scale longitudinal data collection projects are uniquely valuable as vehicles for testing and improving survey research methodology. In ways that lie beyond the scope of a cross-sectional survey, longitudinal studies can sometimes be designed—without significant detriment to their substantive interests—to facilitate the evaluation and upgrading of data quality; the analysis of relative costs and effectiveness of alternative techniques of inquiry; and the standardization or coordination of solutions to problems of method, concept, and measurement across different research domains.

Some areas of methodological improvement include discoveries about the impact of interview mode on response (mail, telephone, face-to-face); the effects of nonresponse on the representativeness of a sample (due to respondents’ refusal or interviewers’ failure to contact); the effects on behavior of continued participation over time in a sample survey; the value of alternative methods of adjusting for nonresponse and incomplete observations (such as imputation of missing data, variable case weighting); the impact on response of specifying different recall periods, varying the intervals between interviews, or changing the length of interviews; and the comparison and calibration of results obtained by longitudinal surveys, randomized field experiments, laboratory studies, onetime surveys, and administrative records.

It should be especially noted that incorporating improvements in methodology and data quality has been and will no doubt continue to be crucial to the growing success of longitudinal studies. Panel designs are intrinsically more vulnerable than other designs to statistical biases due to cumulative item non-response, sample attrition, time-in-sample effects, and error margins in repeated measures, all of which may produce exaggerated estimates of change. Over time, a panel that was initially representative may become much less representative of a population, not only because of attrition in the sample, but also because of changes in immigration patterns, age structure, and the like. Longitudinal studies are also subject to changes in scientific and societal contexts that may create uncontrolled drifts over time in the meaning of nominally stable questions or concepts as well as in the underlying behavior. Also, a natural tendency to expand over time the range of topics and thus the interview lengths, which increases the burdens on respondents, may lead to deterioration of data quality or relevance. Careful methodological research to understand and overcome these problems has been done, and continued work as a component of new longitudinal studies is certain to advance the overall state of the art.

Longitudinal studies are sometimes pressed for evidence they are not designed to produce: for example, in important public policy questions concerning the impact of government programs in such areas as health promotion, disease prevention, or criminal justice. By using research designs that combine field experiments (with randomized assignment to program and control conditions) and longitudinal surveys, one can capitalize on the strongest merits of each: the experimental component provides stronger evidence for casual statements that are critical for evaluating programs and for illuminating some fundamental theories; the longitudinal component helps in the estimation of long-term program effects and their attenuation. Coupling experiments to ongoing longitudinal studies is not often feasible, given the multiple constraints of not disrupting the survey, developing all the complicated arrangements that go into a large-scale field experiment, and having the populations of interest overlap in useful ways. Yet opportunities to join field experiments to surveys are of great importance. Coupled studies can produce vital knowledge about the empirical conditions under which the results of longitudinal surveys turn out to be similar to—or divergent from—those produced by randomized field experiments. A pattern of divergence and similarity has begun to emerge in coupled studies; additional cases are needed to understand why some naturally occurring social processes and longitudinal design features seem to approximate formal random allocation and others do not. The methodological implications of such new knowledge go well beyond program evaluation and survey research. These findings bear directly on the confidence scientists—and others—can have in conclusions from observational studies of complex behavioral and social processes, particularly ones that cannot be controlled or simulated within the confines of a laboratory environment.

Memory and the Framing of Questions

A very important opportunity to improve survey methods lies in the reduction of nonsampling error due to questionnaire context, phrasing of questions, and, generally, the semantic and social-psychological aspects of surveys. Survey data are particularly affected by the fallibility of human memory and the sensitivity of respondents to the framework in which a question is asked. This sensitivity is especially strong for certain types of attitudinal and opinion questions. Efforts are now being made to bring survey specialists into closer contact with researchers working on memory function, knowledge representation, and language in order to uncover and reduce this kind of error.

Memory for events is often inaccurate, biased toward what respondents believe to be true—or should be true—about the world. In many cases in which data are based on recollection, improvements can be achieved by shifting to techniques of structured interviewing and calibrated forms of memory elicitation, such as specifying recent, brief time periods (for example, in the last seven days) within which respondents recall certain types of events with acceptable accuracy.

  • “Taking things altogether, how would you describe your marriage? Would you say that your marriage is very happy, pretty happy, or not too happy?”
  • “Taken altogether how would you say things are these days—would you say you are very happy, pretty happy, or not too happy?”

Presenting this sequence in both directions on different forms showed that the order affected answers to the general happiness question but did not change the marital happiness question: responses to the specific issue swayed subsequent responses to the general one, but not vice versa. The explanations for and implications of such order effects on the many kinds of questions and sequences that can be used are not simple matters. Further experimentation on the design of survey instruments promises not only to improve the accuracy and reliability of survey research, but also to advance understanding of how people think about and evaluate their behavior from day to day.

Comparative Designs

Both experiments and surveys involve interventions or questions by the scientist, who then records and analyzes the responses. In contrast, many bodies of social and behavioral data of considerable value are originally derived from records or collections that have accumulated for various nonscientific reasons, quite often administrative in nature, in firms, churches, military organizations, and governments at all levels. Data of this kind can sometimes be subjected to careful scrutiny, summary, and inquiry by historians and social scientists, and statistical methods have increasingly been used to develop and evaluate inferences drawn from such data. Some of the main comparative approaches are cross-national aggregate comparisons, selective comparison of a limited number of cases, and historical case studies.

Among the more striking problems facing the scientist using such data are the vast differences in what has been recorded by different agencies whose behavior is being compared (this is especially true for parallel agencies in different nations), the highly unrepresentative or idiosyncratic sampling that can occur in the collection of such data, and the selective preservation and destruction of records. Means to overcome these problems form a substantial methodological research agenda in comparative research. An example of the method of cross-national aggregative comparisons is found in investigations by political scientists and sociologists of the factors that underlie differences in the vitality of institutions of political democracy in different societies. Some investigators have stressed the existence of a large middle class, others the level of education of a population, and still others the development of systems of mass communication. In cross-national aggregate comparisons, a large number of nations are arrayed according to some measures of political democracy and then attempts are made to ascertain the strength of correlations between these and the other variables. In this line of analysis it is possible to use a variety of statistical cluster and regression techniques to isolate and assess the possible impact of certain variables on the institutions under study. While this kind of research is cross-sectional in character, statements about historical processes are often invoked to explain the correlations.

More limited selective comparisons, applied by many of the classic theorists, involve asking similar kinds of questions but over a smaller range of societies. Why did democracy develop in such different ways in America, France, and England? Why did northeastern Europe develop rational bourgeois capitalism, in contrast to the Mediterranean and Asian nations? Modern scholars have turned their attention to explaining, for example, differences among types of fascism between the two World Wars, and similarities and differences among modern state welfare systems, using these comparisons to unravel the salient causes. The questions asked in these instances are inevitably historical ones.

Historical case studies involve only one nation or region, and so they may not be geographically comparative. However, insofar as they involve tracing the transformation of a society’s major institutions and the role of its main shaping events, they involve a comparison of different periods of a nation’s or a region’s history. The goal of such comparisons is to give a systematic account of the relevant differences. Sometimes, particularly with respect to the ancient societies, the historical record is very sparse, and the methods of history and archaeology mesh in the reconstruction of complex social arrangements and patterns of change on the basis of few fragments.

Like all research designs, comparative ones have distinctive vulnerabilities and advantages: One of the main advantages of using comparative designs is that they greatly expand the range of data, as well as the amount of variation in those data, for study. Consequently, they allow for more encompassing explanations and theories that can relate highly divergent outcomes to one another in the same framework. They also contribute to reducing any cultural biases or tendencies toward parochialism among scientists studying common human phenomena.

One main vulnerability in such designs arises from the problem of achieving comparability. Because comparative study involves studying societies and other units that are dissimilar from one another, the phenomena under study usually occur in very different contexts—so different that in some cases what is called an event in one society cannot really be regarded as the same type of event in another. For example, a vote in a Western democracy is different from a vote in an Eastern bloc country, and a voluntary vote in the United States means something different from a compulsory vote in Australia. These circumstances make for interpretive difficulties in comparing aggregate rates of voter turnout in different countries.

The problem of achieving comparability appears in historical analysis as well. For example, changes in laws and enforcement and recording procedures over time change the definition of what is and what is not a crime, and for that reason it is difficult to compare the crime rates over time. Comparative researchers struggle with this problem continually, working to fashion equivalent measures; some have suggested the use of different measures (voting, letters to the editor, street demonstration) in different societies for common variables (political participation), to try to take contextual factors into account and to achieve truer comparability.

A second vulnerability is controlling variation. Traditional experiments make conscious and elaborate efforts to control the variation of some factors and thereby assess the causal significance of others. In surveys as well as experiments, statistical methods are used to control sources of variation and assess suspected causal significance. In comparative and historical designs, this kind of control is often difficult to attain because the sources of variation are many and the number of cases few. Scientists have made efforts to approximate such control in these cases of “many variables, small N.” One is the method of paired comparisons. If an investigator isolates 15 American cities in which racial violence has been recurrent in the past 30 years, for example, it is helpful to match them with 15 cities of similar population size, geographical region, and size of minorities—such characteristics are controls—and then search for systematic differences between the two sets of cities. Another method is to select, for comparative purposes, a sample of societies that resemble one another in certain critical ways, such as size, common language, and common level of development, thus attempting to hold these factors roughly constant, and then seeking explanations among other factors in which the sampled societies differ from one another.

Ethnographic Designs

Traditionally identified with anthropology, ethnographic research designs are playing increasingly significant roles in most of the behavioral and social sciences. The core of this methodology is participant-observation, in which a researcher spends an extended period of time with the group under study, ideally mastering the local language, dialect, or special vocabulary, and participating in as many activities of the group as possible. This kind of participant-observation is normally coupled with extensive open-ended interviewing, in which people are asked to explain in depth the rules, norms, practices, and beliefs through which (from their point of view) they conduct their lives. A principal aim of ethnographic study is to discover the premises on which those rules, norms, practices, and beliefs are built.

The use of ethnographic designs by anthropologists has contributed significantly to the building of knowledge about social and cultural variation. And while these designs continue to center on certain long-standing features—extensive face-to-face experience in the community, linguistic competence, participation, and open-ended interviewing—there are newer trends in ethnographic work. One major trend concerns its scale. Ethnographic methods were originally developed largely for studying small-scale groupings known variously as village, folk, primitive, preliterate, or simple societies. Over the decades, these methods have increasingly been applied to the study of small groups and networks within modern (urban, industrial, complex) society, including the contemporary United States. The typical subjects of ethnographic study in modern society are small groups or relatively small social networks, such as outpatient clinics, medical schools, religious cults and churches, ethnically distinctive urban neighborhoods, corporate offices and factories, and government bureaus and legislatures.

As anthropologists moved into the study of modern societies, researchers in other disciplines—particularly sociology, psychology, and political science—began using ethnographic methods to enrich and focus their own insights and findings. At the same time, studies of large-scale structures and processes have been aided by the use of ethnographic methods, since most large-scale changes work their way into the fabric of community, neighborhood, and family, affecting the daily lives of people. Ethnographers have studied, for example, the impact of new industry and new forms of labor in “backward” regions; the impact of state-level birth control policies on ethnic groups; and the impact on residents in a region of building a dam or establishing a nuclear waste dump. Ethnographic methods have also been used to study a number of social processes that lend themselves to its particular techniques of observation and interview—processes such as the formation of class and racial identities, bureaucratic behavior, legislative coalitions and outcomes, and the formation and shifting of consumer tastes.

Advances in structured interviewing (see above) have proven especially powerful in the study of culture. Techniques for understanding kinship systems, concepts of disease, color terminologies, ethnobotany, and ethnozoology have been radically transformed and strengthened by coupling new interviewing methods with modem measurement and scaling techniques (see below). These techniques have made possible more precise comparisons among cultures and identification of the most competent and expert persons within a culture. The next step is to extend these methods to study the ways in which networks of propositions (such as boys like sports, girls like babies) are organized to form belief systems. Much evidence suggests that people typically represent the world around them by means of relatively complex cognitive models that involve interlocking propositions. The techniques of scaling have been used to develop models of how people categorize objects, and they have great potential for further development, to analyze data pertaining to cultural propositions.

Ideological Systems

Perhaps the most fruitful area for the application of ethnographic methods in recent years has been the systematic study of ideologies in modern society. Earlier studies of ideology were in small-scale societies that were rather homogeneous. In these studies researchers could report on a single culture, a uniform system of beliefs and values for the society as a whole. Modern societies are much more diverse both in origins and number of subcultures, related to different regions, communities, occupations, or ethnic groups. Yet these subcultures and ideologies share certain underlying assumptions or at least must find some accommodation with the dominant value and belief systems in the society.

The challenge is to incorporate this greater complexity of structure and process into systematic descriptions and interpretations. One line of work carried out by researchers has tried to track the ways in which ideologies are created, transmitted, and shared among large populations that have traditionally lacked the social mobility and communications technologies of the West. This work has concentrated on large-scale civilizations such as China, India, and Central America. Gradually, the focus has generalized into a concern with the relationship between the great traditions—the central lines of cosmopolitan Confucian, Hindu, or Mayan culture, including aesthetic standards, irrigation technologies, medical systems, cosmologies and calendars, legal codes, poetic genres, and religious doctrines and rites—and the little traditions, those identified with rural, peasant communities. How are the ideological doctrines and cultural values of the urban elites, the great traditions, transmitted to local communities? How are the little traditions, the ideas from the more isolated, less literate, and politically weaker groups in society, transmitted to the elites?

India and southern Asia have been fruitful areas for ethnographic research on these questions. The great Hindu tradition was present in virtually all local contexts through the presence of high-caste individuals in every community. It operated as a pervasive standard of value for all members of society, even in the face of strong little traditions. The situation is surprisingly akin to that of modern, industrialized societies. The central research questions are the degree and the nature of penetration of dominant ideology, even in groups that appear marginal and subordinate and have no strong interest in sharing the dominant value system. In this connection the lowest and poorest occupational caste—the untouchables—serves as an ultimate test of the power of ideology and cultural beliefs to unify complex hierarchical social systems.

Historical Reconstruction

Another current trend in ethnographic methods is its convergence with archival methods. One joining point is the application of descriptive and interpretative procedures used by ethnographers to reconstruct the cultures that created historical documents, diaries, and other records, to interview history, so to speak. For example, a revealing study showed how the Inquisition in the Italian countryside between the 1570s and 1640s gradually worked subtle changes in an ancient fertility cult in peasant communities; the peasant beliefs and rituals assimilated many elements of witchcraft after learning them from their persecutors. A good deal of social history—particularly that of the family—has drawn on discoveries made in the ethnographic study of primitive societies. As described in Chapter 4 , this particular line of inquiry rests on a marriage of ethnographic, archival, and demographic approaches.

Other lines of ethnographic work have focused on the historical dimensions of nonliterate societies. A strikingly successful example in this kind of effort is a study of head-hunting. By combining an interpretation of local oral tradition with the fragmentary observations that were made by outside observers (such as missionaries, traders, colonial officials), historical fluctuations in the rate and significance of head-hunting were shown to be partly in response to such international forces as the great depression and World War II. Researchers are also investigating the ways in which various groups in contemporary societies invent versions of traditions that may or may not reflect the actual history of the group. This process has been observed among elites seeking political and cultural legitimation and among hard-pressed minorities (for example, the Basque in Spain, the Welsh in Great Britain) seeking roots and political mobilization in a larger society.

Ethnography is a powerful method to record, describe, and interpret the system of meanings held by groups and to discover how those meanings affect the lives of group members. It is a method well adapted to the study of situations in which people interact with one another and the researcher can interact with them as well, so that information about meanings can be evoked and observed. Ethnography is especially suited to exploration and elucidation of unsuspected connections; ideally, it is used in combination with other methods—experimental, survey, or comparative—to establish with precision the relative strengths and weaknesses of such connections. By the same token, experimental, survey, and comparative methods frequently yield connections, the meaning of which is unknown; ethnographic methods are a valuable way to determine them.

  • Models for Representing Phenomena

The objective of any science is to uncover the structure and dynamics of the phenomena that are its subject, as they are exhibited in the data. Scientists continuously try to describe possible structures and ask whether the data can, with allowance for errors of measurement, be described adequately in terms of them. Over a long time, various families of structures have recurred throughout many fields of science; these structures have become objects of study in their own right, principally by statisticians, other methodological specialists, applied mathematicians, and philosophers of logic and science. Methods have evolved to evaluate the adequacy of particular structures to account for particular types of data. In the interest of clarity we discuss these structures in this section and the analytical methods used for estimation and evaluation of them in the next section, although in practice they are closely intertwined.

A good deal of mathematical and statistical modeling attempts to describe the relations, both structural and dynamic, that hold among variables that are presumed to be representable by numbers. Such models are applicable in the behavioral and social sciences only to the extent that appropriate numerical measurement can be devised for the relevant variables. In many studies the phenomena in question and the raw data obtained are not intrinsically numerical, but qualitative, such as ethnic group identifications. The identifying numbers used to code such questionnaire categories for computers are no more than labels, which could just as well be letters or colors. One key question is whether there is some natural way to move from the qualitative aspects of such data to a structural representation that involves one of the well-understood numerical or geometric models or whether such an attempt would be inherently inappropriate for the data in question. The decision as to whether or not particular empirical data can be represented in particular numerical or more complex structures is seldom simple, and strong intuitive biases or a priori assumptions about what can and cannot be done may be misleading.

Recent decades have seen rapid and extensive development and application of analytical methods attuned to the nature and complexity of social science data. Examples of nonnumerical modeling are increasing. Moreover, the widespread availability of powerful computers is probably leading to a qualitative revolution, it is affecting not only the ability to compute numerical solutions to numerical models, but also to work out the consequences of all sorts of structures that do not involve numbers at all. The following discussion gives some indication of the richness of past progress and of future prospects although it is by necessity far from exhaustive.

In describing some of the areas of new and continuing research, we have organized this section on the basis of whether the representations are fundamentally probabilistic or not. A further useful distinction is between representations of data that are highly discrete or categorical in nature (such as whether a person is male or female) and those that are continuous in nature (such as a person’s height). Of course, there are intermediate cases involving both types of variables, such as color stimuli that are characterized by discrete hues (red, green) and a continuous luminance measure. Probabilistic models lead very naturally to questions of estimation and statistical evaluation of the correspondence between data and model. Those that are not probabilistic involve additional problems of dealing with and representing sources of variability that are not explicitly modeled. At the present time, scientists understand some aspects of structure, such as geometries, and some aspects of randomness, as embodied in probability models, but do not yet adequately understand how to put the two together in a single unified model. Table 5-1 outlines the way we have organized this discussion and shows where the examples in this section lie.

Table 5-1. A Classification of Structural Models.

A Classification of Structural Models.

Probability Models

Some behavioral and social sciences variables appear to be more or less continuous, for example, utility of goods, loudness of sounds, or risk associated with uncertain alternatives. Many other variables, however, are inherently categorical, often with only two or a few values possible: for example, whether a person is in or out of school, employed or not employed, identifies with a major political party or political ideology. And some variables, such as moral attitudes, are typically measured in research with survey questions that allow only categorical responses. Much of the early probability theory was formulated only for continuous variables; its use with categorical variables was not really justified, and in some cases it may have been misleading. Recently, very significant advances have been made in how to deal explicitly with categorical variables. This section first describes several contemporary approaches to models involving categorical variables, followed by ones involving continuous representations.

Log-Linear Models for Categorical Variables

Many recent models for analyzing categorical data of the kind usually displayed as counts (cell frequencies) in multidimensional contingency tables are subsumed under the general heading of log-linear models, that is, linear models in the natural logarithms of the expected counts in each cell in the table. These recently developed forms of statistical analysis allow one to partition variability due to various sources in the distribution of categorical attributes, and to isolate the effects of particular variables or combinations of them.

Present log-linear models were first developed and used by statisticians and sociologists and then found extensive application in other social and behavioral sciences disciplines. When applied, for instance, to the analysis of social mobility, such models separate factors of occupational supply and demand from other factors that impede or propel movement up and down the social hierarchy. With such models, for example, researchers discovered the surprising fact that occupational mobility patterns are strikingly similar in many nations of the world (even among disparate nations like the United States and most of the Eastern European socialist countries), and from one time period to another, once allowance is made for differences in the distributions of occupations. The log-linear and related kinds of models have also made it possible to identify and analyze systematic differences in mobility among nations and across time. As another example of applications, psychologists and others have used log-linear models to analyze attitudes and their determinants and to link attitudes to behavior. These methods have also diffused to and been used extensively in the medical and biological sciences.

Regression Models for Categorical Variables

Models that permit one variable to be explained or predicted by means of others, called regression models, are the workhorses of much applied statistics; this is especially true when the dependent (explained) variable is continuous. For a two-valued dependent variable, such as alive or dead, models and approximate theory and computational methods for one explanatory variable were developed in biometry about 50 years ago. Computer programs able to handle many explanatory variables, continuous or categorical, are readily available today. Even now, however, the accuracy of the approximate theory on given data is an open question.

Using classical utility theory, economists have developed discrete choice models that turn out to be somewhat related to the log-linear and categorical regression models. Models for limited dependent variables, especially those that cannot take on values above or below a certain level (such as weeks unemployed, number of children, and years of schooling) have been used profitably in economics and in some other areas. For example, censored normal variables (called tobits in economics), in which observed values outside certain limits are simply counted, have been used in studying decisions to go on in school. It will require further research and development to incorporate information about limited ranges of variables fully into the main multivariate methodologies. In addition, with respect to the assumptions about distribution and functional form conventionally made in discrete response models, some new methods are now being developed that show promise of yielding reliable inferences without making unrealistic assumptions; further research in this area promises significant progress.

One problem arises from the fact that many of the categorical variables collected by the major data bases are ordered. For example, attitude surveys frequently use a 3-, 5-, or 7-point scale (from high to low) without specifying numerical intervals between levels. Social class and educational levels are often described by ordered categories. Ignoring order information, which many traditional statistical methods do, may be inefficient or inappropriate, but replacing the categories by successive integers or other arbitrary scores may distort the results. (For additional approaches to this question, see sections below on ordered structures.) Regression-like analysis of ordinal categorical variables is quite well developed, but their multivariate analysis needs further research. New log-bilinear models have been proposed, but to date they deal specifically with only two or three categorical variables. Additional research extending the new models, improving computational algorithms, and integrating the models with work on scaling promise to lead to valuable new knowledge.

Models for Event Histories

Event-history studies yield the sequence of events that respondents to a survey sample experience over a period of time; for example, the timing of marriage, childbearing, or labor force participation. Event-history data can be used to study educational progress, demographic processes (migration, fertility, and mortality), mergers of firms, labor market behavior, and even riots, strikes, and revolutions. As interest in such data has grown, many researchers have turned to models that pertain to changes in probabilities over time to describe when and how individuals move among a set of qualitative states.

Much of the progress in models for event-history data builds on recent developments in statistics and biostatistics for life-time, failure-time, and hazard models. Such models permit the analysis of qualitative transitions in a population whose members are undergoing partially random organic deterioration, mechanical wear, or other risks over time. With the increased complexity of event-history data that are now being collected, and the extension of event-history data bases over very long periods of time, new problems arise that cannot be effectively handled by older types of analysis. Among the problems are repeated transitions, such as between unemployment and employment or marriage and divorce; more than one time variable (such as biological age, calendar time, duration in a stage, and time exposed to some specified condition); latent variables (variables that are explicitly modeled even though not observed); gaps in the data; sample attrition that is not randomly distributed over the categories; and respondent difficulties in recalling the exact timing of events.

Models for Multiple-Item Measurement

For a variety of reasons, researchers typically use multiple measures (or multiple indicators) to represent theoretical concepts. Sociologists, for example, often rely on two or more variables (such as occupation and education) to measure an individual’s socioeconomic position; educational psychologists ordinarily measure a student’s ability with multiple test items. Despite the fact that the basic observations are categorical, in a number of applications this is interpreted as a partitioning of something continuous. For example, in test theory one thinks of the measures of both item difficulty and respondent ability as continuous variables, possibly multidimensional in character.

Classical test theory and newer item-response theories in psychometrics deal with the extraction of information from multiple measures. Testing, which is a major source of data in education and other areas, results in millions of test items stored in archives each year for purposes ranging from college admissions to job-training programs for industry. One goal of research on such test data is to be able to make comparisons among persons or groups even when different test items are used. Although the information collected from each respondent is intentionally incomplete in order to keep the tests short and simple, item-response techniques permit researchers to reconstitute the fragments into an accurate picture of overall group proficiencies. These new methods provide a better theoretical handle on individual differences, and they are expected to be extremely important in developing and using tests. For example, they have been used in attempts to equate different forms of a test given in successive waves during a year, a procedure made necessary in large-scale testing programs by legislation requiring disclosure of test-scoring keys at the time results are given.

An example of the use of item-response theory in a significant research effort is the National Assessment of Educational Progress (NAEP). The goal of this project is to provide accurate, nationally representative information on the average (rather than individual) proficiency of American children in a wide variety of academic subjects as they progress through elementary and secondary school. This approach is an improvement over the use of trend data on university entrance exams, because NAEP estimates of academic achievements (by broad characteristics such as age, grade, region, ethnic background, and so on) are not distorted by the self-selected character of those students who seek admission to college, graduate, and professional programs.

Item-response theory also forms the basis of many new psychometric instruments, known as computerized adaptive testing, currently being implemented by the U.S. military services and under additional development in many testing organizations. In adaptive tests, a computer program selects items for each examinee based upon the examinee’s success with previous items. Generally, each person gets a slightly different set of items and the equivalence of scale scores is established by using item-response theory. Adaptive testing can greatly reduce the number of items needed to achieve a given level of measurement accuracy.

Nonlinear, Nonadditive Models

Virtually all statistical models now in use impose a linearity or additivity assumption of some kind, sometimes after a nonlinear transformation of variables. Imposing these forms on relationships that do not, in fact, possess them may well result in false descriptions and spurious effects. Unwary users, especially of computer software packages, can easily be misled. But more realistic nonlinear and nonadditive multivariate models are becoming available. Extensive use with empirical data is likely to force many changes and enhancements in such models and stimulate quite different approaches to nonlinear multivariate analysis in the next decade.

Geometric and Algebraic Models

Geometric and algebraic models attempt to describe underlying structural relations among variables. In some cases they are part of a probabilistic approach, such as the algebraic models underlying regression or the geometric representations of correlations between items in a technique called factor analysis. In other cases, geometric and algebraic models are developed without explicitly modeling the element of randomness or uncertainty that is always present in the data. Although this latter approach to behavioral and social sciences problems has been less researched than the probabilistic one, there are some advantages in developing the structural aspects independent of the statistical ones. We begin the discussion with some inherently geometric representations and then turn to numerical representations for ordered data.

Although geometry is a huge mathematical topic, little of it seems directly applicable to the kinds of data encountered in the behavioral and social sciences. A major reason is that the primitive concepts normally used in geometry—points, lines, coincidence—do not correspond naturally to the kinds of qualitative observations usually obtained in behavioral and social sciences contexts. Nevertheless, since geometric representations are used to reduce bodies of data, there is a real need to develop a deeper understanding of when such representations of social or psychological data make sense. Moreover, there is a practical need to understand why geometric computer algorithms, such as those of multidimensional scaling, work as well as they apparently do. A better understanding of the algorithms will increase the efficiency and appropriateness of their use, which becomes increasingly important with the widespread availability of scaling programs for microcomputers.

Over the past 50 years several kinds of well-understood scaling techniques have been developed and widely used to assist in the search for appropriate geometric representations of empirical data. The whole field of scaling is now entering a critical juncture in terms of unifying and synthesizing what earlier appeared to be disparate contributions. Within the past few years it has become apparent that several major methods of analysis, including some that are based on probabilistic assumptions, can be unified under the rubric of a single generalized mathematical structure. For example, it has recently been demonstrated that such diverse approaches as nonmetric multidimensional scaling, principal-components analysis, factor analysis, correspondence analysis, and log-linear analysis have more in common in terms of underlying mathematical structure than had earlier been realized.

Nonmetric multidimensional scaling is a method that begins with data about the ordering established by subjective similarity (or nearness) between pairs of stimuli. The idea is to embed the stimuli into a metric space (that is, a geometry with a measure of distance between points) in such a way that distances between points corresponding to stimuli exhibit the same ordering as do the data. This method has been successfully applied to phenomena that, on other grounds, are known to be describable in terms of a specific geometric structure; such applications were used to validate the procedures. Such validation was done, for example, with respect to the perception of colors, which are known to be describable in terms of a particular three-dimensional structure known as the Euclidean color coordinates. Similar applications have been made with Morse code symbols and spoken phonemes. The technique is now used in some biological and engineering applications, as well as in some of the social sciences, as a method of data exploration and simplification.

One question of interest is how to develop an axiomatic basis for various geometries using as a primitive concept an observable such as the subject’s ordering of the relative similarity of one pair of stimuli to another, which is the typical starting point of such scaling. The general task is to discover properties of the qualitative data sufficient to ensure that a mapping into the geometric structure exists and, ideally, to discover an algorithm for finding it. Some work of this general type has been carried out: for example, there is an elegant set of axioms based on laws of color matching that yields the three-dimensional vectorial representation of color space. But the more general problem of understanding the conditions under which the multidimensional scaling algorithms are suitable remains unsolved. In addition, work is needed on understanding more general, non-Euclidean spatial models.

Ordered Factorial Systems

One type of structure common throughout the sciences arises when an ordered dependent variable is affected by two or more ordered independent variables. This is the situation to which regression and analysis-of-variance models are often applied; it is also the structure underlying the familiar physical identities, in which physical units are expressed as products of the powers of other units (for example, energy has the unit of mass times the square of the unit of distance divided by the square of the unit of time).

There are many examples of these types of structures in the behavioral and social sciences. One example is the ordering of preference of commodity bundles—collections of various amounts of commodities—which may be revealed directly by expressions of preference or indirectly by choices among alternative sets of bundles. A related example is preferences among alternative courses of action that involve various outcomes with differing degrees of uncertainty; this is one of the more thoroughly investigated problems because of its potential importance in decision making. A psychological example is the trade-off between delay and amount of reward, yielding those combinations that are equally reinforcing. In a common, applied kind of problem, a subject is given descriptions of people in terms of several factors, for example, intelligence, creativity, diligence, and honesty, and is asked to rate them according to a criterion such as suitability for a particular job.

In all these cases and a myriad of others like them the question is whether the regularities of the data permit a numerical representation. Initially, three types of representations were studied quite fully: the dependent variable as a sum, a product, or a weighted average of the measures associated with the independent variables. The first two representations underlie some psychological and economic investigations, as well as a considerable portion of physical measurement and modeling in classical statistics. The third representation, averaging, has proved most useful in understanding preferences among uncertain outcomes and the amalgamation of verbally described traits, as well as some physical variables.

For each of these three cases—adding, multiplying, and averaging—researchers know what properties or axioms of order the data must satisfy for such a numerical representation to be appropriate. On the assumption that one or another of these representations exists, and using numerical ratings by subjects instead of ordering, a scaling technique called functional measurement (referring to the function that describes how the dependent variable relates to the independent ones) has been developed and applied in a number of domains. What remains problematic is how to encompass at the ordinal level the fact that some random error intrudes into nearly all observations and then to show how that randomness is represented at the numerical level; this continues to be an unresolved and challenging research issue.

During the past few years considerable progress has been made in understanding certain representations inherently different from those just discussed. The work has involved three related thrusts. The first is a scheme of classifying structures according to how uniquely their representation is constrained. The three classical numerical representations are known as ordinal, interval, and ratio scale types. For systems with continuous numerical representations and of scale type at least as rich as the ratio one, it has been shown that only one additional type can exist. A second thrust is to accept structural assumptions, like factorial ones, and to derive for each scale the possible functional relations among the independent variables. And the third thrust is to develop axioms for the properties of an order relation that leads to the possible representations. Much is now known about the possible nonadditive representations of both the multifactor case and the one where stimuli can be combined, such as combining sound intensities.

Closely related to this classification of structures is the question: What statements, formulated in terms of the measures arising in such representations, can be viewed as meaningful in the sense of corresponding to something empirical? Statements here refer to any scientific assertions, including statistical ones, formulated in terms of the measures of the variables and logical and mathematical connectives. These are statements for which asserting truth or falsity makes sense. In particular, statements that remain invariant under certain symmetries of structure have played an important role in classical geometry, dimensional analysis in physics, and in relating measurement and statistical models applied to the same phenomenon. In addition, these ideas have been used to construct models in more formally developed areas of the behavioral and social sciences, such as psychophysics. Current research has emphasized the communality of these historically independent developments and is attempting both to uncover systematic, philosophically sound arguments as to why invariance under symmetries is as important as it appears to be and to understand what to do when structures lack symmetry, as, for example, when variables have an inherent upper bound.

Many subjects do not seem to be correctly represented in terms of distances in continuous geometric space. Rather, in some cases, such as the relations among meanings of words—which is of great interest in the study of memory representations—a description in terms of tree-like, hierarchial structures appears to be more illuminating. This kind of description appears appropriate both because of the categorical nature of the judgments and the hierarchial, rather than trade-off, nature of the structure. Individual items are represented as the terminal nodes of the tree, and groupings by different degrees of similarity are shown as intermediate nodes, with the more general groupings occurring nearer the root of the tree. Clustering techniques, requiring considerable computational power, have been and are being developed. Some successful applications exist, but much more refinement is anticipated.

Network Models

Several other lines of advanced modeling have progressed in recent years, opening new possibilities for empirical specification and testing of a variety of theories. In social network data, relationships among units, rather than the units themselves, are the primary objects of study: friendships among persons, trade ties among nations, cocitation clusters among research scientists, interlocking among corporate boards of directors. Special models for social network data have been developed in the past decade, and they give, among other things, precise new measures of the strengths of relational ties among units. A major challenge in social network data at present is to handle the statistical dependence that arises when the units sampled are related in complex ways.

  • Statistical Inference and Analysis

As was noted earlier, questions of design, representation, and analysis are intimately intertwined. Some issues of inference and analysis have been discussed above as related to specific data collection and modeling approaches. This section discusses some more general issues of statistical inference and advances in several current approaches to them.

Causal Inference

Behavioral and social scientists use statistical methods primarily to infer the effects of treatments, interventions, or policy factors. Previous chapters included many instances of causal knowledge gained this way. As noted above, the large experimental study of alternative health care financing discussed in Chapter 2 relied heavily on statistical principles and techniques, including randomization, in the design of the experiment and the analysis of the resulting data. Sophisticated designs were necessary in order to answer a variety of questions in a single large study without confusing the effects of one program difference (such as prepayment or fee for service) with the effects of another (such as different levels of deductible costs), or with effects of unobserved variables (such as genetic differences). Statistical techniques were also used to ascertain which results applied across the whole enrolled population and which were confined to certain subgroups (such as individuals with high blood pressure) and to translate utilization rates across different programs and types of patients into comparable overall dollar costs and health outcomes for alternative financing options.

A classical experiment, with systematic but randomly assigned variation of the variables of interest (or some reasonable approach to this), is usually considered the most rigorous basis from which to draw such inferences. But random samples or randomized experimental manipulations are not always feasible or ethically acceptable. Then, causal inferences must be drawn from observational studies, which, however well designed, are less able to ensure that the observed (or inferred) relationships among variables provide clear evidence on the underlying mechanisms of cause and effect.

Certain recurrent challenges have been identified in studying causal inference. One challenge arises from the selection of background variables to be measured, such as the sex, nativity, or parental religion of individuals in a comparative study of how education affects occupational success. The adequacy of classical methods of matching groups in background variables and adjusting for covariates needs further investigation. Statistical adjustment of biases linked to measured background variables is possible, but it can become complicated. Current work in adjustment for selectivity bias is aimed at weakening implausible assumptions, such as normality, when carrying out these adjustments. Even after adjustment has been made for the measured background variables, other, unmeasured variables are almost always still affecting the results (such as family transfers of wealth or reading habits). Analyses of how the conclusions might change if such unmeasured variables could be taken into account is essential in attempting to make causal inferences from an observational study, and systematic work on useful statistical models for such sensitivity analyses is just beginning.

The third important issue arises from the necessity for distinguishing among competing hypotheses when the explanatory variables are measured with different degrees of precision. Both the estimated size and significance of an effect are diminished when it has large measurement error, and the coefficients of other correlated variables are affected even when the other variables are measured perfectly. Similar results arise from conceptual errors, when one measures only proxies for a theoretical construct (such as years of education to represent amount of learning). In some cases, there are procedures for simultaneously or iteratively estimating both the precision of complex measures and their effect on a particular criterion.

Although complex models are often necessary to infer causes, once their output is available, it should be translated into understandable displays for evaluation. Results that depend on the accuracy of a multivariate model and the associated software need to be subjected to appropriate checks, including the evaluation of graphical displays, group comparisons, and other analyses.

New Statistical Techniques

Internal resampling.

One of the great contributions of twentieth-century statistics was to demonstrate how a properly drawn sample of sufficient size, even if it is only a tiny fraction of the population of interest, can yield very good estimates of most population characteristics. When enough is known at the outset about the characteristic in question—for example, that its distribution is roughly normal—inference from the sample data to the population as a whole is straightforward, and one can easily compute measures of the certainty of inference, a common example being the 95 percent confidence interval around an estimate. But population shapes are sometimes unknown or uncertain, and so inference procedures cannot be so simple. Furthermore, more often than not, it is difficult to assess even the degree of uncertainty associated with complex data and with the statistics needed to unravel complex social and behavioral phenomena.

Internal resampling methods attempt to assess this uncertainty by generating a number of simulated data sets similar to the one actually observed. The definition of similar is crucial, and many methods that exploit different types of similarity have been devised. These methods provide researchers the freedom to choose scientifically appropriate procedures and to replace procedures that are valid under assumed distributional shapes with ones that are not so restricted. Flexible and imaginative computer simulation is the key to these methods. For a simple random sample, the “bootstrap” method repeatedly resamples the obtained data (with replacement) to generate a distribution of possible data sets. The distribution of any estimator can thereby be simulated and measures of the certainty of inference be derived. The “jackknife” method repeatedly omits a fraction of the data and in this way generates a distribution of possible data sets that can also be used to estimate variability. These methods can also be used to remove or reduce bias. For example, the ratio-estimator, a statistic that is commonly used in analyzing sample surveys and censuses, is known to be biased, and the jackknife method can usually remedy this defect. The methods have been extended to other situations and types of analysis, such as multiple regression.

There are indications that under relatively general conditions, these methods, and others related to them, allow more accurate estimates of the uncertainty of inferences than do the traditional ones that are based on assumed (usually, normal) distributions when that distributional assumption is unwarranted. For complex samples, such internal resampling or subsampling facilitates estimating the sampling variances of complex statistics.

An older and simpler, but equally important, idea is to use one independent subsample in searching the data to develop a model and at least one separate subsample for estimating and testing a selected model. Otherwise, it is next to impossible to make allowances for the excessively close fitting of the model that occurs as a result of the creative search for the exact characteristics of the sample data—characteristics that are to some degree random and will not predict well to other samples.

Robust Techniques

Many technical assumptions underlie the analysis of data. Some, like the assumption that each item in a sample is drawn independently of other items, can be weakened when the data are sufficiently structured to admit simple alternative models, such as serial correlation. Usually, these models require that a few parameters be estimated. Assumptions about shapes of distributions, normality being the most common, have proved to be particularly important, and considerable progress has been made in dealing with the consequences of different assumptions.

More recently, robust techniques have been designed that permit sharp, valid discriminations among possible values of parameters of central tendency for a wide variety of alternative distributions by reducing the weight given to occasional extreme deviations. It turns out that by giving up, say, 10 percent of the discrimination that could be provided under the rather unrealistic assumption of normality, one can greatly improve performance in more realistic situations, especially when unusually large deviations are relatively common.

These valuable modifications of classical statistical techniques have been extended to multiple regression, in which procedures of iterative reweighting can now offer relatively good performance for a variety of underlying distributional shapes. They should be extended to more general schemes of analysis.

In some contexts—notably the most classical uses of analysis of variance—the use of adequate robust techniques should help to bring conventional statistical practice closer to the best standards that experts can now achieve.

Many Interrelated Parameters

In trying to give a more accurate representation of the real world than is possible with simple models, researchers sometimes use models with many parameters, all of which must be estimated from the data. Classical principles of estimation, such as straightforward maximum-likelihood, do not yield reliable estimates unless either the number of observations is much larger than the number of parameters to be estimated or special designs are used in conjunction with strong assumptions. Bayesian methods do not draw a distinction between fixed and random parameters, and so may be especially appropriate for such problems.

A variety of statistical methods have recently been developed that can be interpreted as treating many of the parameters as or similar to random quantities, even if they are regarded as representing fixed quantities to be estimated. Theory and practice demonstrate that such methods can improve the simpler fixed-parameter methods from which they evolved, especially when the number of observations is not large relative to the number of parameters. Successful applications include college and graduate school admissions, where quality of previous school is treated as a random parameter when the data are insufficient to separately estimate it well. Efforts to create appropriate models using this general approach for small-area estimation and undercount adjustment in the census are important potential applications.

Missing Data

In data analysis, serious problems can arise when certain kinds of (quantitative or qualitative) information is partially or wholly missing. Various approaches to dealing with these problems have been or are being developed. One of the methods developed recently for dealing with certain aspects of missing data is called multiple imputation: each missing value in a data set is replaced by several values representing a range of possibilities, with statistical dependence among missing values reflected by linkage among their replacements. It is currently being used to handle a major problem of incompatibility between the 1980 and previous Bureau of Census public-use tapes with respect to occupation codes. The extension of these techniques to address such problems as nonresponse to income questions in the Current Population Survey has been examined in exploratory applications with great promise.

Computer Packages and Expert Systems

The development of high-speed computing and data handling has fundamentally changed statistical analysis. Methodologies for all kinds of situations are rapidly being developed and made available for use in computer packages that may be incorporated into interactive expert systems. This computing capability offers the hope that much data analyses will be more carefully and more effectively done than previously and that better strategies for data analysis will move from the practice of expert statisticians, some of whom may not have tried to articulate their own strategies, to both wide discussion and general use.

But powerful tools can be hazardous, as witnessed by occasional dire misuses of existing statistical packages. Until recently the only strategies available were to train more expert methodologists or to train substantive scientists in more methodology, but without the updating of their training it tends to become outmoded. Now there is the opportunity to capture in expert systems the current best methodological advice and practice. If that opportunity is exploited, standard methodological training of social scientists will shift to emphasizing strategies in using good expert systems—including understanding the nature and importance of the comments it provides—rather than in how to patch together something on one’s own. With expert systems, almost all behavioral and social scientists should become able to conduct any of the more common styles of data analysis more effectively and with more confidence than all but the most expert do today. However, the difficulties in developing expert systems that work as hoped for should not be underestimated. Human experts cannot readily explicate all of the complex cognitive network that constitutes an important part of their knowledge. As a result, the first attempts at expert systems were not especially successful (as discussed in Chapter 1 ). Additional work is expected to overcome these limitations, but it is not clear how long it will take.

Exploratory Analysis and Graphic Presentation

The formal focus of much statistics research in the middle half of the twentieth century was on procedures to confirm or reject precise, a priori hypotheses developed in advance of collecting data—that is, procedures to determine statistical significance. There was relatively little systematic work on realistically rich strategies for the applied researcher to use when attacking real-world problems with their multiplicity of objectives and sources of evidence. More recently, a species of quantitative detective work, called exploratory data analysis, has received increasing attention. In this approach, the researcher seeks out possible quantitative relations that may be present in the data. The techniques are flexible and include an important component of graphic representations. While current techniques have evolved for single responses in situations of modest complexity, extensions to multiple responses and to single responses in more complex situations are now possible.

Graphic and tabular presentation is a research domain in active renaissance, stemming in part from suggestions for new kinds of graphics made possible by computer capabilities, for example, hanging histograms and easily assimilated representations of numerical vectors. Research on data presentation has been carried out by statisticians, psychologists, cartographers, and other specialists, and attempts are now being made to incorporate findings and concepts from linguistics, industrial and publishing design, aesthetics, and classification studies in library science. Another influence has been the rapidly increasing availability of powerful computational hardware and software, now available even on desktop computers. These ideas and capabilities are leading to an increasing number of behavioral experiments with substantial statistical input. Nonetheless, criteria of good graphic and tabular practice are still too much matters of tradition and dogma, without adequate empirical evidence or theoretical coherence. To broaden the respective research outlooks and vigorously develop such evidence and coherence, extended collaborations between statistical and mathematical specialists and other scientists are needed, a major objective being to understand better the visual and cognitive processes (see Chapter 1 ) relevant to effective use of graphic or tabular approaches.

Combining Evidence

Combining evidence from separate sources is a recurrent scientific task, and formal statistical methods for doing so go back 30 years or more. These methods include the theory and practice of combining tests of individual hypotheses, sequential design and analysis of experiments, comparisons of laboratories, and Bayesian and likelihood paradigms.

There is now growing interest in more ambitious analytical syntheses, which are often called meta-analyses. One stimulus has been the appearance of syntheses explicitly combining all existing investigations in particular fields, such as prison parole policy, classroom size in primary schools, cooperative studies of therapeutic treatments for coronary heart disease, early childhood education interventions, and weather modification experiments. In such fields, a serious approach to even the simplest question—how to put together separate estimates of effect size from separate investigations—leads quickly to difficult and interesting issues. One issue involves the lack of independence among the available studies, due, for example, to the effect of influential teachers on the research projects of their students. Another issue is selection bias, because only some of the studies carried out, usually those with “significant” findings, are available and because the literature search may not find out all relevant studies that are available. In addition, experts agree, although informally, that the quality of studies from different laboratories and facilities differ appreciably and that such information probably should be taken into account. Inevitably, the studies to be included used different designs and concepts and controlled or measured different variables, making it difficult to know how to combine them.

Rich, informal syntheses, allowing for individual appraisal, may be better than catch-all formal modeling, but the literature on formal meta-analytic models is growing and may be an important area of discovery in the next decade, relevant both to statistical analysis per se and to improved syntheses in the behavioral and social and other sciences.

  • Opportunities and Needs

This chapter has cited a number of methodological topics associated with behavioral and social sciences research that appear to be particularly active and promising at the present time. As throughout the report, they constitute illustrative examples of what the committee believes to be important areas of research in the coming decade. In this section we describe recommendations for an additional $16 million annually to facilitate both the development of methodologically oriented research and, equally important, its communication throughout the research community.

Methodological studies, including early computer implementations, have for the most part been carried out by individual investigators with small teams of colleagues or students. Occasionally, such research has been associated with quite large substantive projects, and some of the current developments of computer packages, graphics, and expert systems clearly require large, organized efforts, which often lie at the boundary between grant-supported work and commercial development. As such research is often a key to understanding complex bodies of behavioral and social sciences data, it is vital to the health of these sciences that research support continue on methods relevant to problems of modeling, statistical analysis, representation, and related aspects of behavioral and social sciences data. Researchers and funding agencies should also be especially sympathetic to the inclusion of such basic methodological work in large experimental and longitudinal studies. Additional funding for work in this area, both in terms of individual research grants on methodological issues and in terms of augmentation of large projects to include additional methodological aspects, should be provided largely in the form of investigator-initiated project grants.

Ethnographic and comparative studies also typically rely on project grants to individuals and small groups of investigators. While this type of support should continue, provision should also be made to facilitate the execution of studies using these methods by research teams and to provide appropriate methodological training through the mechanisms outlined below.

Overall, we recommend an increase of $4 million in the level of investigator-initiated grant support for methodological work. An additional $1 million should be devoted to a program of centers for methodological research.

Many of the new methods and models described in the chapter, if and when adopted to any large extent, will demand substantially greater amounts of research devoted to appropriate analysis and computer implementation. New user interfaces and numerical algorithms will need to be designed and new computer programs written. And even when generally available methods (such as maximum-likelihood) are applicable, model application still requires skillful development in particular contexts. Many of the familiar general methods that are applied in the statistical analysis of data are known to provide good approximations when sample sizes are sufficiently large, but their accuracy varies with the specific model and data used. To estimate the accuracy requires extensive numerical exploration. Investigating the sensitivity of results to the assumptions of the models is important and requires still more creative, thoughtful research. It takes substantial efforts of these kinds to bring any new model on line, and the need becomes increasingly important and difficult as statistical models move toward greater realism, usefulness, complexity, and availability in computer form. More complexity in turn will increase the demand for computational power. Although most of this demand can be satisfied by increasingly powerful desktop computers, some access to mainframe and even supercomputers will be needed in selected cases. We recommend an additional $4 million annually to cover the growth in computational demands for model development and testing.

Interaction and cooperation between the developers and the users of statistical and mathematical methods need continual stimulation—both ways. Efforts should be made to teach new methods to a wider variety of potential users than is now the case. Several ways appear effective for methodologists to communicate to empirical scientists: running summer training programs for graduate students, faculty, and other researchers; encouraging graduate students, perhaps through degree requirements, to make greater use of the statistical, mathematical, and methodological resources at their own or affiliated universities; associating statistical and mathematical research specialists with large-scale data collection projects; and developing statistical packages that incorporate expert systems in applying the methods.

Methodologists, in turn, need to become more familiar with the problems actually faced by empirical scientists in the laboratory and especially in the field. Several ways appear useful for communication in this direction: encouraging graduate students in methodological specialties, perhaps through degree requirements, to work directly on empirical research; creating postdoctoral fellowships aimed at integrating such specialists into ongoing data collection projects; and providing for large data collection projects to engage relevant methodological specialists. In addition, research on and development of statistical packages and expert systems should be encouraged to involve the multidisciplinary collaboration of experts with experience in statistical, computer, and cognitive sciences.

A final point has to do with the promise held out by bringing different research methods to bear on the same problems. As our discussions of research methods in this and other chapters have emphasized, different methods have different powers and limitations, and each is designed especially to elucidate one or more particular facets of a subject. An important type of interdisciplinary work is the collaboration of specialists in different research methodologies on a substantive issue, examples of which have been noted throughout this report. If more such research were conducted cooperatively, the power of each method pursued separately would be increased. To encourage such multidisciplinary work, we recommend increased support for fellowships, research workshops, and training institutes.

Funding for fellowships, both pre-and postdoctoral, should be aimed at giving methodologists experience with substantive problems and at upgrading the methodological capabilities of substantive scientists. Such targeted fellowship support should be increased by $4 million annually, of which $3 million should be for predoctoral fellowships emphasizing the enrichment of methodological concentrations. The new support needed for research workshops is estimated to be $1 million annually. And new support needed for various kinds of advanced training institutes aimed at rapidly diffusing new methodological findings among substantive scientists is estimated to be $2 million annually.

  • Cite this Page National Research Council; Division of Behavioral and Social Sciences and Education; Commission on Behavioral and Social Sciences and Education; Committee on Basic Research in the Behavioral and Social Sciences; Gerstein DR, Luce RD, Smelser NJ, et al., editors. The Behavioral and Social Sciences: Achievements and Opportunities. Washington (DC): National Academies Press (US); 1988. 5, Methods of Data Collection, Representation, and Analysis.
  • PDF version of this title (16M)

In this Page

Other titles in this collection.

  • The National Academies Collection: Reports funded by National Institutes of Health

Recent Activity

  • Methods of Data Collection, Representation, and Analysis - The Behavioral and So... Methods of Data Collection, Representation, and Analysis - The Behavioral and Social Sciences: Achievements and Opportunities

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

National Academies Press: OpenBook

The Behavioral and Social Sciences: Achievements and Opportunities (1988)

Chapter: 5. methods of data collection, representation, and anlysis.

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

l - Methods of Data Collection, Representation Analysis , and

SMethods of Data Collection. Representation, and This chapter concerns research on collecting, representing, and analyzing the data that underlie behavioral and social sciences knowledge. Such research, methodological in character, includes ethnographic and historical approaches, scaling, axiomatic measurement, and statistics, with its important relatives, econometrics and psychometrics. The field can be described as including the self-conscious study of how scientists draw inferences and reach conclusions from observations. Since statistics is the largest and most prominent of meth- odological approaches and is used by researchers in virtually every discipline, statistical work draws the lion's share of this chapter's attention. Problems of interpreting data arise whenever inherent variation or measure- ment fluctuations create challenges to understand data or to judge whether observed relationships are significant, durable, or general. Some examples: Is a sharp monthly (or yearly) increase in the rate of juvenile delinquency (or unemployment) in a particular area a matter for alarm, an ordinary periodic or random fluctuation, or the result of a change or quirk in reporting method? Do the temporal patterns seen in such repeated observations reflect a direct causal mechanism, a complex of indirect ones, or just imperfections in the Analysis 167

168 / The Behavioral and Social Sciences data? Is a decrease in auto injuries an effect of a new seat-belt law? Are the disagreements among people describing some aspect of a subculture too great to draw valid inferences about that aspect of the culture? Such issues of inference are often closely connected to substantive theory and specific data, and to some extent it is difficult and perhaps misleading to treat methods of data collection, representation, and analysis separately. This report does so, as do all sciences to some extent, because the methods developed often are far more general than the specific problems that originally gave rise to them. There is much transfer of new ideas from one substantive field to another—and to and from fields outside the behavioral and social sciences. Some of the classical methods of statistics arose in studies of astronomical observations, biological variability, and human diversity. The major growth of the classical methods occurred in the twentieth century, greatly stimulated by problems in agriculture and genetics. Some methods for uncovering geometric structures in data, such as multidimensional scaling and factor analysis, orig- inated in research on psychological problems, but have been applied in many other sciences. Some time-series methods were developed originally to deal with economic data, but they are equally applicable to many other kinds of data. Within the behavioral and social sciences, statistical methods have been developed in and have contributed to an enormous variety of research, includ- ing: · In economics: large-scale models of the U.S. economy; effects of taxa- tion, money supply, and other government fiscal and monetary policies; theories of duopoly, oligopoly, and rational expectations; economic effects of slavery. · In psychology: test calibration; the formation of subjective probabilities, their revision in the light of new information, and their use in decision making; psychiatric epidemiology and mental health program evaluation. · In sociology and other fields: victimization and crime rates; effects of incarceration and sentencing policies; deployment of police and fire-fight- ing forces; discrimination, antitrust, and regulatory court cases; social net- works; population growth and forecasting; and voting behavior. Even such an abridged listing makes clear that improvements in method- ology are valuable across the spectrum of empirical research in the behavioral and social sciences as well as in application to policy questions. Clearly, meth- odological research serves many different purposes, and there is a need to develop different approaches to serve those different purposes, including ex- ploratory data analysis, scientific inference about hypotheses and population parameters, individual decision making, forecasting what will happen in the event or absence of intervention, and assessing causality from both randomized experiments and observational data.

Methods of Data Collection, Representation, and Analysis / 169 This discussion of methodological research is divided into three areas: de- sign, representation, and analysis. The efficient design of investigations must take place before data are collected because it involves how much, what kind of, and how data are to be collected. What type of study is feasible: experi- mental, sample survey, field observation, or other? What variables should be measured, controlled, and randomized? How extensive a subject pool or ob- servational period is appropriate? How can study resources be allocated most effectively among various sites, instruments, and subsamples? The construction of useful representations of the data involves deciding what kind of formal structure best expresses the underlying qualitative and quanti- tative concepts that are being used in a given study. For example, cost of living is a simple concept to quantify if it applies to a single individual with unchang- ing tastes in stable markets (that is, markets offering the same array of goods from year to year at varying prices), but as a national aggregate for millions of households and constantly changing consumer product markets, the cost of living is not easy to specify clearly or measure reliably. Statisticians, economists, sociologists, and other experts have long struggled to make the cost of living a precise yet practicable concept that is also efficient to measure, and they must continually modify it to reflect changing circumstances. Data analysis covers the final step of characterizing and interpreting research findings: Can estimates of the relations between variables be made? Can some conclusion be drawn about correlation, cause and effect, or trends over time? How uncertain are the estimates and conclusions and can that uncertainty be reduced by analyzing the data in a different way? Can computers be used to display complex results graphically for quicker or better understanding or to suggest different ways of proceeding? Advances in analysis, data representation, and research design feed into and reinforce one another in the course of actual scientific work. The intersections between methodological improvements and empirical advances are an impor- tant aspect of the multidisciplinary thrust of progress in the behavioral and . socla. . sciences. DESIGNS FOR DATA COLLECTION Four broad kinds of research designs are used in the behavioral and social sciences: experimental, survey, comparative, and ethnographic. Experimental designs, in either the laboratory or field settings, systematically manipulate a few variables while others that may affect the outcome are held constant, randomized, or otherwise controlled. The purpose of randomized experiments is to ensure that only one or a few variables can systematically affect the results, so that causes can be attributed. Survey designs include the collection and analysis of data from censuses, sample surveys, and longitudinal studies and the examination of various relationships among the observed phe-

170 / The Behavioral and Social Sciences nomena. Randomization plays a different role here than in experimental de- signs: it is used to select members of a sample so that the sample is as repre- sentative of the whole population as possible. Comparative designs involve the retrieval of evidence that is recorded in the flow of current or past events in different times or places and the interpretation and analysis of this evidence. Ethnographic designs, also known as participant-observation designs, involve a researcher in intensive and direct contact with a group, community, or pop- ulation being studied, through participation, observation, and extended inter- vlewlng. Experimental Designs Laboratory Experiments Laboratory experiments underlie most of the work reported in Chapter 1, significant parts of Chapter 2, and some of the newest lines of research in Chapter 3. Laboratory experiments extend and adapt classical methods of de- sign first developed, for the most part, in the physical and life sciences and agricultural research. Their main feature is the systematic and independent manipulation of a few variables and the strict control or randomization of all other variables that might affect the phenomenon under study. For example, some studies of animal motivation involve the systematic manipulation of amounts of food and feeding schedules while other factors that may also affect motiva- tion, such as body weight, deprivation, and so on, are held constant. New designs are currently coming into play largely because of new analytic and computational methods (discussed below, in "Advances in Statistical Inference and Analysis". Two examples of empirically important issues that demonstrate the need for broadening classical experimental approaches are open-ended responses and lack of independence of successive experimental trials. The first concerns the design of research protocols that do not require the strict segregation of the events of an experiment into well-defined trials, but permit a subject to respond at will. These methods are needed when what is of interest is how the respond- ent chooses to allocate behavior in real time and across continuously available alternatives. Such empirical methods have long been used, but they can gen- erate very subtle and difficult problems in experimental design and subsequent analysis. As theories of allocative behavior of all sorts become more sophisti- cated and precise, the experimental requirements become more demanding, so the need to better understand and solve this range of design issues is an outstanding challenge to methodological ingenuity. The second issue arises in repeated-trial designs when the behavior on suc- cessive trials, even if it does not exhibit a secular trend (such as a learning curve), is markedly influenced by what has happened in the preceding trial or trials. The more naturalistic the experiment and the more sensitive the meas-

Methods of Data Collection, Representation, and Analysis / 171 urements taken, the more likely it is that such effects will occur. But such sequential dependencies in observations cause a number of important concep- tual and technical problems in summarizing the data and in testing analytical models, which are not yet completely understood. In the absence of clear solutions, such effects are sometimes ignored by investigators, simplifying the data analysis but leaving residues of skepticism about the reliability and sig- nificance of the experimental results. With continuing development of sensitive measures in repeated-trial designs, there is a growing need for more advanced concepts and methods for dealing with experimental results that may be influ- enced by sequential dependencies. Randomized Field Experiments The state of the art in randomized field experiments, in which different policies or procedures are tested in controlled trials under real conditions, has advanced dramatically over the past two decades. Problems that were once considered major methodological obstacles such as implementing random- ized field assignment to treatment and control groups and protecting the ran- domization procedure from corruption have been largely overcome. While state-of-the-art standards are not achieved in every field experiment, the com- mitment to reaching them is rising steadily, not only among researchers but also among customer agencies and sponsors. The health insurance experiment described in Chapter 2 is an example of a major randomized field experiment that has had and will continue to have important policy reverberations in the design of health care financing. Field experiments with the negative income tax (guaranteed minimum income) con- ducted in the 1970s were significant in policy debates, even before their com- pletion, and provided the most solid evidence available on how tax-based income support programs and marginal tax rates can affect the work incentives and family structures of the poor. Important field experiments have also been carried out on alternative strategies for the prevention of delinquency and other criminal behavior, reform of court procedures, rehabilitative programs in men- tal health, family planning, and special educational programs, among other areas. In planning field experiments, much hinges on the definition and design of the experimental cells, the particular combinations needed of treatment and control conditions for each set of demographic or other client sample charac- teristics, including specification of the minimum number of cases needed in each cell to test for the presence of effects. Considerations of statistical power, client availability, and the theoretical structure of the inquiry enter into such specifications. Current important methodological thresholds are to find better ways of predicting recruitment and attrition patterns in the sample, of designing experiments that will be statistically robust in the face of problematic sample

172 / The Behavioral and Social Sciences recruitment or excessive attrition, and of ensuring appropriate acquisition and analysis of data on the attrition component of the sample. Also of major significance are improvements in integrating detailed process and outcome measurements in field experiments. To conduct research on pro- gram effects under held conditions requires continual monitoring to determine exactly what is being done—the process how it corresponds to what was projected at the outset. Relatively unintrusive, inexpensive, and effective im- plementation measures are of great interest. There is, in parallel, a growing emphasis on designing experiments to evaluate distinct program components in contrast to summary measures of net program effects. Finally, there is an important opportunity now for further theoretical work to model organizational processes in social settings and to design and select outcome variables that, in the relatively short time of most field experiments, can predict longer-term effects: For example, in job-training programs, what are the effects on the community (role models, morale, referral networks) or on individual skills, motives, or knowledge levels that are likely to translate into sustained changes in career paths and income levels? Survey Designs Many people have opinions about how societal mores, economic conditions, and social programs shape lives and encourage or discourage various kinds of behavior. People generalize from their own cases, and from the groups to which they belong, about such matters as how much it costs to raise a child, the extent to which unemployment contributes to divorce, and so on. In fact, however, effects vary so much from one group to another that homespun generalizations are of little use. Fortunately, behavioral and social scientists have been able to bridge the gaps between personal perspectives and collective realities by means of survey research. In particular, governmental information systems include volumes of extremely valuable survey data, and the facility of modern com- puters to store, disseminate, and analyze such data has significantly improved empirical tests and led to new understandings of social processes. Within this category of research designs, two major types are distinguished: repeated cross-sectional surveys and longitudinal panel surveys. In addition, and cross-cutting these types, there is a major effort under way to improve and refine the quality of survey data by investigating features of human memory and of question formation that affect survey response. Repeated cross-sectional designs can either attempt to measure an entire population as does the oldest U.S. example, the national decennial census or they can rest on samples drawn from a population. The general principle is to take independent samples at two or more times, measuring the variables of interest, such as income levels, housing plans, or opinions about public affairs, in the same way. The General Social Survey, collected by the National Opinion Research Center with National Science Foundation support, is a repeated cross-

Methods of Data Collection, Representation, and Analysis / 173 sectional data base that was begun in 1972. One methodological question of particular salience in such data is how to adjust for nonresponses and "don't know" responses. Another is how to deal with self-selection bias. For example, to compare the earnings of women and men in the labor force, it would be mistaken to first assume that the two samples of labor-force participants are randomly selected from the larger populations of men and women; instead, one has to consider and incorporate in the analysis the factors that determine who is in the labor force. In longitudinal panels, a sample is drawn at one point in time and the relevant variables are measured at this and subsequent times for the same people. In more complex versions, some fraction of each panel may be replaced or added to periodically, such as expanding the sample to include households formed by the children of the original sample. An example of panel data developed in this way is the Panel Study of Income Dynamics (PSID), conducted by the University of Michigan since 1968 (discussed in Chapter 35. Comparing the fertility or income of different people in different circum- stances at the same time to kind correlations always leaves a large proportion of the variability unexplained, but common sense suggests that much of the unexplained variability is actually explicable. There are systematic reasons for individual outcomes in each person's past achievements, in parental models, upbringing, and earlier sequences of experiences. Unfortunately, asking people about the past is not particularly helpful: people remake their views of the past to rationalize the present and so retrospective data are often of uncertain va- lidity. In contrast, generation-long longitudinal data allow readings on the sequence of past circumstances uncolored by later outcomes. Such data are uniquely useful for studying the causes and consequences of naturally occur- ring decisions and transitions. Thus, as longitudinal studies continue, quant,i- tative analysis is becoming feasible about such questions as: How are the de- cisions of individuals affected by parental experience? Which aspects of early decisions constrain later opportunities? And how does detailed background experience leave its imprint? Studies like the two-decade-long PSID are bring- ing within grasp a complete generational cycle of detailed data on fertility, work life, household structure, and income. Advances in Longitudinal Designs Large-scale longitudinal data collection projects are uniquely valuable as vehicles for testing and improving survey research methodology. In ways that lie beyond the scope of a cross-sectional survey, longitudinal studies can some- times be designed without significant detriment to their substantive inter- ests to facilitate the evaluation and upgrading of data quality; the analysis of relative costs and effectiveness of alternative techniques of inquiry; and the standardization or coordination of solutions to problems of method, concept, and measurement across different research domains.

174 / The Behavioral and Social Sciences Some areas of methodological improvement include discoveries about the impact of interview mode on response (mail, telephone, face-to-face); the effects of nonresponse on the representativeness of a sample (due to respondents' refusal or interviewers' failure to contact); the effects on behavior of continued participation over time in a sample survey; the value of alternative methods of adjusting for nonresponse and incomplete observations (such as imputation of missing data, variable case weighting); the impact on response of specifying different recall periods, varying the intervals between interviews, or changing the length of interviews; and the comparison and calibration of results obtained by longitudinal surveys, randomized field experiments, laboratory studies, one- time surveys, and administrative records. It should be especially noted that incorporating improvements in method- ology and data quality has been and will no doubt continue to be crucial to the growing success of longitudinal studies. Panel designs are intrinsically more vulnerable than other designs to statistical biases due to cumulative item non- response, sample attrition, time-in-sample effects, and error margins in re- peated measures, all of which may produce exaggerated estimates of change. Over time, a panel that was initially representative may become much less representative of a population, not only because of attrition in the sample, but also because of changes in immigration patterns, age structure, and the like. Longitudinal studies are also subject to changes in scientific and societal con- texts that may create uncontrolled drifts over time in the meaning of nominally stable questions or concepts as well as in the underlying behavior. Also, a natural tendency to expand over time the range of topics and thus the interview lengths, which increases the burdens on respondents, may lead to deterioration of data quality or relevance. Careful methodological research to understand and overcome these problems has been done, and continued work as a com- ponent of new longitudinal studies is certain to advance the overall state of the art. Longitudinal studies are sometimes pressed for evidence they are not de- signed to produce: for example, in important public policy questions concern- ing the impact of government programs in such areas as health promotion, disease prevention, or criminal justice. By using research designs that combine field experiments (with randomized assignment to program and control con- ditions) and longitudinal surveys, one can capitalize on the strongest merits of each: the experimental component provides stronger evidence for casual state- ments that are critical for evaluating programs and for illuminating some fun- damental theories; the longitudinal component helps in the estimation of long- term program effects and their attenuation. Coupling experiments to ongoing longitudinal studies is not often feasible, given the multiple constraints of not disrupting the survey, developing all the complicated arrangements that go into a large-scale field experiment, and having the populations of interest over- lap in useful ways. Yet opportunities to join field experiments to surveys are

Methods of Data Collection, Representation, and Analysis / 175 of great importance. Coupled studies can produce vital knowledge about the empirical conditions under which the results of longitudinal surveys turn out to be similar to—or divergent from those produced by randomized field experiments. A pattern of divergence and similarity has begun to emerge in coupled studies; additional cases are needed to understand why some naturally occurring social processes and longitudinal design features seem to approxi- mate formal random allocation and others do not. The methodological impli- cations of such new knowledge go well beyond program evaluation and survey research. These findings bear directly on the confidence scientists and oth- ers can have in conclusions from observational studies of complex behavioral and social processes, particularly ones that cannot be controlled or simulated within the confines of a laboratory environment. Memory and the Framing of questions A very important opportunity to improve survey methods lies in the reduc- tion of nonsampling error due to questionnaire context, phrasing of questions, and, generally, the semantic and social-psychological aspects of surveys. Survey data are particularly affected by the fallibility of human memory and the sen- sitivity of respondents to the framework in which a question is asked. This sensitivity is especially strong for certain types of attitudinal and opinion ques- tions. Efforts are now being made to bring survey specialists into closer contact with researchers working on memory function, knowledge representation, and language in order to uncover and reduce this kind of error. Memory for events is often inaccurate, biased toward what respondents believe to be true or should be true—about the world. In many cases in which data are based on recollection, improvements can be achieved by shifting to techniques of structured interviewing and calibrated forms of memory elic- itation, such as specifying recent, brief time periods (for example, in the last seven days) within which respondents recall certain types of events with ac- ceptable accuracy. Experiments on individual decision making show that the way a question is framed predictably alters the responses. Analysts of survey data find that some small changes in the wording of certain kinds of questions can produce large differences in the answers, although other wording changes have little effect. Even simply changing the order in which some questions are presented can produce large differences, although for other questions the order of presenta- tion does not matter. For example, the following questions were among those asked in one wave of the General Social Survey: · "Taking things altogether, how would you describe your marriage? Would you say that your marriage is very happy, pretty happy, or not too happy?" · "Taken altogether how would you say things are these days—would you say you are very happy, pretty happy, or not too happy?"

176 / The Behavioral and Social Sciences Presenting this sequence in both directions on different forms showed that the order affected answers to the general happiness question but did not change the marital happiness question: responses to the specific issue swayed subse- quent responses to the general one, but not vice versa. The explanations for and implications of such order effects on the many kinds of questions and sequences that can be used are not simple matters. Further experimentation on the design of survey instruments promises not only to improve the accuracy and reliability of survey research, but also to advance understanding of how people think about and evaluate their behavior from day to day. Comparative Designs Both experiments and surveys involve interventions or questions by the scientist, who then records and analyzes the responses. In contrast, many bodies of social and behavioral data of considerable value are originally derived from records or collections that have accumulated for various nonscientific reasons, quite often administrative in nature, in firms, churches, military or- ganizations, and governments at all levels. Data of this kind can sometimes be subjected to careful scrutiny, summary, and inquiry by historians and social scientists, and statistical methods have increasingly been used to develop and evaluate inferences drawn from such data. Some of the main comparative approaches are'. cross-national aggregate comparisons, selective comparison of a limited number of cases, and historical case studies. Among the more striking problems facing the scientist using such data are the vast differences in what has been recorded by different agencies whose behavior is being compared (this is especially true for parallel agencies in different nations), the highly unrepresentative or idiosyncratic sampling that can occur in the collection of such data, and the selective preservation and destruction of records. Means to overcome these problems form a substantial methodological research agenda in comparative research. An example of the method of cross-national aggregative comparisons is found in investigations by political scientists and sociologists of the factors that underlie differences in the vitality of institutions of political democracy in different societies. Some investigators have stressed the existence of a large middle class, others the level of education of a population, and still others the development of systems of mass communication. In cross-national aggregate comparisons, a large number of nations are arrayed according to some measures of political democracy and then attempts are made to ascertain the strength of correlations between these and the other variables. In this line of analysis it is possible to use a variety of statistical cluster and regression techniques to isolate and assess the possible impact of certain variables on the institutions under study. While this kind of research is cross-sectional in character, statements about historical processes are often invoked to explain the correlations.

Methods of Data Collection, Representation, and Analysis / 177 More limited selective comparisons, applied by many of the classic theorists, involve asking similar kinds of questions but over a smaller range of societies. Why did democracy develop in such different ways in America, France, and England? Why did northeastern Europe develop rational bourgeois capitalism, in contrast to the Mediterranean and Asian nations? Modern scholars have turned their attention to explaining, for example, differences among types of fascism between the two World Wars, and similarities and differences among modern state welfare systems, using these comparisons to unravel the salient causes. The questions asked in these instances are inevitably historical ones. Historical case studies involve only one nation or region, and so they may not be geographically comparative. However, insofar as they involve tracing the transformation of a society's major institutions and the role of its main shaping events, they involve a comparison of different periods of a nation's or a region's history. The goal of such comparisons is to give a systematic account of the relevant differences. Sometimes, particularly with respect to the ancient societies, the historical record is very sparse, and the methods of history and archaeology mesh in the reconstruction of complex social arrangements and patterns of change on the basis of few fragments. Like all research designs, comparative ones have distinctive vulnerabilities and advantages: One of the main advantages of using comparative designs is that they greatly expand the range of data, as well as the amount of variation in those data, for study. Consequently, they allow for more encompassing explanations and theories that can relate highly divergent outcomes to one another in the same framework. They also contribute to reducing any cultural biases or tendencies toward parochialism among scientists studying common human phenomena. One main vulnerability in such designs arises from the problem of achieving comparability. Because comparative study involves studying societies and other units that are dissimilar from one another, the phenomena under study usually occur in very different contexts—so different that in some cases what is called an event in one society cannot really be regarded as the same type of event in another. For example, a vote in a Western democracy is different from a vote in an Eastern bloc country, and a voluntary vote in the United States means something different from a compulsory vote in Australia. These circumstances make for interpretive difficulties in comparing aggregate rates of voter turnout in different countries. The problem of achieving comparability appears in historical analysis as well. For example, changes in laws and enforcement and recording procedures over time change the definition of what is and what is not a crime, and for that reason it is difficult to compare the crime rates over time. Comparative re- searchers struggle with this problem continually, working to fashion equivalent measures; some have suggested the use of different measures (voting, letters to the editor, street demonstration) in different societies for common variables

178 / The Behavioral and Social Sciences (political participation), to try to take contextual factors into account and to achieve truer comparability. A second vulnerability is controlling variation. Traditional experiments make conscious and elaborate efforts to control the variation of some factors and thereby assess the causal significance of others. In surveys as well as experi- ments, statistical methods are used to control sources of variation and assess suspected causal significance. In comparative and historical designs, this kind of control is often difficult to attain because the sources of variation are many and the number of cases few. Scientists have made efforts to approximate such control in these cases of "many variables, small N." One is the method of paired comparisons. If an investigator isolates 15 American cities in which racial violence has been recurrent in the past 30 years, for example, it is helpful to match them with IS cities of similar population size, geographical region, and size of minorities- such characteristics are controls—and then search for sys- tematic differences between the two sets of cities. Another method is to select, for comparative purposes, a sample of societies that resemble one another in certain critical ways, such as size, common language, and common level of development, thus attempting to hold these factors roughly constant, and then seeking explanations among other factors in which the sampled societies differ from one another. Ethnographic Designs Traditionally identified with anthropology, ethnographic research designs are playing increasingly significant roles in most of the behavioral and social sciences. The core of this methodology is participant-observation, in which a researcher spends an extended period of time with the group under study, ideally mastering the local language, dialect, or special vocabulary, and partic- ipating in as many activities of the group as possible. This kind of participant- observation is normally coupled with extensive open-ended interviewing, in which people are asked to explain in depth the rules, norms, practices, and beliefs through which (from their point of view) they conduct their lives. A principal aim of ethnographic study is to discover the premises on which those rules, norms, practices, and beliefs are built. The use of ethnographic designs by anthropologists has contributed signif- icantly to the building of knowledge about social and cultural variation. And while these designs continue to center on certain long-standing features— extensive face-to-face experience in- the community, linguistic competence, participation, and open-ended interviewing- there are newer trends in eth- nographic work. One major trend concerns its scale. Ethnographic methods were originally developed largely for studying small-scale groupings known variously as village, folk, primitive, preliterate, or simple societies. Over the decades, these methods have increasingly been applied to the study of small

Methods of Data Collection, Representation, and Analysis / 179 groups and networks within modern (urban, industrial, complex) society, in- cluding the contemporary United States. The typical subjects of ethnographic study in modern society are small groups or relatively small social networks, such as outpatient clinics, medical schools, religious cults and churches, ethn- ically distinctive urban neighborhoods, corporate offices and factories, and government bureaus and legislatures. As anthropologists moved into the study of modern societies, researchers in other disciplines particularly sociology, psychology, and political science- began using ethnographic methods to enrich and focus their own insights and findings. At the same time, studies of large-scale structures and processes have been aided by the use of ethnographic methods, since most large-scale changes work their way into the fabric of community, neighborhood, and family, af- fecting the daily lives of people. Ethnographers have studied, for example, the impact of new industry and new forms of labor in "backward" regions; the impact of state-level birth control policies on ethnic groups; and the impact on residents in a region of building a dam or establishing a nuclear waste dump. Ethnographic methods have also been used to study a number of social pro- cesses that lend themselves to its particular techniques of observation and interview—processes such as the formation of class and racial identities, bu- reaucratic behavior, legislative coalitions and outcomes, and the formation and shifting of consumer tastes. Advances in structured interviewing (see above) have proven especially pow- erful in the study of culture. Techniques for understanding kinship systems, concepts of disease, color terminologies, ethnobotany, and ethnozoology have been radically transformed and strengthened by coupling new interviewing methods with modem measurement and scaling techniques (see below). These techniques have made possible more precise comparisons among cultures and identification of the most competent and expert persons within a culture. The next step is to extend these methods to study the ways in which networks of propositions (such as boys like sports, girls like babies) are organized to form belief systems. Much evidence suggests that people typically represent the world around them by means of relatively complex cognitive models that in- volve interlocking propositions. The techniques of scaling have been used to develop models of how people categorize objects, and they have great potential for further development, to analyze data pertaining to cultural propositions. Ideological Systems Perhaps the most fruitful area for the application of ethnographic methods in recent years has been the systematic study of ideologies in modern society. Earlier studies of ideology were in small-scale societies that were rather ho- mogeneous. In these studies researchers could report on a single culture, a uniform system of beliefs and values for the society as a whole. Modern societies are much more diverse both in origins and number of subcultures, related to

180 / The Behavioral and Social Sciences different regions, communities, occupations, or ethnic groups. Yet these sub- cultures and ideologies share certain underlying assumptions or at least must find some accommodation with the dominant value and belief systems in the society. The challenge is to incorporate this greater complexity of structure and process into systematic descriptions and interpretations. One line of work carried out by researchers has tried to track the ways in which ideologies are created, transmitted, and shared among large populations that have tradition- ally lacked the social mobility and communications technologies of the West. This work has concentrated on large-scale civilizations such as China, India, and Central America. Gradually, the focus has generalized into a concern with the relationship between the great traditions—the central lines of cosmopolitan Confucian, Hindu, or Mayan culture, including aesthetic standards, irrigation technologies, medical systems, cosmologies and calendars, legal codes, poetic genres, and religious doctrines and rites and the little traditions, those iden- tified with rural, peasant communities. How are the ideological doctrines and cultural values of the urban elites, the great traditions, transmitted to local communities? How are the little traditions, the ideas from the more isolated, less literate, and politically weaker groups in society, transmitted to the elites? India and southern Asia have been fruitful areas for ethnographic research on these questions. The great Hindu tradition was present in virtually all local contexts through the presence of high-caste individuals in every community. It operated as a pervasive standard of value for all members of society, even in the face of strong little traditions. The situation is surprisingly akin to that of modern, industrialized societies. The central research questions are the degree and the nature of penetration of dominant ideology, even in groups that appear marginal and subordinate and have no strong interest in sharing the dominant value system. In this connection the lowest and poorest occupational caste— the untouchables- serves as an ultimate test of the power of ideology and cultural beliefs to unify complex hierarchical social systems. Historical Reconstruction Another current trend in ethnographic methods is its convergence with archival methods. One joining point is the application of descriptive and in- terpretative procedures used by ethnographers to reconstruct the cultures that created historical documents, diaries, and other records, to interview history, so to speak. For example, a revealing study showed how the Inquisition in the Italian countryside between the 1570s and 1640s gradually worked subtle changes in an ancient fertility cult in peasant communities; the peasant beliefs and rituals assimilated many elements of witchcraft after learning them from their persecutors. A good deal of social history particularly that of the fam- ily has drawn on discoveries made in the ethnographic study of primitive societies. As described in Chapter 4, this particular line of inquiry rests on a marriage of ethnographic, archival, and demographic approaches.

Methods of Data Collection, Representation, and Analysis / 181 Other lines of ethnographic work have focused on the historical dimensions of nonliterate societies. A strikingly successful example in this kind of effort is a study of head-hunting. By combining an interpretation of local oral tradition with the fragmentary observations that were made by outside observers (such as missionaries, traders, colonial officials), historical fluctuations in the rate and significance of head-hunting were shown to be partly in response to such international forces as the great depression and World War II. Researchers are also investigating the ways in which various groups in contemporary societies invent versions of traditions that may or may not reflect the actual history of the group. This process has been observed among elites seeking political and cultural legitimation and among hard-pressed minorities (for example, the Basque in Spain, the Welsh in Great Britain) seeking roots and political mo- . .1 . . . olllzatlon in a arger society. Ethnography is a powerful method to record, describe, and interpret the system of meanings held by groups and to discover how those meanings affect the lives of group members. It is a method well adapted to the study of situations in which people interact with one another and the researcher can interact with them as well, so that information about meanings can be evoked and observed. Ethnography is especially suited to exploration and elucidation of unsuspected connections; ideally, it is used in combination with other methods—experi- mental, survey, or comparative to establish with precision the relative strengths and weaknesses of such connections. By the same token, experimental, survey, and comparative methods frequently yield connections, the meaning of which is unknown; ethnographic methods are a valuable way to determine them. MODELS FOR REPRESENTING PHENOMENA The objective of any science is to uncover the structure and dynamics of the phenomena that are its subject, as they are exhibited in the data. Scientists continuously try to describe possible structures and ask whether the data can, with allowance for errors of measurement, be described adequately in terms of them. Over a long time, various families of structures have recurred throughout many fields of science; these structures have become objects of study in their own right, principally by statisticians, other methodological specialists, applied mathematicians, and philosophers of logic and science. Methods have evolved to evaluate the adequacy of particular structures to account for particular types of data. In the interest of clarity we discuss these structures in this section and the analytical methods used for estimation and evaluation of them in the next section, although in practice they are closely intertwined. A good deal of mathematical and statistical modeling attempts to describe the relations, both structural and dynamic, that hold among variables that are presumed to be representable by numbers. Such models are applicable in the behavioral and social sciences only to the extent that appropriate numerical

182 / The Behavioral and Social Sciences measurement can be devised for the relevant variables. In many studies the phenomena in question and the raw data obtained are not intrinsically nu- merical, but qualitative, such as ethnic group identifications. The identifying numbers used to code such questionnaire categories for computers are no more than labels, which could just as well be letters or colors. One key question is whether there is some natural way to move from the qualitative aspects of such data to a structural representation that involves one of the well-understood numerical or geometric models or whether such an attempt would be inherently inappropriate for the data in question. The decision as to whether or not particular empirical data can be represented in particular numerical or more complex structures is seldom simple, and strong intuitive biases or a priori assumptions about what can and cannot be done may be misleading. Recent decades have seen rapid and extensive development and application of analytical methods attuned to the nature and complexity of social science data. Examples of nonnumerical modeling are increasing. Moreover, the wide- spread availability of powerful computers is probably leading to a qualitative revolution, it is affecting not only the ability to compute numerical solutions to numerical models, but also to work out the consequences of all sorts of structures that do not involve numbers at all. The following discussion gives some indication of the richness of past progress and of future prospects al- though it is by necessity far from exhaustive. In describing some of the areas of new and continuing research, we have organized this section on the basis of whether the representations are funda- mentally probabilistic or not. A further useful distinction is between represen- tations of data that are highly discrete or categorical in nature (such as whether a person is male or female) and those that are continuous in nature (such as a person's height). Of course, there are intermediate cases involving both types of variables, such as color stimuli that are characterized by discrete hues (red, green) and a continuous luminance measure. Probabilistic models lead very naturally to questions of estimation and statistical evaluation of the correspon- dence between data and model. Those that are not probabilistic involve addi- tional problems of dealing with and representing sources of variability that are not explicitly modeled. At the present time, scientists understand some aspects of structure, such as geometries, and some aspects of randomness, as embodied in probability models, but do not yet adequately understand how to put the two together in a single unibed model. Table 5-1 outlines the way we have organized this discussion and shows where the examples in this section lie. Probability Models Some behavioral and social sciences variables appear to be more or less continuous, for example, utility of goods, loudness of sounds, or risk associated with uncertain alternatives. Many other variables, however, are inherently cat-

Methods of Data Collection, Representation, and Analysis / 183 TABLE S- 1 A Classification of Structural Models Nature of the Variables Nature of the Representation Categorical Continuous Probabilistic Log-linear and Multi-item related models measurement Event histories Nonlinear, nonadditive models Geometric and Clustering Scaling algebraic Network models Ordered factorial systems egorical, often with only two or a few values possible: for example, whether a person is in or out of school, employed or not employed, identifies with a major political party or political ideology. And some variables, such as moral attitudes, are typically measured in research with survey questions that allow only categorical responses. Much of the early probability theory was formulated only for continuous variables; its use with categorical variables was not really justified, and in some cases it may have been misleading. Recently, very sig- nificant advances have been made in how to deal explicitly with categorical variables. This section first describes several contemporary approaches to models involving categorical variables, followed by ones involving continuous repre- sentations. Log-Linear Models for Categorical Variables Many recent models for analyzing categorical data of the kind usually dis- played as counts (cell frequencies) in multidimensional contingency tables are subsumed under the general heading of log-linear models, that is, linear models in the natural logarithms of the expected counts in each cell in the table. These recently developed forms of statistical analysis allow one to partition variability due to various sources in the distribution of categorical attributes, and to isolate the effects of particular variables or combinations of them. Present log-linear models were first developed and used by statisticians and sociologists and then found extensive application in other social and behavioral sciences disciplines. When applied, for instance, to the analysis of social mo- bility, such models separate factors of occupational supply and demand from other factors that impede or propel movement up and down the social hier- archy. With such models, for example, researchers discovered the surprising fact that occupational mobility patterns are strikingly similar in many nations of the world (even among disparate nations like the United States and most of the Eastem European socialist countries), and from one time period to another, once allowance is made for differences in the distributions of occupations. The

184 / The Behavioral and Social Sciences log-linear and related kinds of models have also made it possible to identify and analyze systematic differences in mobility among nations and across time. As another example of applications, psychologists and others have used log- linear models to analyze attitudes and their determinants and to link attitudes to behavior. These methods have also diffused to and been used extensively in the medical and biological sciences. Regression Modelsfor Categorical Variables Models that permit one variable to be explained or predicted by means of others, called regression models, are the workhorses of much applied statistics; this is especially true when the dependent (explained) variable is continuous. For a two-valued dependent variable, such as alive or dead, models and ap- proximate theory and computational methods for one explanatory variable were developed in biometry about 50 years ago. Computer programs able to handle many explanatory variables, continuous or categorical, are readily avail- able today. Even now, however, the accuracy of the approximate theory on . given c .ata IS an open question. Using classical utility theory, economists have developed discrete choice models that turn out to be somewhat related to the log-linear and categorical regression models. Models for limited dependent variables, especially those that cannot take on values above or below a certain level (such as weeks unemployed, number of children, and years of schooling) have been used profitably in economics and in some other areas. For example, censored normal variables (called tobits in economics), in which observed values outside certain limits are simply counted, have been used in studying decisions to go on in school. It will require further research and development to incorporate infor- mation about limited ranges of variables fully into the main multivariate meth- odologies. In addition, with respect to the assumptions about distribution and functional form conventionally made in discrete response models, some new methods are now being developed that show promise of yielding reliable in- ferences without making unrealistic assumptions; further research in this area . ~ promises slgnl~cant progress. One problem arises from the fact that many of the categorical variables collected by the major data bases are ordered. For example, attitude surveys frequently use a 3-, 5-, or 7-point scale (from high to low) without specifying numerical intervals between levels. Social class and educational levels are often described by ordered categories. Ignoring order information, which many tra- ditional statistical methods do, may be inefficient or inappropriate, but replac- ing the categories by successive integers or other arbitrary scores may distort the results. (For additional approaches to this question, see sections below on ordered structures.) Regression-like analysis of ordinal categorical variables is quite well developed, but their multivariate analysis needs further research. New log-bilinear models have been proposed, but to date they deal specifically

Methods of Data Collection, Representation, and Analysis / 18S with only two or three categorical variables. Additional research extending the new models, improving computational algorithms, and integrating the models with work on scaling promise to lead to valuable new knowledge. Models for Event Histories Event-history studies yield the sequence of events that respondents to a survey sample experience over a period of time; for example, the timing of marriage, childbearing, or labor force participation. Event-history data can be used to study educational progress, demographic processes (migration, fertility, and mortality), mergers of firms, labor market behavior? and even riots, strikes, and revolutions. As interest in such data has grown, many researchers have turned to models that pertain to changes in probabilities over time to describe when and how individuals move among a set of qualitative states. Much of the progress in models for event-history data builds on recent developments in statistics and biostatistics for life-time, failure-time, and haz- ard models. Such models permit the analysis of qualitative transitions in a population whose members are undergoing partially random organic deterio- ration, mechanical wear, or other risks over time. With the increased com- plexity of event-history data that are now being collected, and the extension of event-history data bases over very long periods of time, new problems arise that cannot be effectively handled by older types of analysis. Among the prob- lems are repeated transitions, such as between unemployment and employment or marriage and divorce; more than one time variable (such as biological age, calendar time, duration in a stage, and time exposed to some specified con- dition); latent variables (variables that are explicitly modeled even though not observed); gaps in the data; sample attrition that is not randomly distributed over the categories; and respondent difficulties in recalling the exact timing of events. Models for Multiple-Item Measurement For a variety of reasons, researchers typically use multiple measures (or multiple indicators) to represent theoretical concepts. Sociologists, for example, often rely on two or more variables (such as occupation and education) to measure an individual's socioeconomic position; educational psychologists or- dinarily measure a student's ability with multiple test items. Despite the fact that the basic observations are categorical, in a number of applications this is interpreted as a partitioning of something continuous. For example, in test theory one thinks of the measures of both item difficulty and respondent ability as continuous variables, possibly multidimensional in character. Classical test theory and newer item-response theories in psychometrics deal with the extraction of information from multiple measures. Testing, which is a major source of data in education and other areas, results in millions of test

186 / The Behavioral and Social Sciences items stored in archives each year for purposes ranging from college admissions to job-training programs for industry. One goal of research on such test data is to be able to make comparisons among persons or groups even when different test items are used. Although the information collected from each respondent is intentionally incomplete in order to keep the tests short and simple, item- response techniques permit researchers to reconstitute the fragments into an accurate picture of overall group proficiencies. These new methods provide a better theoretical handle on individual differences, and they are expected to be extremely important in developing and using tests. For example, they have been used in attempts to equate different forms of a test given in successive waves during a year, a procedure made necessary in large-scale testing programs by legislation requiring disclosure of test-scoring keys at the time results are given. An example of the use of item-response theory in a significant research effort is the National Assessment of Educational Progress (NAEP). The goal of this project is to provide accurate, nationally representative information on the average (rather than individual) proficiency of American children in a wide variety of academic subjects as they progress through elementary and secondary school. This approach is an improvement over the use of trend data on uni- versity entrance exams, because NAEP estimates of academic achievements (by broad characteristics such as age, grade, region, ethnic background, and so on) are not distorted by the self-selected character of those students who seek admission to college, graduate, and professional programs. Item-response theory also forms the basis of many new psychometric in- struments, known as computerized adaptive testing, currently being imple- mented by the U.S. military services and under additional development in many testing organizations. In adaptive tests, a computer program selects items for each examiner based upon the examinee's success with previous items. Gen- erally, each person gets a slightly different set of items and the equivalence of scale scores is established by using item-response theory. Adaptive testing can greatly reduce the number of items needed to achieve a given level of meas- urement accuracy. Nonlinear, Nonadditive Models Virtually all statistical models now in use impose a linearity or additivity assumption of some kind, sometimes after a nonlinear transformation of var- iables. Imposing these forms on relationships that do not, in fact, possess them may well result in false descriptions and spurious effects. Unwary users, es- pecially of computer software packages, can easily be misled. But more realistic nonlinear and nonadditive multivariate models are becoming available. Exten- sive use with empirical data is likely to force many changes and enhancements in such models and stimulate quite different approaches to nonlinear multi- variate analysis in the next decade.

Methods of Data Collection, Representation, and Analysis / 187 Geometric and Algebraic Models Geometric and algebraic models attempt to describe underlying structural relations among variables. In some cases they are part of a probabilistic ap- proach, such as the algebraic models underlying regression or the geometric representations of correlations between items in a technique called factor anal- ysis. In other cases, geometric and algebraic models are developed without explicitly modeling the element of randomness or uncertainty that is always present in the data. Although this latter approach to behavioral and social sciences problems has been less researched than the probabilistic one, there are some advantages in developing the structural aspects independent of the statistical ones. We begin the discussion with some inherently geometric rep- resentations and then turn to numerical representations for ordered data. Although geometry is a huge mathematical topic, little of it seems directly applicable to the kinds of data encountered in the behavioral and social sci- ences. A major reason is that the primitive concepts normally used in geome- try points, lines, coincidence—do not correspond naturally to the kinds of qualitative observations usually obtained in behavioral and social sciences con- texts. Nevertheless, since geometric representations are used to reduce bodies of data, there is a real need to develop a deeper understanding of when such representations of social or psychological data make sense. Moreover, there is a practical need to understand why geometric computer algorithms, such as those of multidimensional scaling, work as well as they apparently do. A better understanding of the algorithms will increase the efficiency and appropriate- ness of their use, which becomes increasingly important with the widespread availability of scaling programs for microcomputers. Scaling Over the past 50 years several kinds of well-understood scaling techniques have been developed and widely used to assist in the search for appropriate geometric representations of empirical data. The whole field of scaling is now entering a critical juncture in terms of unifying and synthesizing what earlier appeared to be disparate contributions. Within the past few years it has become apparent that several major methods of analysis, including some that are based on probabilistic assumptions, can be unified under the rubric of a single gen- eralized mathematical structure. For example, it has recently been demon- strated that such diverse approaches as nonmetric multidimensional scaling, principal-components analysis, factor analysis, correspondence analysis, and log-linear analysis have more in common in terms of underlying mathematical structure than had earlier been realized. Nonmetric multidimensional scaling is a method that begins with data about the ordering established by subjective similarity (or nearness) between pairs of stimuli. The idea is to embed the stimuli into a metric space (that is, a geometry

188 / The Behavioral and Social Sciences with a measure of distance between points) in such a way that distances between points corresponding to stimuli exhibit the same ordering as do the data. This method has been successfully applied to phenomena that, on other grounds, are known to be describable in terms of a specific geometric structure; such applications were used to validate the procedures. Such validation was done, for example, with respect to the perception of colors, which are known to be describable in terms of a particular three-dimensional structure known as the Euclidean color coordinates. Similar applications have been made with Morse code symbols and spoken phonemes. The technique is now used in some biological and engineering applications, as well as in some of the social sciences, as a method of data exploration and simplification. One question of interest is how to develop an axiomatic basis for various geometries using as a primitive concept an observable such as the subject's ordering of the relative similarity of one pair of stimuli to another, which is the typical starting point of such scaling. The general task is to discover properties of the qualitative data sufficient to ensure that a mapping into the geometric structure exists and, ideally, to discover an algorithm for finding it. Some work of this general type has been carried out: for example, there is an elegant set of axioms based on laws of color matching that yields the three-dimensional vectorial representation of color space. But the more general problem of un- derstanding the conditions under which the multidimensional scaling algo- rithms are suitable remains unsolved. In addition, work is needed on under- standing more general, non-Euclidean spatial models. Ordered Factorial Systems One type of structure common throughout the sciences arises when an ordered dependent variable is affected by two or more ordered independent variables. This is the situation to which regression and analysis-of-variance models are often applied; it is also the structure underlying the familiar physical identities, in which physical units are expressed as products of the powers of other units (for example, energy has the unit of mass times the square of the unit of distance divided by the square of the unit of time). There are many examples of these types of structures in the behavioral and social sciences. One example is the ordering of preference of commodity bun- dles collections of various amounts of commodities which may be revealed directly by expressions of preference or indirectly by choices among alternative sets of bundles. A related example is preferences among alternative courses of action that involve various outcomes with differing degrees of uncertainty; this is one of the more thoroughly investigated problems because of its potential importance in decision making. A psychological example is the trade-off be- tween delay and amount of reward, yielding those combinations that are equally reinforcing. In a common, applied kind of problem, a subject is given descrip- tions of people in terms of several factors, for example, intelligence, creativity,

Methods of Data Collection, Representation, and Analysis / 189 diligence, and honesty, and is asked to rate them according to a criterion such as suitability for a particular job. In all these cases and a myriad of others like them the question is whether the regularities of the data permit a numerical representation. Initially, three types of representations were studied quite fully: the dependent variable as a sum, a product, or a weighted average of the measures associated with the independent variables. The first two representations underlie some psycholog- ical and economic investigations, as well as a considerable portion of physical measurement and modeling in classical statistics. The third representation, averaging, has proved most useful in understanding preferences among un- certain outcomes and the amalgamation of verbally described traits, as well as some physical variables. For each of these three cases adding, multiplying, and averaging re- searchers know what properties or axioms of order the data must satisfy for such a numerical representation to be appropriate. On the assumption that one or another of these representations exists, and using numerical ratings by sub- jects instead of ordering, a scaling technique called functional measurement (referring to the function that describes how the dependent variable relates to the independent ones) has been developed and applied in a number of domains. What remains problematic is how to encompass at the ordinal level the fact that some random error intrudes into nearly all observations and then to show how that randomness is represented at the numerical level; this continues to be an unresolved and challenging research issue. During the past few years considerable progress has been made in under- standing certain representations inherently different from those just discussed. The work has involved three related thrusts. The first is a scheme of classifying structures according to how uniquely their representation is constrained. The three classical numerical representations are known as ordinal, interval, and ratio scale types. For systems with continuous numerical representations and of scale type at least as rich as the ratio one, it has been shown that only one additional type can exist. A second thrust is to accept structural assumptions, like factorial ones, and to derive for each scale the possible functional relations among the independent variables. And the third thrust is to develop axioms for the properties of an order relation that leads to the possible representations. Much is now known about the possible nonadditive representations of both the muItifactor case and the one where stimuli can be combined, such as . . . . . . . com fining sounc . intensities. Closely related to this classification of structures is the question: What state- ments, formulated in terms of the measures arising in such representations, can be viewed as meaningful in the sense of corresponding to something em- pirical? Statements here refer to any scientific assertions, including statistical ones, formulated in terms of the measures of the variables and logical and mathematical connectives. These are statements for which asserting truth or /

190 / The Behavioral and Social Sciences falsity makes sense. In particular, statements that remain invariant under certain symmetries of structure have played an important role in classical geometry, dimensional analysis in physics, and in relating measurement and statistical models applied to the same phenomenon. In addition, these ideas have been used to construct models in more formally developed areas of the behavioral and social sciences, such as psychophysics. Current research has emphasized the communality of these historically independent developments and is at- tempting both to uncover systematic, philosophically sound arguments as to why invariance under symmetries is as important as it appears to be and to understand what to do when structures lack symmetry, as, for example, when variables have an inherent upper bound. Clustering Many subjects do not seem to be correctly represented in terms of distances in continuous geometric space. Rather, in some cases, such as the relations among meanings of words which is of great interest in the study of memory representations a description in terms of tree-like, hierarchial structures ap- pears to be more illuminating. This kind of description appears appropriate both because of the categorical nature of the judgments and the hierarchial, rather than trade-off, nature of the structure. Individual items are represented as the terminal nodes of the tree, and groupings by different degrees of similarity are shown as intermediate nodes, with the more general groupings occurring nearer the root of the tree. Clustering techniques, requiring considerable com- putational power, have been and are being developed. Some successful appli- cations exist, but much more refinement is anticipated. Network Models Several other lines of advanced modeling have progressed in recent years, opening new possibilities for empirical specification and testing of a variety of theories. In social network data, relationships among units, rather than the units themselves, are the primary objects of study: friendships among persons, trade ties among nations, cocitation clusters among research scientists, inter- locking among corporate boards of directors. Special models for social network data have been developed in the past decade, and they give, among other things, precise new measures of the strengths of relational ties among units. A major challenge in social network data at present is to handle the statistical depend- ence that arises when the units sampled are related in complex ways. STATISTICAL INFERENCE AND ANALYSIS As was noted earlier, questions of design, representation, and analysis are intimately intertwined. Some issues of inference and analysis have been dis-

Methods of Data Collection, Representation, and Analysis / 191 cussed above as related to specific data collection and modeling approaches. This section discusses some more general issues of statistical inference and advances in several current approaches to them. Causal Inference Behavioral and social scientists use statistical methods primarily to infer the effects of treatments, interventions, or policy factors. Previous chapters in- cluded many instances of causal knowledge gained this way. As noted above, the large experimental study of alternative health care financing discussed in Chapter 2 relied heavily on statistical principles and techniques, including randomization, in the design of the experiment and the analysis of the resulting data. Sophisticated designs were necessary in order to answer a variety of questions in a single large study without confusing the effects of one program difference (such as prepayment or fee for service) with the effects of another (such as different levels of deductible costs), or with effects of unobserved variables (such as genetic differences). Statistical techniques were also used to ascertain which results applied across the whole enrolled population and which were confined to certain subgroups (such as individuals with high blood pres- sure) and to translate utilization rates across different programs and types of patients into comparable overall dollar costs and health outcomes for alternative financing options. A classical experiment, with systematic but randomly assigned variation of the variables of interest (or some reasonable approach to this), is usually con- sidered the most rigorous basis from which to draw such inferences. But ran- dom samples or randomized experimental manipulations are not always fea- sible or ethically acceptable. Then, causal inferences must be drawn from observational studies, which, however well designed, are less able to ensure that the observed (or inferred) relationships among variables provide clear evidence on the underlying mechanisms of cause and effect. Certain recurrent challenges have been identified in studying causal infer- ence. One challenge arises from the selection of background variables to be measured, such as the sex, nativity, or parental religion of individuals in a comparative study of how education affects occupational success. The adequacy of classical methods of matching groups in background variables and adjusting for covariates needs further investigation. Statistical adjustment of biases linked to measured background variables is possible, but it can become complicated. Current work in adjustment for selectivity bias is aimed at weakening implau- sible assumptions, such as normality, when carrying out these adjustments. Even after adjustment has been made for the measured background variables, other, unmeasured variables are almost always still affecting the results (such as family transfers of wealth or reading habits). Analyses of how the conclusions might change if such unmeasured variables could be taken into account is

192 / The Behavioral and Social Sciences essential in attempting to make causal inferences from an observational study, and systematic work on useful statistical models for such sensitivity analyses is just beginning. The third important issue arises from the necessity for distinguishing among competing hypotheses when the explanatory variables are measured with dif- ferent degrees of precision. Both the estimated size and significance of an effect are diminished when it has large measurement error, and the coefficients of other correlated variables are affected even when the other variables are meas- ured perfectly. Similar results arise from conceptual errors, when one measures only proxies for a theoretical construct (such as years of education to represent amount of learning). In some cases, there are procedures for simultaneously or iteratively estimating both the precision of complex measures and their effect . . On a particu tar criterion. Although complex models are often necessary to infer causes, once their output is available, it should be translated into understandable displays for evaluation Results that depend on the accuracy of a multivariate model and the associated software need to be subjected to appropriate checks, including the evaluation of graphical displays, group comparisons, and other analyses. New Statistical Techniques Internal Resampling One of the great contributions of twentieth-century statistics was to dem- onstrate how a properly drawn sample of sufficient size, even if it is only a tiny fraction of the population of interest, can yield very good estimates of most population characteristics. When enough is known at the outset about the characteristic in question for example, that its distribution is roughly nor- mal inference from the sample data to the population as a whole is straight- forward, and one can easily compute measures of the certainty of inference, a common example being the 9S percent confidence interval around an estimate. But population shapes are sometimes unknown or uncertain, and so inference procedures cannot be so simple. Furthermore, more often than not, it is difficult to assess even the degree of uncertainty associated with complex data and with the statistics needed to unravel complex social and behavioral phenomena. Internal resampling methods attempt to assess this uncertainty by generating a number of simulated data sets similar to the one actually observed. The definition of similar is crucial, and many methods that exploit different types of similarity have been devised. These methods provide researchers the freedom to choose scientifically appropriate procedures and to replace procedures that are valid under assumed distributional shapes with ones that are not so re- stricted. Flexible and imaginative computer simulation is. the key to these methods. For a simple random sample, the "bootstrap" method repeatedly resamples the obtained data (with replacement) to generate a distribution of

Methods of Data Collection, Representation, and Analysis / 193 possible data sets. The distribution of any estimator can thereby be simulated and measures of the certainty of inference be derived. The "jackknife" method repeatedly omits a fraction of the data and in this way generates a distribution of possible data sets that can also be used to estimate variability. These methods can also be used to remove or reduce bias. For example, the ratio-estimator, a statistic that is commonly used in analyzing sample surveys and censuses, is known to be biased, and the jackknife method can usually remedy this defect. The methods have been extended to other situations and types of analysis, such as multiple regression. There are indications that under relatively general conditions, these methods, and others related to them, allow more accurate estimates of the uncertainty of inferences than do the traditional ones that are based on assumed (usually, normal) distributions when that distributional assumption is unwarranted. For complex samples, such internal resampling or subsampling facilitates estimat- ing the sampling variances of complex statistics. An older and simpler, but equally important, idea is to use one independent subsample in searching the data to develop a model and at least one separate subsample for estimating and testing a selected model. Otherwise, it is next to impossible to make allowances for the excessively close fitting of the model that occurs as a result of the creative search for the exact characteristics of the sample data characteristics that are to some degree random and will not predict well to other samples. Robust Techniques Many technical assumptions underlie the analysis of data. Some, like the assumption that each item in a sample is drawn independently of other items, can be weakened when the data are sufficiently structured to admit simple alternative models, such as serial correlation. Usually, these models require that a few parameters be estimated. Assumptions about shapes of distributions, normality being the most common, have proved to be particularly important, and considerable progress has been made in dealing with the consequences of different assumptions. More recently, robust techniques have been designed that permit sharp, valid discriminations among possible values of parameters of central tendency for a wide variety of alternative distributions by reducing the weight given to oc- casional extreme deviations. It turns out that by giving up, say, 10 percent of the discrimination that could be provided under the rather unrealistic as- sumption of normality, one can greatly improve performance in more realistic situations, especially when unusually large deviations are relatively common. These valuable modifications of classical statistical techniques have been extended to multiple regression, in which procedures of iterative reweighting can now offer relatively good performance for a variety of underlying distri- butional shapes. They should be extended to more general schemes of analysis.

194 / The Behavioral and Social Sciences In some contexts notably the most classical uses of analysis of variance the use of adequate robust techniques should help to bring conventional statistical practice closer to the best standards that experts can now achieve. Many Interrelated Parameters In trying to give a more accurate representation of the real world than is possible with simple models, researchers sometimes use models with many parameters, all of which must be estimated from the data. Classical principles of estimation, such as straightforward maximum-likelihood, do not yield re- liable estimates unless either the number of observations is much larger than the number of parameters to be estimated or special designs are used in con- junction with strong assumptions. Bayesian methods do not draw a distinction between fixed and random parameters, and so may be especially appropriate for such problems. A variety of statistical methods have recently been developed that can be interpreted as treating many of the parameters as or similar to random quan- tities, even if they are regarded as representing fixed quantities to be estimated. Theory and practice demonstrate that such methods can improve the simpler fixed-parameter methods from which they evolved, especially when the num- ber of observations is not large relative to the number of parameters. Successful applications include college and graduate school admissions, where quality of previous school is treated as a random parameter when the data are insufficient to separately estimate it well. Efforts to create appropriate models using this general approach for small-area estimation and underc.ount adjustment in the census are important potential applications. Missing Data In data analysis, serious problems can arise when certain kinds of (quanti- tative or qualitative) information is partially or wholly missing. Various ap- proaches to dealing with these problems have been or are being developed. One of the methods developed recently for dealing with certain aspects of missing data is called multiple imputation: each missing value in a data set is replaced by several values representing a range of possibilities, with statistical dependence among missing values reflected by linkage among their replace- ments. It is currently being used to handle a major problem of incompatibility between the 1980 and previous Bureau of Census public-use tapes with respect to occupation codes. The extension of these techniques to address such prob- lems as nonresponse to income questions in the Current Population Survey has been examined in exploratory applications with great promise. Computing Computer Packages and Expert Systems The development of high-speed computing and data handling has funda- mentally changed statistical analysis. Methodologies for all kinds of situations

Methods of Data Collection, Representation, and Analysis / l9S are rapidly being developed and made available for use in computer packages that may be incorporated into interactive expert systems. This computing ca- pability offers the hope that much data analyses will be more carefully and more effectively done than previously and that better strategies for data analysis will move from the practice of expert statisticians, some of whom may not have tried to articulate their own strategies, to both wide discussion and general use. But powerful tools can be hazardous, as witnessed by occasional dire misuses of existing statistical packages. Until recently the only strategies available were to train more expert methodologists or to train substantive scientists in more methodology, but without the updating of their training it tends to become outmoded. Now there is the opportunity to capture in expert systems the current best methodological advice and practice. If that opportunity is ex- ploited, standard methodological training of social scientists will shift to em- phasizing strategies in using good expert systems - including understanding the nature and importance of the comments it provides rather than in how to patch together something on one's own. With expert systems, almost all behavioral and social scientists should become able to conduct any of the more common styles of data analysis more effectively and with more confidence than all but the most expert do today. However, the difficulties in developing expert systems that work as hoped for should not be underestimated. Human experts cannot readily explicate all of the complex cognitive network that constitutes an important part of their knowledge. As a result, the first attempts at expert systems were not especially successful (as discussed in Chapter 1~. Additional work is expected to overcome these limitations, but it is not clear how long it will take. Exploratory Analysis and Graphic Presentation The formal focus of much statistics research in the middle half of the twen- tieth century was on procedures to confirm or reject precise, a priori hypotheses developed in advance of collecting data—that is, procedures to determine statistical significance. There was relatively little systematic work on realistically rich strategies for the applied researcher to use when attacking real-world problems with their multiplicity of objectives and sources of evidence. More recently, a species of quantitative detective work, called exploratory data anal- ysis, has received increasing attention. In this approach, the researcher seeks out possible quantitative relations that may be present in the data. The tech- niques are flexible and include an important component of graphic represen- tations. While current techniques have evolved for single responses in situa- tions of modest complexity, extensions to multiple responses and to single responses in more complex situations are now possible. Graphic and tabular presentation is a research domain in active renaissance, stemming in part from suggestions for new kinds of graphics made possible by computer capabilities, for example, hanging histograms and easily assimi- lated representations of numerical vectors. Research on data presentation has

196 / The Behavioral and Social Sciences been carried out by statisticians, psychologists, cartographers, and other spe- cialists, and attempts are now being made to incorporate findings and concepts from linguistics, industrial and publishing design, aesthetics, and classification studies in library science. Another influence has been the rapidly increasing availability of powerful computational hardware and software, now available even on desktop computers. These ideas and capabilities are leading to an increasing number of behavioral experiments with substantial statistical input. Nonetheless, criteria of good graphic and tabular practice are still too much matters of tradition and dogma, without adequate empirical evidence or theo- retical coherence. To broaden the respective research outlooks and vigorously develop such evidence and coherence, extended collaborations between statis- tical and mathematical specialists and other scientists are needed, a major objective being to understand better the visual and cognitive processes (see Chapter 1) relevant to effective use of graphic or tabular approaches. Combining Evidence Combining evidence from separate sources is a recurrent scientific task, and formal statistical methods for doing so go back 30 years or more. These methods include the theory and practice of combining tests of individual hypotheses, sequential design and analysis of experiments, comparisons of laboratories, and Bayesian and likelihood paradigms. There is now growing interest in more ambitious analytical syntheses, which are often called meta-analyses. One stimulus has been the appearance of syntheses explicitly combining all existing investigations in particular fields, such as prison parole policy, classroom size in primary schools, cooperative studies of ther- apeutic treatments for coronary heart disease, early childhood education in- terventions, and weather modification experiments. In such fields, a serious approach to even the simplest question how to put together separate esti- mates of effect size from separate investigations leads quickly to difficult and interesting issues. One issue involves the lack of independence among the available studies, due, for example, to the effect of influential teachers on the research projects of their students. Another issue is selection bias, because only some of the studies carried out, usually those with "significant" findings, are available and because the literature search may not find out all relevant studies that are available. In addition, experts agree, although informally, that the quality of studies from different laboratories and facilities differ appreciably and that such information probably should be taken into account. Inevitably, the studies to be included used different designs and concepts and controlled or measured different variables, making it difficult to know how to combine them. Rich, informal syntheses, allowing for individual appraisal, may be better than catch-all formal modeling, but the literature on formal meta-analytic models

Methods of Data Collection, Representation, and Analysis / 197 is growing and may be an important area of discovery in the next decade, relevant both to statistical analysis per se and to improved syntheses in the behavioral and social and other sciences. OPPORTUNITIES AND NEEDS This chapter has cited a number of methodological topics associated with 1 1 · ~ 1 . ~ . ~ oenav~ora~ and social sciences research that appear to be particularly active and promising at the present time. As throughout the report, they constitute illus- trative examples of what the committee believes to be important areas of re- search in the coming decade. In this section we describe recommendations for an additional $16 million annually to facilitate both the development of meth- odologically oriented research and, equally important, its communication throughout the research community. Methodological studies, including early computer implementations, have for the most part been carried out by individual investigators with small teams of colleagues or students. Occasionally, such research has been associated with quite large substantive projects, and some of the current developments of computer packages, graphics, and expert systems clearly require large, orga- nized efforts, which often lie at the boundary between grant-supported work and commercial development. As such research is often a key to understanding complex bodies of behavioral and social sciences data, it is vital to the health of these sciences that research support continue on methods relevant to prob- lems of modeling, statistical analysis, representation, and related aspects of behavioral and social sciences data. Researchers and funding agencies should also be especially sympathetic to the inclusion of such basic methodological work in large experimental and longitudinal studies. Additional funding for work in this area, both in terms of individual research grants on methodological issues and in terms of augmentation of large projects to include additional methodological aspects, should be provided largely in the form of investigator- initiated project grants. Ethnographic and comparative studies also typically rely on project grants to individuals and small groups of investigators. While this type of support should continue, provision should also be made to facilitate the execution of studies using these methods by research teams and to provide appropriate methodological training through the mechanisms outlined below. Overall, we recommend an increase of $4 million in the level of investigator- initiated grant support for methodological work. An additional $1 million should be devoted to a program of centers for methodological research. Many of the new methods and models described in the chapter, if and when adopted to any large extent, will demand substantially greater amounts of research devoted to appropriate analysis and computer implementation. New

198 / The Behavioral and Social Sciences user interfaces and numerical algorithms will need to be designed and new computer programs written. And even when generally available methods (such as maximum-likelihood) are applicable, model application still requires skillful development in particular contexts. Many of the familiar general methods that are applied in the statistical analysis of data are known to provide good ap- proximations when sample sizes are sufficiently large, but their accuracy varies with the specific model and data used. To estimate the accuracy requires ex- tensive numerical exploration. Investigating the sensitivity of results to the assumptions of the models is important and requires still more creative, thoughtful research. It takes substantial efforts of these kinds to bring any new model on line, and the need becomes increasingly important and difficult as statistical models move toward greater realism, usefulness, complexity, and availability in computer form. More complexity in turn will increase the demand for com- putational power. Although most of this demand can be satisfied by increas- ingly powerful desktop computers, some access to mainframe and even su- percomputers will be needed in selected cases. We recommend an additional $4 million annually to cover the growth in computational demands for model development and testing. Interaction and cooperation between the developers and the users of statis- tical and mathematical methods need continual stimulation both ways. Ef- forts should be made to teach new methods to a wider variety of potential users than is now the case. Several ways appear effective for methodologists to com- municate to empirical scientists: running summer training programs for grad- uate students, faculty, and other researchers; encouraging graduate students, perhaps through degree requirements, to make greater use of the statistical, mathematical, and methodological resources at their own or affiliated univer- sities; associating statistical and mathematical research specialists with large- scale data collection projects; and developing statistical packages that incor- porate expert systems in applying the methods. Methodologists, in turn, need to become more familiar with the problems actually faced by empirical scientists in the laboratory and especially in the field. Several ways appear useful for communication in this direction: encour- aging graduate students in methodological specialties, perhaps through degree requirements, to work directly on empirical research; creating postdoctoral fellowships aimed at integrating such specialists into ongoing data collection projects; and providing for large data collection projects to engage relevant methodological specialists. In addition, research on and development of sta- tistical packages and expert systems should be encouraged to involve the mul- tidisciplinary collaboration of experts with experience in statistical, computer, . . . anc ~ cognitive sciences. A final point has to do with the promise held out by bringing different research methods to bear on the same problems. As our discussions of research methods in this and other chapters have emphasized, different methods have

Methods of Data Collection, Representation, and Analysis / 199 different powers and limitations, and each is designed especially to elucidate one or more particular facets of a subject. An important type of interdisciplinary work is the collaboration of specialists in different research methodologies on a substantive issue, examples of which have been noted throughout this report. If more such research were conducted cooperatively, the power of each method pursued separately would be increased. To encourage such multidisciplinary work, we recommend increased support for fellowships, research workshops, anc . tramlug institutes. Funding for fellowships, both pre- and postdoctoral, should be aimed at giving methodologists experience with substantive problems and at upgrading the methodological capabilities of substantive scientists. Such targeted fellow- ship support should be increased by $4 million annually, of which $3 million should be for predoctoral fellowships emphasizing the enrichment of meth- odological concentrations. The new support needed for research workshops is estimated to be $1 million annually. And new support needed for various kinds of advanced training institutes aimed at rapidly diffusing new methodological findings among substantive scientists is estimated to be $2 million annually.

This volume explores the scientific frontiers and leading edges of research across the fields of anthropology, economics, political science, psychology, sociology, history, business, education, geography, law, and psychiatry, as well as the newer, more specialized areas of artificial intelligence, child development, cognitive science, communications, demography, linguistics, and management and decision science. It includes recommendations concerning new resources, facilities, and programs that may be needed over the next several years to ensure rapid progress and provide a high level of returns to basic research.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

Methods for Data Representation

  • First Online: 21 April 2023

Cite this chapter

data representation in research methodology

  • Ramón Zatarain Cabada   ORCID: orcid.org/0000-0002-4524-3511 4 ,
  • Héctor Manuel Cárdenas López   ORCID: orcid.org/0000-0002-6823-4933 4 &
  • Hugo Jair Escalante   ORCID: orcid.org/0000-0003-4603-3513 5  

124 Accesses

This chapter provides an overview of the preprocessing techniques for preparing data for personality recognition. It begins with explaining adaptations required for handling large datasets that cannot be loaded into memory. The chapter then focuses on image preprocessing techniques in videos, including face delineation, obturation, and various techniques applied to video images. The chapter also discusses sound preprocessing, such as common sound representation techniques, spectral coefficients, prosody, and intonation. Finally, Mel spectral and delta Mel spectral coefficients are discussed as sound representation techniques for personality recognition. The primary aim of this chapter is to help readers understand different video processing techniques that can be used in data representation for personality recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

An, G., Levitan, S. I., Levitan, R., Rosenberg, A., Levine, M., & Hirschberg, J. (2016). Automatically classifying self-rated personality scores from speech. In Interspeech (pp. 1412–1416).

Google Scholar  

Arya, R., Kumar, A., Bhushan, M., & Samant, P. (2022). Big Five personality traits prediction using brain signals. International Journal of Fuzzy System Applications (IJFSA), 11 (2), 1–10.

Article   Google Scholar  

dos Santos, W. R., Ramos, R. M. S., & Paraboni, I. (2019). Computational personality recognition from facebook text: psycholinguistic features, words and facets. New Review of Hypermedia and Multimedia, 25 (4), 268–287.

Fan, X., Yan, Y., Wang, X., Yan, H., Li, Y., Xie, L., & Yin, E. (2020). Emotion recognition measurement based on physiological signals. In 2020 13th International Symposium on Computational Intelligence and Design (ISCID) (pp. 81–86). IEEE.

Fink, B., Neave, N., Manning, J. T., & Grammer, K. (2005). Facial symmetry and the ‘Big-Five’ personality factors. Personality and Individual Differences, 39 (3), 523–529.

Fung, P., Dey, A., Siddique, F. B., Lin, R., Yang, Y., Wan, Y., & Chan, H. Y. R. (2016). Zara the supergirl: an empathetic personality recognition system. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations (pp. 87–91).

Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical and Biological Engineering and Computing, 42 , 419–427.

Mohammadi, G., & Vinciarelli, A. (2012). Automatic personality perception: prediction of trait attribution based on prosodic features. IEEE Transactions on Affective Computing, 3 (3), 273–284.

Polzehl, T., Möller, S., & Metze, F. (2010). Automatically assessing acoustic manifestations of personality in speech. In 2010 IEEE Spoken Language Technology Workshop (pp. 7–12). IEEE.

Poria, S., Gelbukh, A., Agarwal, B., Cambria, E., & Howard, N. (2013). Common sense knowledge based personality recognition from text. In Advances in Soft Computing and Its Applications: 12th Mexican International Conference on Artificial Intelligence, MICAI 2013, Mexico City, Mexico, November 24–30, 2013, Proceedings, Part II 12 (pp. 484–496). Springer.

Potapova, R., & Potapov, V. (2016). On individual polyinformativity of speech and voice regarding speakers auditive attribution (forensic phonetic aspect). In Speech and Computer: 18th International Conference, SPECOM 2016, Budapest, Hungary, August 23-27, 2016, Proceedings 18 (pp. 507–514). Springer.

Schuller, B., Steidl, S., Batliner, A., Nöth, E., Vinciarelli, A., Burkhardt, F., Van Son, R., Weninger, F., Eyben, F., Bocklet, T., et al. (2015). A survey on perceived speaker traits: personality, likability, pathology, and the first challenge. Computer Speech & Language, 29 (1), 100–131.

Tung, K., Liu, P.-K., Chuang, Y.-C., Wang, S.-H., & Wu, A.-Y. A. (2018). Entropy-assisted multi-modal emotion recognition framework based on physiological signals. In 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES) (pp. 22–26). IEEE.

Yu, J., & Markov, K. (2017). Deep learning based personality recognition from Facebook status updates. In 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST) (pp. 383–387). IEEE.

Zhang, Z., Wang, H., & Liu, S. (2018). Scene character recognition via bag-of-words model: A comprehensive study. In Communications, Signal Processing, and Systems: Proceedings of the 2016 International Conference on Communications, Signal Processing, and Systems (pp. 819–826). Springer.

Download references

Author information

Authors and affiliations.

Instituto Tecnológico de Culiacán, Culiacán, Sinaloa, Mexico

Ramón Zatarain Cabada & Héctor Manuel Cárdenas López

Instituto Nacional de Astrofísica, Puebla, Puebla, Mexico

Hugo Jair Escalante

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cabada, R.Z., López, H.M.C., Escalante, H.J. (2023). Methods for Data Representation. In: Multimodal Affective Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-32542-7_13

Download citation

DOI : https://doi.org/10.1007/978-3-031-32542-7_13

Published : 21 April 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-32541-0

Online ISBN : 978-3-031-32542-7

eBook Packages : Mathematics and Statistics Mathematics and Statistics (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Logo for Open Educational Resources

Chapter 18. Data Analysis and Coding

Introduction.

Piled before you lie hundreds of pages of fieldnotes you have taken, observations you’ve made while volunteering at city hall. You also have transcripts of interviews you have conducted with the mayor and city council members. What do you do with all this data? How can you use it to answer your original research question (e.g., “How do political polarization and party membership affect local politics?”)? Before you can make sense of your data, you will have to organize and simplify it in a way that allows you to access it more deeply and thoroughly. We call this process coding . [1] Coding is the iterative process of assigning meaning to the data you have collected in order to both simplify and identify patterns. This chapter introduces you to the process of qualitative data analysis and the basic concept of coding, while the following chapter (chapter 19) will take you further into the various kinds of codes and how to use them effectively.

To those who have not yet conducted a qualitative study, the sheer amount of collected data will be a surprise. Qualitative data can be absolutely overwhelming—it may mean hundreds if not thousands of pages of interview transcripts, or fieldnotes, or retrieved documents. How do you make sense of it? Students often want very clear guidelines here, and although I try to accommodate them as much as possible, in the end, analyzing qualitative data is a bit more of an art than a science: “The process of bringing order, structure, and interpretation to a mass of collected data is messy, ambiguous, time-consuming, creative, and fascinating. It does not proceed in a linear fashion: it is not neat. At times, the researcher may feel like an eccentric and tormented artist; not to worry, this is normal” ( Marshall and Rossman 2016:214 ).

To complicate matters further, each approach (e.g., Grounded Theory, deep ethnography, phenomenology) has its own language and bag of tricks (techniques) when it comes to analysis. Grounded Theory, for example, uses in vivo coding to generate new theoretical insights that emerge from a rigorous but open approach to data analysis. Ethnographers, in contrast, are more focused on creating a rich description of the practices, behaviors, and beliefs that operate in a particular field. They are less interested in generating theory and more interested in getting the picture right, valuing verisimilitude in the presentation. And then there are some researchers who seek to account for the qualitative data using almost quantitative methods of analysis, perhaps counting and comparing the uses of certain narrative frames in media accounts of a phenomenon. Qualitative content analysis (QCA) often includes elements of counting (see chapter 17). For these researchers, having very clear hypotheses and clearly defined “variables” before beginning analysis is standard practice, whereas the same would be expressly forbidden by those researchers, like grounded theorists, taking a more emergent approach.

All that said, there are some helpful techniques to get you started, and these will be presented in this and the following chapter. As you become more of an expert yourself, you may want to read more deeply about the tradition that speaks to your research. But know that there are many excellent qualitative researchers that use what works for any given study, who take what they can from each tradition. Most of us find this permissible (but watch out for the methodological purists that exist among us).

Null

Qualitative Data Analysis as a Long Process!

Although most of this and the following chapter will focus on coding, it is important to understand that coding is just one (very important) aspect of the long data-analysis process. We can consider seven phases of data analysis, each of which is important for moving your voluminous data into “findings” that can be reported to others. The first phase involves data organization. This might mean creating a special password-protected Dropbox folder for storing your digital files. It might mean acquiring computer-assisted qualitative data-analysis software ( CAQDAS ) and uploading all transcripts, fieldnotes, and digital files to its storage repository for eventual coding and analysis. Finding a helpful way to store your material can take a lot of time, and you need to be smart about this from the very beginning. Losing data because of poor filing systems or mislabeling is something you want to avoid. You will also want to ensure that you have procedures in place to protect the confidentiality of your interviewees and informants. Filing signed consent forms (with names) separately from transcripts and linking them through an ID number or other code that only you have access to (and store safely) are important.

Once you have all of your material safely and conveniently stored, you will need to immerse yourself in the data. The second phase consists of reading and rereading or viewing and reviewing all of your data. As you do this, you can begin to identify themes or patterns in the data, perhaps writing short memos to yourself about what you are seeing. You are not committing to anything in this third phase but rather keeping your eyes and mind open to what you see. In an actual study, you may very well still be “in the field” or collecting interviews as you do this, and what you see might push you toward either concluding your data collection or expanding so that you can follow a particular group or factor that is emerging as important. For example, you may have interviewed twelve international college students about how they are adjusting to life in the US but realized as you read your transcripts that important gender differences may exist and you have only interviewed two women (and ten men). So you go back out and make sure you have enough female respondents to check your impression that gender matters here. The seven phases do not proceed entirely linearly! It is best to think of them as recursive; conceptually, there is a path to follow, but it meanders and flows.

Coding is the activity of the fourth phase . The second part of this chapter and all of chapter 19 will focus on coding in greater detail. For now, know that coding is the primary tool for analyzing qualitative data and that its purpose is to both simplify and highlight the important elements buried in mounds of data. Coding is a rigorous and systematic process of identifying meaning, patterns, and relationships. It is a more formal extension of what you, as a conscious human being, are trained to do every day when confronting new material and experiences. The “trick” or skill is to learn how to take what you do naturally and semiconsciously in your mind and put it down on paper so it can be documented and verified and tested and refined.

At the conclusion of the coding phase, your material will be searchable, intelligible, and ready for deeper analysis. You can begin to offer interpretations based on all the work you have done so far. This fifth phase might require you to write analytic memos, beginning with short (perhaps a paragraph or two) interpretations of various aspects of the data. You might then attempt stitching together both reflective and analytical memos into longer (up to five pages) general interpretations or theories about the relationships, activities, patterns you have noted as salient.

As you do this, you may be rereading the data, or parts of the data, and reviewing your codes. It’s possible you get to this phase and decide you need to go back to the beginning. Maybe your entire research question or focus has shifted based on what you are now thinking is important. Again, the process is recursive , not linear. The sixth phase requires you to check the interpretations you have generated. Are you really seeing this relationship, or are you ignoring something important you forgot to code? As we don’t have statistical tests to check the validity of our findings as quantitative researchers do, we need to incorporate self-checks on our interpretations. Ask yourself what evidence would exist to counter your interpretation and then actively look for that evidence. Later on, if someone asks you how you know you are correct in believing your interpretation, you will be able to explain what you did to verify this. Guard yourself against accusations of “ cherry-picking ,” selecting only the data that supports your preexisting notion or expectation about what you will find. [2]

The seventh and final phase involves writing up the results of the study. Qualitative results can be written in a variety of ways for various audiences (see chapter 20). Due to the particularities of qualitative research, findings do not exist independently of their being written down. This is different for quantitative research or experimental research, where completed analyses can somewhat speak for themselves. A box of collected qualitative data remains a box of collected qualitative data without its written interpretation. Qualitative research is often evaluated on the strength of its presentation. Some traditions of qualitative inquiry, such as deep ethnography, depend on written thick descriptions, without which the research is wholly incomplete, even nonexistent. All of that practice journaling and writing memos (reflective and analytical) help develop writing skills integral to the presentation of the findings.

Remember that these are seven conceptual phases that operate in roughly this order but with a lot of meandering and recursivity throughout the process. This is very different from quantitative data analysis, which is conducted fairly linearly and processually (first you state a falsifiable research question with hypotheses, then you collect your data or acquire your data set, then you analyze the data, etc.). Things are a bit messier when conducting qualitative research. Embrace the chaos and confusion, and sort your way through the maze. Budget a lot of time for this process. Your research question might change in the middle of data collection. Don’t worry about that. The key to being nimble and flexible in qualitative research is to start thinking and continue thinking about your data, even as it is being collected. All seven phases can be started before all the data has been gathered. Data collection does not always precede data analysis. In some ways, “qualitative data collection is qualitative data analysis.… By integrating data collection and data analysis, instead of breaking them up into two distinct steps, we both enrich our insights and stave off anxiety. We all know the anxiety that builds when we put something off—the longer we put it off, the more anxious we get. If we treat data collection as this mass of work we must do before we can get started on the even bigger mass of work that is analysis, we set ourselves up for massive anxiety” ( Rubin 2021:182–183 ; emphasis added).

The Coding Stage

A code is “a word or short phrase that symbolically assigns a summative, salient, essence-capturing, and/or evocative attribute for a portion of language-based or visual data” ( Saldaña 2014:5 ). Codes can be applied to particular sections of or entire transcripts, documents, or even videos. For example, one might code a video taken of a preschooler trying to solve a puzzle as “puzzle,” or one could take the transcript of that video and highlight particular sections or portions as “arranging puzzle pieces” (a descriptive code) or “frustration” (a summative emotion-based code). If the preschooler happily shouts out, “I see it!” you can denote the code “I see it!” (this is an example of an in vivo, participant-created code). As one can see from even this short example, there are many different kinds of codes and many different strategies and techniques for coding, more of which will be discussed in detail in chapter 19. The point to remember is that coding is a rigorous systematic process—to some extent, you are always coding whenever you look at a person or try to make sense of a situation or event, but you rarely do this consciously. Coding is the process of naming what you are seeing and how you are simplifying the data so that you can make sense of it in a way that is consistent with your study and in a way that others can understand and follow and replicate. Another way of saying this is that a code is “a researcher-generated interpretation that symbolizes or translates data” ( Vogt et al. 2014:13 ).

As with qualitative data analysis generally, coding is often done recursively, meaning that you do not merely take one pass through the data to create your codes. Saldaña ( 2014 ) differentiates first-cycle coding from second-cycle coding. The goal of first-cycle coding is to “tag” or identify what emerges as important codes. Note that I said emerges—you don’t always know from the beginning what will be an important aspect of the study or not, so the coding process is really the place for you to begin making the kinds of notes necessary for future analyses. In second-cycle coding, you will want to be much more focused—no longer gathering wholly new codes but synthesizing what you have into metacodes.

You might also conceive of the coding process in four parts (figure 18.1). First, identify a representative or diverse sample set of interview transcripts (or fieldnotes or other documents). This is the group you are going to use to get a sense of what might be emerging. In my own study of career obstacles to success among first-generation and working-class persons in sociology, I might select one interview from each career stage: a graduate student, a junior faculty member, a senior faculty member.

data representation in research methodology

Second, code everything (“ open coding ”). See what emerges, and don’t limit yourself in any way. You will end up with a ton of codes, many more than you will end up with, but this is an excellent way to not foreclose an interesting finding too early in the analysis. Note the importance of starting with a sample of your collected data, because otherwise, open coding all your data is, frankly, impossible and counterproductive. You will just get stuck in the weeds.

Third, pare down your coding list. Where you may have begun with fifty (or more!) codes, you probably want no more than twenty remaining. Go back through the weeds and pull out everything that does not have the potential to bloom into a nicely shaped garden. Note that you should do this before tackling all of your data . Sometimes, however, you might need to rethink the sample you chose. Let’s say that the graduate student interview brought up some interesting gender issues that were pertinent to female-identifying sociologists, but both the junior and the senior faculty members identified as male. In that case, I might read through and open code at least one other interview transcript, perhaps a female-identifying senior faculty member, before paring down my list of codes.

This is also the time to create a codebook if you are using one, a master guide to the codes you are using, including examples (see Sample Codebooks 1 and 2 ). A codebook is simply a document that lists and describes the codes you are using. It is easy to forget what you meant the first time you penciled a coded notation next to a passage, so the codebook allows you to be clear and consistent with the use of your codes. There is not one correct way to create a codebook, but generally speaking, the codebook should include (1) the code (either name or identification number or both), (2) a description of what the code signifies and when and where it should be applied, and (3) an example of the code to help clarify (2). Listing all the codes down somewhere also allows you to organize and reorganize them, which can be part of the analytical process. It is possible that your twenty remaining codes can be neatly organized into five to seven master “themes.” Codebooks can and should develop as you recursively read through and code your collected material. [3]

Fourth, using the pared-down list of codes (or codebook), read through and code all the data. I know many qualitative researchers who work without a codebook, but it is still a good practice, especially for beginners. At the very least, read through your list of codes before you begin this “ closed coding ” step so that you can minimize the chance of missing a passage or section that needs to be coded. The final step is…to do it all again. Or, at least, do closed coding (step four) again. All of this takes a great deal of time, and you should plan accordingly.

Researcher Note

People often say that qualitative research takes a lot of time. Some say this because qualitative researchers often collect their own data. This part can be time consuming, but to me, it’s the analytical process that takes the most time. I usually read every transcript twice before starting to code, then it usually takes me six rounds of coding until I’m satisfied I’ve thoroughly coded everything. Even after the coding, it usually takes me a year to figure out how to put the analysis together into a coherent argument and to figure out what language to use. Just deciding what name to use for a particular group or idea can take months. Understanding this going in can be helpful so that you know to be patient with yourself.

—Jessi Streib, author of The Power of the Past and Privilege Lost 

Note that there is no magic in any of this, nor is there any single “right” way to code or any “correct” codes. What you see in the data will be prompted by your position as a researcher and your scholarly interests. Where the above codes on a preschooler solving a puzzle emerged from my own interest in puzzle solving, another researcher might focus on something wholly different. A scholar of linguistics, for example, may focus instead on the verbalizations made by the child during the discovery process, perhaps even noting particular vocalizations (incidence of grrrs and gritting of the teeth, for example). Your recording of the codes you used is the important part, as it allows other researchers to assess the reliability and validity of your analyses based on those codes. Chapter 19 will provide more details about the kinds of codes you might develop.

Saldaña ( 2014 ) lists seven “necessary personal attributes” for successful coding. To paraphrase, they are the following:

  • Having (or practicing) good organizational skills
  • Perseverance
  • The ability and willingness to deal with ambiguity
  • Flexibility
  • Creativity, broadly understood, which includes “the ability to think visually, to think symbolically, to think in metaphors, and to think of as many ways as possible to approach a problem” (20)
  • Commitment to being rigorously ethical
  • Having an extensive vocabulary [4]

Writing Analytic Memos during/after Coding

Coding the data you have collected is only one aspect of analyzing it. Too many beginners have coded their data and then wondered what to do next. Coding is meant to help organize your data so that you can see it more clearly, but it is not itself an analysis. Thinking about the data, reviewing the coded data, and bringing in the previous literature (here is where you use your literature review and theory) to help make sense of what you have collected are all important aspects of data analysis. Analytic memos are notes you write to yourself about the data. They can be short (a single page or even a paragraph) or long (several pages). These memos can themselves be the subject of subsequent analytic memoing as part of the recursive process that is qualitative data analysis.

Short analytic memos are written about impressions you have about the data, what is emerging, and what might be of interest later on. You can write a short memo about a particular code, for example, and why this code seems important and where it might connect to previous literature. For example, I might write a paragraph about a “cultural capital” code that I use whenever a working-class sociologist says anything about “not fitting in” with their peers (e.g., not having the right accent or hairstyle or private school background). I could then write a little bit about Bourdieu, who originated the notion of cultural capital, and try to make some connections between his definition and how I am applying it here. I can also use the memo to raise questions or doubts I have about what I am seeing (e.g., Maybe the type of school belongs somewhere else? Is this really the right code?). Later on, I can incorporate some of this writing into the theory section of my final paper or article. Here are some types of things that might form the basis of a short memo: something you want to remember, something you noticed that was new or different, a reaction you had, a suspicion or hunch that you are developing, a pattern you are noticing, any inferences you are starting to draw. Rubin ( 2021 ) advises, “Always include some quotation or excerpt from your dataset…that set you off on this idea. It’s happened to me so many times—I’ll have a really strong reaction to a piece of data, write down some insight without the original quotation or context, and then [later] have no idea what I was talking about and have no way of recreating my insight because I can’t remember what piece of data made me think this way” ( 203 ).

All CAQDAS programs include spaces for writing, generating, and storing memos. You can link a memo to a particular transcript, for example. But you can just as easily keep a notebook at hand in which you write notes to yourself, if you prefer the more tactile approach. Drawing pictures that illustrate themes and patterns you are beginning to see also works. The point is to write early and write often, as these memos are the building blocks of your eventual final product (chapter 20).

In the next chapter (chapter 19), we will go a little deeper into codes and how to use them to identify patterns and themes in your data. This chapter has given you an idea of the process of data analysis, but there is much yet to learn about the elements of that process!

Qualitative Data-Analysis Samples

The following three passages are examples of how qualitative researchers describe their data-analysis practices. The first, by Harvey, is a useful example of how data analysis can shift the original research questions. The second example, by Thai, shows multiple stages of coding and how these stages build upward to conceptual themes and theorization. The third example, by Lamont, shows a masterful use of a variety of techniques to generate theory.

Example 1: “Look Someone in the Eye” by Peter Francis Harvey ( 2022 )

I entered the field intending to study gender socialization. However, through the iterative process of writing fieldnotes, rereading them, conducting further research, and writing extensive analytic memos, my focus shifted. Abductive analysis encourages the search for unexpected findings in light of existing literature. In my early data collection, fieldnotes, and memoing, classed comportment was unmistakably prominent in both schools. I was surprised by how pervasive this bodily socialization proved to be and further surprised by the discrepancies between the two schools.…I returned to the literature to compare my empirical findings.…To further clarify patterns within my data and to aid the search for disconfirming evidence, I constructed data matrices (Miles, Huberman, and Saldaña 2013). While rereading my fieldnotes, I used ATLAS.ti to code and recode key sections (Miles et al. 2013), punctuating this process with additional analytic memos. ( 2022:1420 )

Example 2:” Policing and Symbolic Control” by Mai Thai ( 2022 )

Conventional to qualitative research, my analyses iterated between theory development and testing. Analytical memos were written throughout the data collection, and my analyses using MAXQDA software helped me develop, confirm, and challenge specific themes.…My early coding scheme which included descriptive codes (e.g., uniform inspection, college trips) and verbatim codes of the common terms used by field site participants (e.g., “never quit,” “ghetto”) led me to conceptualize valorization. Later analyses developed into thematic codes (e.g., good citizens, criminality) and process codes (e.g., valorization, criminalization), which helped refine my arguments. ( 2022:1191–1192 )

Example 3: The Dignity of Working Men by Michèle Lamont ( 2000 )

To analyze the interviews, I summarized them in a 13-page document including socio-demographic information as well as information on the boundary work of the interviewees. To facilitate comparisons, I noted some of the respondents’ answers on grids and summarized these on matrix displays using techniques suggested by Miles and Huberman for standardizing and processing qualitative data. Interviews were also analyzed one by one, with a focus on the criteria that each respondent mobilized for the evaluation of status. Moreover, I located each interviewee on several five-point scales pertaining to the most significant dimensions they used to evaluate status. I also compared individual interviewees with respondents who were similar to and different from them, both within and across samples. Finally, I classified all the transcripts thematically to perform a systematic analysis of all the important themes that appear in the interviews, approaching the latter as data against which theoretical questions can be explored. ( 2000:256–257 )

Sample Codebook 1

This is an abridged version of the codebook used to analyze qualitative responses to a question about how class affects careers in sociology. Note the use of numbers to organize the flow, supplemented by highlighting techniques (e.g., bolding) and subcoding numbers.

01. CAPS: Any reference to “capitals” in the response, even if the specific words are not used

01.1: cultural capital 01.2: social capital 01.3: economic capital

(can be mixed: “0.12”= both cultural and asocial capital; “0.23”= both social and economic)

01. CAPS: a reference to “capitals” in which the specific words are used [ bold : thus, 01.23 means that both social capital and economic capital were mentioned specifically

02. DEBT: discussion of debt

02.1: mentions personal issues around debt 02.2: discusses debt but in the abstract only (e.g., “people with debt have to worry”)

03. FirstP: how the response is positioned

03.1: neutral or abstract response 03.2: discusses self (“I”) 03.3: discusses others (“they”)

Sample Coded Passage:

* Question: What other codes jump out to you here? Shouldn’t there be a code for feelings of loneliness or alienation? What about an emotions code ?

Sample Codebook 2

This is an example that uses "word" categories only, with descriptions and examples for each code

Further Readings

Elliott, Victoria. 2018. “Thinking about the Coding Process in Qualitative Analysis.” Qualitative Report 23(11):2850–2861. Address common questions those new to coding ask, including the use of “counting” and how to shore up reliability.

Friese, Susanne. 2019. Qualitative Data Analysis with ATLAS.ti. 3rd ed. A good guide to ATLAS.ti, arguably the most used CAQDAS program. Organized around a series of “skills training” to get you up to speed.

Jackson, Kristi, and Pat Bazeley. 2019. Qualitative Data Analysis with NVIVO . 3rd ed. Thousand Oaks, CA: SAGE. If you want to use the CAQDAS program NVivo, this is a good affordable guide to doing so. Includes copious examples, figures, and graphic displays.

LeCompte, Margaret D. 2000. “Analyzing Qualitative Data.” Theory into Practice 39(3):146–154. A very practical and readable guide to the entire coding process, with particular applicability to educational program evaluation/policy analysis.

Miles, Matthew B., and A. Michael Huberman. 1994. Qualitative Data Analysis: An Expanded Sourcebook . 2nd ed. Thousand Oaks, CA: SAGE. A classic reference on coding. May now be superseded by Miles, Huberman, and Saldaña (2019).

Miles, Matthew B., A. Michael Huberman, and Johnny Saldaña. 2019. Qualitative Data Analysis: A Methods Sourcebook . 4th ed. Thousand Oaks, CA; SAGE. A practical methods sourcebook for all qualitative researchers at all levels using visual displays and examples. Highly recommended.

Saldaña, Johnny. 2014. The Coding Manual for Qualitative Researchers . 2nd ed. Thousand Oaks, CA: SAGE. The most complete and comprehensive compendium of coding techniques out there. Essential reference.

Silver, Christina. 2014. Using Software in Qualitative Research: A Step-by-Step Guide. 2nd ed. Thousand Oaks, CA; SAGE. If you are unsure which CAQDAS program you are interested in using or want to compare the features and usages of each, this guidebook is quite helpful.

Vogt, W. Paul, Elaine R. Vogt, Diane C. Gardner, and Lynne M. Haeffele2014. Selecting the Right Analyses for Your Data: Quantitative, Qualitative, and Mixed Methods . New York: The Guilford Press. User-friendly reference guide to all forms of analysis; may be particularly helpful for those engaged in mixed-methods research.

  • When you have collected content (historical, media, archival) that interests you because of its communicative aspect, content analysis (chapter 17) is appropriate. Whereas content analysis is both a research method and a tool of analysis, coding is a tool of analysis that can be used for all kinds of data to address any number of questions. Content analysis itself includes coding. ↵
  • Scientific research, whether quantitative or qualitative, demands we keep an open mind as we conduct our research, that we are “neutral” regarding what is actually there to find. Students who are trained in non-research-based disciplines such as the arts or philosophy or who are (admirably) focused on pursuing social justice can too easily fall into the trap of thinking their job is to “demonstrate” something through the data. That is not the job of a researcher. The job of a researcher is to present (and interpret) findings—things “out there” (even if inside other people’s hearts and minds). One helpful suggestion: when formulating your research question, if you already know the answer (or think you do), scrap that research. Ask a question to which you do not yet know the answer. ↵
  • Codebooks are particularly useful for collaborative research so that codes are applied and interpreted similarly. If you are working with a team of researchers, you will want to take extra care that your codebooks remain in synch and that any refinements or developments are shared with fellow coders. You will also want to conduct an “intercoder reliability” check, testing whether the codes you have developed are clearly identifiable so that multiple coders are using them similarly. Messy, unclear codes that can be interpreted differently by different coders will make it much more difficult to identify patterns across the data. ↵
  • Note that this is important for creating/denoting new codes. The vocabulary does not need to be in English or any particular language. You can use whatever words or phrases capture what it is you are seeing in the data. ↵

A first-cycle coding process in which gerunds are used to identify conceptual actions, often for the purpose of tracing change and development over time.  Widely used in the Grounded Theory approach.

A first-cycle coding process in which terms or phrases used by the participants become the code applied to a particular passage.  It is also known as “verbatim coding,” “indigenous coding,” “natural coding,” “emic coding,” and “inductive coding,” depending on the tradition of inquiry of the researcher.  It is common in Grounded Theory approaches and has even given its name to one of the primary CAQDAS programs (“NVivo”).

Computer-assisted qualitative data-analysis software.  These are software packages that can serve as a repository for qualitative data and that enable coding, memoing, and other tools of data analysis.  See chapter 17 for particular recommendations.

The purposeful selection of some data to prove a preexisting expectation or desired point of the researcher where other data exists that would contradict the interpretation offered.  Note that it is not cherry picking to select a quote that typifies the main finding of a study, although it would be cherry picking to select a quote that is atypical of a body of interviews and then present it as if it is typical.

A preliminary stage of coding in which the researcher notes particular aspects of interest in the data set and begins creating codes.  Later stages of coding refine these preliminary codes.  Note: in Grounded Theory , open coding has a more specific meaning and is often called initial coding : data are broken down into substantive codes in a line-by-line manner, and incidents are compared with one another for similarities and differences until the core category is found.  See also closed coding .

A set of codes, definitions, and examples used as a guide to help analyze interview data.  Codebooks are particularly helpful and necessary when research analysis is shared among members of a research team, as codebooks allow for standardization of shared meanings and code attributions.

The final stages of coding after the refinement of codes has created a complete list or codebook in which all the data is coded using this refined list or codebook.  Compare to open coding .

A first-cycle coding process in which emotions and emotionally salient passages are tagged.

Introduction to Qualitative Research Methods Copyright © 2023 by Allison Hurst is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

A Guide To The Methods, Benefits & Problems of The Interpretation of Data

Data interpretation blog post by datapine

Table of Contents

1) What Is Data Interpretation?

2) How To Interpret Data?

3) Why Data Interpretation Is Important?

4) Data Interpretation Skills

5) Data Analysis & Interpretation Problems

6) Data Interpretation Techniques & Methods

7) The Use of Dashboards For Data Interpretation

8) Business Data Interpretation Examples

Data analysis and interpretation have now taken center stage with the advent of the digital age… and the sheer amount of data can be frightening. In fact, a Digital Universe study found that the total data supply in 2012 was 2.8 trillion gigabytes! Based on that amount of data alone, it is clear the calling card of any successful enterprise in today’s global world will be the ability to analyze complex data, produce actionable insights, and adapt to new market needs… all at the speed of thought.

Business dashboards are the digital age tools for big data. Capable of displaying key performance indicators (KPIs) for both quantitative and qualitative data analyses, they are ideal for making the fast-paced and data-driven market decisions that push today’s industry leaders to sustainable success. Through the art of streamlined visual communication, data dashboards permit businesses to engage in real-time and informed decision-making and are key instruments in data interpretation. First of all, let’s find a definition to understand what lies behind this practice.

What Is Data Interpretation?

Data interpretation refers to the process of using diverse analytical methods to review data and arrive at relevant conclusions. The interpretation of data helps researchers to categorize, manipulate, and summarize the information in order to answer critical questions.

The importance of data interpretation is evident, and this is why it needs to be done properly. Data is very likely to arrive from multiple sources and has a tendency to enter the analysis process with haphazard ordering. Data analysis tends to be extremely subjective. That is to say, the nature and goal of interpretation will vary from business to business, likely correlating to the type of data being analyzed. While there are several types of processes that are implemented based on the nature of individual data, the two broadest and most common categories are “quantitative and qualitative analysis.”

Yet, before any serious data interpretation inquiry can begin, it should be understood that visual presentations of data findings are irrelevant unless a sound decision is made regarding measurement scales. Before any serious data analysis can begin, the measurement scale must be decided for the data as this will have a long-term impact on data interpretation ROI. The varying scales include:

  • Nominal Scale: non-numeric categories that cannot be ranked or compared quantitatively. Variables are exclusive and exhaustive.
  • Ordinal Scale: exclusive categories that are exclusive and exhaustive but with a logical order. Quality ratings and agreement ratings are examples of ordinal scales (i.e., good, very good, fair, etc., OR agree, strongly agree, disagree, etc.).
  • Interval: a measurement scale where data is grouped into categories with orderly and equal distances between the categories. There is always an arbitrary zero point.
  • Ratio: contains features of all three.

For a more in-depth review of scales of measurement, read our article on data analysis questions . Once measurement scales have been selected, it is time to select which of the two broad interpretation processes will best suit your data needs. Let’s take a closer look at those specific methods and possible data interpretation problems.

How To Interpret Data? Top Methods & Techniques

Illustration of data interpretation on blackboard

When interpreting data, an analyst must try to discern the differences between correlation, causation, and coincidences, as well as many other biases – but he also has to consider all the factors involved that may have led to a result. There are various data interpretation types and methods one can use to achieve this.

The interpretation of data is designed to help people make sense of numerical data that has been collected, analyzed, and presented. Having a baseline method for interpreting data will provide your analyst teams with a structure and consistent foundation. Indeed, if several departments have different approaches to interpreting the same data while sharing the same goals, some mismatched objectives can result. Disparate methods will lead to duplicated efforts, inconsistent solutions, wasted energy, and inevitably – time and money. In this part, we will look at the two main methods of interpretation of data: qualitative and quantitative analysis.

Qualitative Data Interpretation

Qualitative data analysis can be summed up in one word – categorical. With this type of analysis, data is not described through numerical values or patterns but through the use of descriptive context (i.e., text). Typically, narrative data is gathered by employing a wide variety of person-to-person techniques. These techniques include:

  • Observations: detailing behavioral patterns that occur within an observation group. These patterns could be the amount of time spent in an activity, the type of activity, and the method of communication employed.
  • Focus groups: Group people and ask them relevant questions to generate a collaborative discussion about a research topic.
  • Secondary Research: much like how patterns of behavior can be observed, various types of documentation resources can be coded and divided based on the type of material they contain.
  • Interviews: one of the best collection methods for narrative data. Inquiry responses can be grouped by theme, topic, or category. The interview approach allows for highly focused data segmentation.

A key difference between qualitative and quantitative analysis is clearly noticeable in the interpretation stage. The first one is widely open to interpretation and must be “coded” so as to facilitate the grouping and labeling of data into identifiable themes. As person-to-person data collection techniques can often result in disputes pertaining to proper analysis, qualitative data analysis is often summarized through three basic principles: notice things, collect things, and think about things.

After qualitative data has been collected through transcripts, questionnaires, audio and video recordings, or the researcher’s notes, it is time to interpret it. For that purpose, there are some common methods used by researchers and analysts.

  • Content analysis : As its name suggests, this is a research method used to identify frequencies and recurring words, subjects, and concepts in image, video, or audio content. It transforms qualitative information into quantitative data to help discover trends and conclusions that will later support important research or business decisions. This method is often used by marketers to understand brand sentiment from the mouths of customers themselves. Through that, they can extract valuable information to improve their products and services. It is recommended to use content analytics tools for this method as manually performing it is very time-consuming and can lead to human error or subjectivity issues. Having a clear goal in mind before diving into it is another great practice for avoiding getting lost in the fog.  
  • Thematic analysis: This method focuses on analyzing qualitative data, such as interview transcripts, survey questions, and others, to identify common patterns and separate the data into different groups according to found similarities or themes. For example, imagine you want to analyze what customers think about your restaurant. For this purpose, you do a thematic analysis on 1000 reviews and find common themes such as “fresh food”, “cold food”, “small portions”, “friendly staff”, etc. With those recurring themes in hand, you can extract conclusions about what could be improved or enhanced based on your customer’s experiences. Since this technique is more exploratory, be open to changing your research questions or goals as you go. 
  • Narrative analysis: A bit more specific and complicated than the two previous methods, it is used to analyze stories and discover their meaning. These stories can be extracted from testimonials, case studies, and interviews, as these formats give people more space to tell their experiences. Given that collecting this kind of data is harder and more time-consuming, sample sizes for narrative analysis are usually smaller, which makes it harder to reproduce its findings. However, it is still a valuable technique for understanding customers' preferences and mindsets.  
  • Discourse analysis : This method is used to draw the meaning of any type of visual, written, or symbolic language in relation to a social, political, cultural, or historical context. It is used to understand how context can affect how language is carried out and understood. For example, if you are doing research on power dynamics, using discourse analysis to analyze a conversation between a janitor and a CEO and draw conclusions about their responses based on the context and your research questions is a great use case for this technique. That said, like all methods in this section, discourse analytics is time-consuming as the data needs to be analyzed until no new insights emerge.  
  • Grounded theory analysis : The grounded theory approach aims to create or discover a new theory by carefully testing and evaluating the data available. Unlike all other qualitative approaches on this list, grounded theory helps extract conclusions and hypotheses from the data instead of going into the analysis with a defined hypothesis. This method is very popular amongst researchers, analysts, and marketers as the results are completely data-backed, providing a factual explanation of any scenario. It is often used when researching a completely new topic or with little knowledge as this space to start from the ground up. 

Quantitative Data Interpretation

If quantitative data interpretation could be summed up in one word (and it really can’t), that word would be “numerical.” There are few certainties when it comes to data analysis, but you can be sure that if the research you are engaging in has no numbers involved, it is not quantitative research, as this analysis refers to a set of processes by which numerical data is analyzed. More often than not, it involves the use of statistical modeling such as standard deviation, mean, and median. Let’s quickly review the most common statistical terms:

  • Mean: A mean represents a numerical average for a set of responses. When dealing with a data set (or multiple data sets), a mean will represent the central value of a specific set of numbers. It is the sum of the values divided by the number of values within the data set. Other terms that can be used to describe the concept are arithmetic mean, average, and mathematical expectation.
  • Standard deviation: This is another statistical term commonly used in quantitative analysis. Standard deviation reveals the distribution of the responses around the mean. It describes the degree of consistency within the responses; together with the mean, it provides insight into data sets.
  • Frequency distribution: This is a measurement gauging the rate of a response appearance within a data set. When using a survey, for example, frequency distribution, it can determine the number of times a specific ordinal scale response appears (i.e., agree, strongly agree, disagree, etc.). Frequency distribution is extremely keen in determining the degree of consensus among data points.

Typically, quantitative data is measured by visually presenting correlation tests between two or more variables of significance. Different processes can be used together or separately, and comparisons can be made to ultimately arrive at a conclusion. Other signature interpretation processes of quantitative data include:

  • Regression analysis: Essentially, it uses historical data to understand the relationship between a dependent variable and one or more independent variables. Knowing which variables are related and how they developed in the past allows you to anticipate possible outcomes and make better decisions going forward. For example, if you want to predict your sales for next month, you can use regression to understand what factors will affect them, such as products on sale and the launch of a new campaign, among many others. 
  • Cohort analysis: This method identifies groups of users who share common characteristics during a particular time period. In a business scenario, cohort analysis is commonly used to understand customer behaviors. For example, a cohort could be all users who have signed up for a free trial on a given day. An analysis would be carried out to see how these users behave, what actions they carry out, and how their behavior differs from other user groups.
  • Predictive analysis: As its name suggests, the predictive method aims to predict future developments by analyzing historical and current data. Powered by technologies such as artificial intelligence and machine learning, predictive analytics practices enable businesses to identify patterns or potential issues and plan informed strategies in advance.
  • Prescriptive analysis: Also powered by predictions, the prescriptive method uses techniques such as graph analysis, complex event processing, and neural networks, among others, to try to unravel the effect that future decisions will have in order to adjust them before they are actually made. This helps businesses to develop responsive, practical business strategies.
  • Conjoint analysis: Typically applied to survey analysis, the conjoint approach is used to analyze how individuals value different attributes of a product or service. This helps researchers and businesses to define pricing, product features, packaging, and many other attributes. A common use is menu-based conjoint analysis, in which individuals are given a “menu” of options from which they can build their ideal concept or product. Through this, analysts can understand which attributes they would pick above others and drive conclusions.
  • Cluster analysis: Last but not least, the cluster is a method used to group objects into categories. Since there is no target variable when using cluster analysis, it is a useful method to find hidden trends and patterns in the data. In a business context, clustering is used for audience segmentation to create targeted experiences. In market research, it is often used to identify age groups, geographical information, and earnings, among others.

Now that we have seen how to interpret data, let's move on and ask ourselves some questions: What are some of the benefits of data interpretation? Why do all industries engage in data research and analysis? These are basic questions, but they often don’t receive adequate attention.

Your Chance: Want to test a powerful data analysis software? Use our 14-days free trial & start extracting insights from your data!

Why Data Interpretation Is Important

illustrating quantitative data interpretation with charts & graphs

The purpose of collection and interpretation is to acquire useful and usable information and to make the most informed decisions possible. From businesses to newlyweds researching their first home, data collection and interpretation provide limitless benefits for a wide range of institutions and individuals.

Data analysis and interpretation, regardless of the method and qualitative/quantitative status, may include the following characteristics:

  • Data identification and explanation
  • Comparing and contrasting data
  • Identification of data outliers
  • Future predictions

Data analysis and interpretation, in the end, help improve processes and identify problems. It is difficult to grow and make dependable improvements without, at the very least, minimal data collection and interpretation. What is the keyword? Dependable. Vague ideas regarding performance enhancement exist within all institutions and industries. Yet, without proper research and analysis, an idea is likely to remain in a stagnant state forever (i.e., minimal growth). So… what are a few of the business benefits of digital age data analysis and interpretation? Let’s take a look!

1) Informed decision-making: A decision is only as good as the knowledge that formed it. Informed data decision-making can potentially set industry leaders apart from the rest of the market pack. Studies have shown that companies in the top third of their industries are, on average, 5% more productive and 6% more profitable when implementing informed data decision-making processes. Most decisive actions will arise only after a problem has been identified or a goal defined. Data analysis should include identification, thesis development, and data collection, followed by data communication.

If institutions only follow that simple order, one that we should all be familiar with from grade school science fairs, then they will be able to solve issues as they emerge in real-time. Informed decision-making has a tendency to be cyclical. This means there is really no end, and eventually, new questions and conditions arise within the process that need to be studied further. The monitoring of data results will inevitably return the process to the start with new data and sights.

2) Anticipating needs with trends identification: data insights provide knowledge, and knowledge is power. The insights obtained from market and consumer data analyses have the ability to set trends for peers within similar market segments. A perfect example of how data analytics can impact trend prediction is evidenced in the music identification application Shazam . The application allows users to upload an audio clip of a song they like but can’t seem to identify. Users make 15 million song identifications a day. With this data, Shazam has been instrumental in predicting future popular artists.

When industry trends are identified, they can then serve a greater industry purpose. For example, the insights from Shazam’s monitoring benefits not only Shazam in understanding how to meet consumer needs but also grant music executives and record label companies an insight into the pop-culture scene of the day. Data gathering and interpretation processes can allow for industry-wide climate prediction and result in greater revenue streams across the market. For this reason, all institutions should follow the basic data cycle of collection, interpretation, decision-making, and monitoring.

3) Cost efficiency: Proper implementation of analytics processes can provide businesses with profound cost advantages within their industries. A recent data study performed by Deloitte vividly demonstrates this in finding that data analysis ROI is driven by efficient cost reductions. Often, this benefit is overlooked because making money is typically viewed as “sexier” than saving money. Yet, sound data analyses have the ability to alert management to cost-reduction opportunities without any significant exertion of effort on the part of human capital.

A great example of the potential for cost efficiency through data analysis is Intel. Prior to 2012, Intel would conduct over 19,000 manufacturing function tests on their chips before they could be deemed acceptable for release. To cut costs and reduce test time, Intel implemented predictive data analyses. By using historical and current data, Intel now avoids testing each chip 19,000 times by focusing on specific and individual chip tests. After its implementation in 2012, Intel saved over $3 million in manufacturing costs. Cost reduction may not be as “sexy” as data profit, but as Intel proves, it is a benefit of data analysis that should not be neglected.

4) Clear foresight: companies that collect and analyze their data gain better knowledge about themselves, their processes, and their performance. They can identify performance challenges when they arise and take action to overcome them. Data interpretation through visual representations lets them process their findings faster and make better-informed decisions on the company's future.

Key Data Interpretation Skills You Should Have

Just like any other process, data interpretation and analysis require researchers or analysts to have some key skills to be able to perform successfully. It is not enough just to apply some methods and tools to the data; the person who is managing it needs to be objective and have a data-driven mind, among other skills. 

It is a common misconception to think that the required skills are mostly number-related. While data interpretation is heavily analytically driven, it also requires communication and narrative skills, as the results of the analysis need to be presented in a way that is easy to understand for all types of audiences. 

Luckily, with the rise of self-service tools and AI-driven technologies, data interpretation is no longer segregated for analysts only. However, the topic still remains a big challenge for businesses that make big investments in data and tools to support it, as the interpretation skills required are still lacking. It is worthless to put massive amounts of money into extracting information if you are not going to be able to interpret what that information is telling you. For that reason, below we list the top 5 data interpretation skills your employees or researchers should have to extract the maximum potential from the data. 

  • Data Literacy: The first and most important skill to have is data literacy. This means having the ability to understand, work, and communicate with data. It involves knowing the types of data sources, methods, and ethical implications of using them. In research, this skill is often a given. However, in a business context, there might be many employees who are not comfortable with data. The issue is the interpretation of data can not be solely responsible for the data team, as it is not sustainable in the long run. Experts advise business leaders to carefully assess the literacy level across their workforce and implement training instances to ensure everyone can interpret their data. 
  • Data Tools: The data interpretation and analysis process involves using various tools to collect, clean, store, and analyze the data. The complexity of the tools varies depending on the type of data and the analysis goals. Going from simple ones like Excel to more complex ones like databases, such as SQL, or programming languages, such as R or Python. It also involves visual analytics tools to bring the data to life through the use of graphs and charts. Managing these tools is a fundamental skill as they make the process faster and more efficient. As mentioned before, most modern solutions are now self-service, enabling less technical users to use them without problem.
  • Critical Thinking: Another very important skill is to have critical thinking. Data hides a range of conclusions, trends, and patterns that must be discovered. It is not just about comparing numbers; it is about putting a story together based on multiple factors that will lead to a conclusion. Therefore, having the ability to look further from what is right in front of you is an invaluable skill for data interpretation. 
  • Data Ethics: In the information age, being aware of the legal and ethical responsibilities that come with the use of data is of utmost importance. In short, data ethics involves respecting the privacy and confidentiality of data subjects, as well as ensuring accuracy and transparency for data usage. It requires the analyzer or researcher to be completely objective with its interpretation to avoid any biases or discrimination. Many countries have already implemented regulations regarding the use of data, including the GDPR or the ACM Code Of Ethics. Awareness of these regulations and responsibilities is a fundamental skill that anyone working in data interpretation should have. 
  • Domain Knowledge: Another skill that is considered important when interpreting data is to have domain knowledge. As mentioned before, data hides valuable insights that need to be uncovered. To do so, the analyst needs to know about the industry or domain from which the information is coming and use that knowledge to explore it and put it into a broader context. This is especially valuable in a business context, where most departments are now analyzing data independently with the help of a live dashboard instead of relying on the IT department, which can often overlook some aspects due to a lack of expertise in the topic. 

Common Data Analysis And Interpretation Problems

Man running away from common data interpretation problems

The oft-repeated mantra of those who fear data advancements in the digital age is “big data equals big trouble.” While that statement is not accurate, it is safe to say that certain data interpretation problems or “pitfalls” exist and can occur when analyzing data, especially at the speed of thought. Let’s identify some of the most common data misinterpretation risks and shed some light on how they can be avoided:

1) Correlation mistaken for causation: our first misinterpretation of data refers to the tendency of data analysts to mix the cause of a phenomenon with correlation. It is the assumption that because two actions occurred together, one caused the other. This is inaccurate, as actions can occur together, absent a cause-and-effect relationship.

  • Digital age example: assuming that increased revenue results from increased social media followers… there might be a definitive correlation between the two, especially with today’s multi-channel purchasing experiences. But that does not mean an increase in followers is the direct cause of increased revenue. There could be both a common cause and an indirect causality.
  • Remedy: attempt to eliminate the variable you believe to be causing the phenomenon.

2) Confirmation bias: our second problem is data interpretation bias. It occurs when you have a theory or hypothesis in mind but are intent on only discovering data patterns that support it while rejecting those that do not.

  • Digital age example: your boss asks you to analyze the success of a recent multi-platform social media marketing campaign. While analyzing the potential data variables from the campaign (one that you ran and believe performed well), you see that the share rate for Facebook posts was great, while the share rate for Twitter Tweets was not. Using only Facebook posts to prove your hypothesis that the campaign was successful would be a perfect manifestation of confirmation bias.
  • Remedy: as this pitfall is often based on subjective desires, one remedy would be to analyze data with a team of objective individuals. If this is not possible, another solution is to resist the urge to make a conclusion before data exploration has been completed. Remember to always try to disprove a hypothesis, not prove it.

3) Irrelevant data: the third data misinterpretation pitfall is especially important in the digital age. As large data is no longer centrally stored and as it continues to be analyzed at the speed of thought, it is inevitable that analysts will focus on data that is irrelevant to the problem they are trying to correct.

  • Digital age example: in attempting to gauge the success of an email lead generation campaign, you notice that the number of homepage views directly resulting from the campaign increased, but the number of monthly newsletter subscribers did not. Based on the number of homepage views, you decide the campaign was a success when really it generated zero leads.
  • Remedy: proactively and clearly frame any data analysis variables and KPIs prior to engaging in a data review. If the metric you use to measure the success of a lead generation campaign is newsletter subscribers, there is no need to review the number of homepage visits. Be sure to focus on the data variable that answers your question or solves your problem and not on irrelevant data.

4) Truncating an Axes: When creating a graph to start interpreting the results of your analysis, it is important to keep the axes truthful and avoid generating misleading visualizations. Starting the axes in a value that doesn’t portray the actual truth about the data can lead to false conclusions. 

  • Digital age example: In the image below, we can see a graph from Fox News in which the Y-axes start at 34%, making it seem that the difference between 35% and 39.6% is way higher than it actually is. This could lead to a misinterpretation of the tax rate changes. 

Fox news graph truncating an axes

* Source : www.venngage.com *

  • Remedy: Be careful with how your data is visualized. Be respectful and realistic with axes to avoid misinterpretation of your data. See below how the Fox News chart looks when using the correct axis values. This chart was created with datapine's modern online data visualization tool.

Fox news graph with the correct axes values

5) (Small) sample size: Another common problem is using a small sample size. Logically, the bigger the sample size, the more accurate and reliable the results. However, this also depends on the size of the effect of the study. For example, the sample size in a survey about the quality of education will not be the same as for one about people doing outdoor sports in a specific area. 

  • Digital age example: Imagine you ask 30 people a question, and 29 answer “yes,” resulting in 95% of the total. Now imagine you ask the same question to 1000, and 950 of them answer “yes,” which is again 95%. While these percentages might look the same, they certainly do not mean the same thing, as a 30-person sample size is not a significant number to establish a truthful conclusion. 
  • Remedy: Researchers say that in order to determine the correct sample size to get truthful and meaningful results, it is necessary to define a margin of error that will represent the maximum amount they want the results to deviate from the statistical mean. Paired with this, they need to define a confidence level that should be between 90 and 99%. With these two values in hand, researchers can calculate an accurate sample size for their studies.

6) Reliability, subjectivity, and generalizability : When performing qualitative analysis, researchers must consider practical and theoretical limitations when interpreting the data. In some cases, this type of research can be considered unreliable because of uncontrolled factors that might or might not affect the results. This is paired with the fact that the researcher has a primary role in the interpretation process, meaning he or she decides what is relevant and what is not, and as we know, interpretations can be very subjective.

Generalizability is also an issue that researchers face when dealing with qualitative analysis. As mentioned in the point about having a small sample size, it is difficult to draw conclusions that are 100% representative because the results might be biased or unrepresentative of a wider population. 

While these factors are mostly present in qualitative research, they can also affect the quantitative analysis. For example, when choosing which KPIs to portray and how to portray them, analysts can also be biased and represent them in a way that benefits their analysis.

  • Digital age example: Biased questions in a survey are a great example of reliability and subjectivity issues. Imagine you are sending a survey to your clients to see how satisfied they are with your customer service with this question: “How amazing was your experience with our customer service team?”. Here, we can see that this question clearly influences the response of the individual by putting the word “amazing” on it. 
  • Remedy: A solution to avoid these issues is to keep your research honest and neutral. Keep the wording of the questions as objective as possible. For example: “On a scale of 1-10, how satisfied were you with our customer service team?”. This does not lead the respondent to any specific answer, meaning the results of your survey will be reliable. 

Data Interpretation Best Practices & Tips

Data interpretation methods and techniques by datapine

Data analysis and interpretation are critical to developing sound conclusions and making better-informed decisions. As we have seen with this article, there is an art and science to the interpretation of data. To help you with this purpose, we will list a few relevant techniques, methods, and tricks you can implement for a successful data management process. 

As mentioned at the beginning of this post, the first step to interpreting data in a successful way is to identify the type of analysis you will perform and apply the methods respectively. Clearly differentiate between qualitative (observe, document, and interview notice, collect and think about things) and quantitative analysis (you lead research with a lot of numerical data to be analyzed through various statistical methods). 

1) Ask the right data interpretation questions

The first data interpretation technique is to define a clear baseline for your work. This can be done by answering some critical questions that will serve as a useful guideline to start. Some of them include: what are the goals and objectives of my analysis? What type of data interpretation method will I use? Who will use this data in the future? And most importantly, what general question am I trying to answer?

Once all this information has been defined, you will be ready for the next step: collecting your data. 

2) Collect and assimilate your data

Now that a clear baseline has been established, it is time to collect the information you will use. Always remember that your methods for data collection will vary depending on what type of analysis method you use, which can be qualitative or quantitative. Based on that, relying on professional online data analysis tools to facilitate the process is a great practice in this regard, as manually collecting and assessing raw data is not only very time-consuming and expensive but is also at risk of errors and subjectivity. 

Once your data is collected, you need to carefully assess it to understand if the quality is appropriate to be used during a study. This means, is the sample size big enough? Were the procedures used to collect the data implemented correctly? Is the date range from the data correct? If coming from an external source, is it a trusted and objective one? 

With all the needed information in hand, you are ready to start the interpretation process, but first, you need to visualize your data. 

3) Use the right data visualization type 

Data visualizations such as business graphs , charts, and tables are fundamental to successfully interpreting data. This is because data visualization via interactive charts and graphs makes the information more understandable and accessible. As you might be aware, there are different types of visualizations you can use, but not all of them are suitable for any analysis purpose. Using the wrong graph can lead to misinterpretation of your data, so it’s very important to carefully pick the right visual for it. Let’s look at some use cases of common data visualizations. 

  • Bar chart: One of the most used chart types, the bar chart uses rectangular bars to show the relationship between 2 or more variables. There are different types of bar charts for different interpretations, including the horizontal bar chart, column bar chart, and stacked bar chart. 
  • Line chart: Most commonly used to show trends, acceleration or decelerations, and volatility, the line chart aims to show how data changes over a period of time, for example, sales over a year. A few tips to keep this chart ready for interpretation are not using many variables that can overcrowd the graph and keeping your axis scale close to the highest data point to avoid making the information hard to read. 
  • Pie chart: Although it doesn’t do a lot in terms of analysis due to its uncomplex nature, pie charts are widely used to show the proportional composition of a variable. Visually speaking, showing a percentage in a bar chart is way more complicated than showing it in a pie chart. However, this also depends on the number of variables you are comparing. If your pie chart needs to be divided into 10 portions, then it is better to use a bar chart instead. 
  • Tables: While they are not a specific type of chart, tables are widely used when interpreting data. Tables are especially useful when you want to portray data in its raw format. They give you the freedom to easily look up or compare individual values while also displaying grand totals. 

With the use of data visualizations becoming more and more critical for businesses’ analytical success, many tools have emerged to help users visualize their data in a cohesive and interactive way. One of the most popular ones is the use of BI dashboards . These visual tools provide a centralized view of various graphs and charts that paint a bigger picture of a topic. We will discuss the power of dashboards for an efficient data interpretation practice in the next portion of this post. If you want to learn more about different types of graphs and charts , take a look at our complete guide on the topic. 

4) Start interpreting 

After the tedious preparation part, you can start extracting conclusions from your data. As mentioned many times throughout the post, the way you decide to interpret the data will solely depend on the methods you initially decided to use. If you had initial research questions or hypotheses, then you should look for ways to prove their validity. If you are going into the data with no defined hypothesis, then start looking for relationships and patterns that will allow you to extract valuable conclusions from the information. 

During the process of interpretation, stay curious and creative, dig into the data, and determine if there are any other critical questions that should be asked. If any new questions arise, you need to assess if you have the necessary information to answer them. Being able to identify if you need to dedicate more time and resources to the research is a very important step. No matter if you are studying customer behaviors or a new cancer treatment, the findings from your analysis may dictate important decisions in the future. Therefore, taking the time to really assess the information is key. For that purpose, data interpretation software proves to be very useful.

5) Keep your interpretation objective

As mentioned above, objectivity is one of the most important data interpretation skills but also one of the hardest. Being the person closest to the investigation, it is easy to become subjective when looking for answers in the data. A good way to stay objective is to show the information related to the study to other people, for example, research partners or even the people who will use your findings once they are done. This can help avoid confirmation bias and any reliability issues with your interpretation. 

Remember, using a visualization tool such as a modern dashboard will make the interpretation process way easier and more efficient as the data can be navigated and manipulated in an easy and organized way. And not just that, using a dashboard tool to present your findings to a specific audience will make the information easier to understand and the presentation way more engaging thanks to the visual nature of these tools. 

6) Mark your findings and draw conclusions

Findings are the observations you extracted from your data. They are the facts that will help you drive deeper conclusions about your research. For example, findings can be trends and patterns you found during your interpretation process. To put your findings into perspective, you can compare them with other resources that use similar methods and use them as benchmarks.

Reflect on your own thinking and reasoning and be aware of the many pitfalls data analysis and interpretation carry—correlation versus causation, subjective bias, false information, inaccurate data, etc. Once you are comfortable with interpreting the data, you will be ready to develop conclusions, see if your initial questions were answered, and suggest recommendations based on them.

Interpretation of Data: The Use of Dashboards Bridging The Gap

As we have seen, quantitative and qualitative methods are distinct types of data interpretation and analysis. Both offer a varying degree of return on investment (ROI) regarding data investigation, testing, and decision-making. But how do you mix the two and prevent a data disconnect? The answer is professional data dashboards. 

For a few years now, dashboards have become invaluable tools to visualize and interpret data. These tools offer a centralized and interactive view of data and provide the perfect environment for exploration and extracting valuable conclusions. They bridge the quantitative and qualitative information gap by unifying all the data in one place with the help of stunning visuals. 

Not only that, but these powerful tools offer a large list of benefits, and we will discuss some of them below. 

1) Connecting and blending data. With today’s pace of innovation, it is no longer feasible (nor desirable) to have bulk data centrally located. As businesses continue to globalize and borders continue to dissolve, it will become increasingly important for businesses to possess the capability to run diverse data analyses absent the limitations of location. Data dashboards decentralize data without compromising on the necessary speed of thought while blending both quantitative and qualitative data. Whether you want to measure customer trends or organizational performance, you now have the capability to do both without the need for a singular selection.

2) Mobile Data. Related to the notion of “connected and blended data” is that of mobile data. In today’s digital world, employees are spending less time at their desks and simultaneously increasing production. This is made possible because mobile solutions for analytical tools are no longer standalone. Today, mobile analysis applications seamlessly integrate with everyday business tools. In turn, both quantitative and qualitative data are now available on-demand where they’re needed, when they’re needed, and how they’re needed via interactive online dashboards .

3) Visualization. Data dashboards merge the data gap between qualitative and quantitative data interpretation methods through the science of visualization. Dashboard solutions come “out of the box” and are well-equipped to create easy-to-understand data demonstrations. Modern online data visualization tools provide a variety of color and filter patterns, encourage user interaction, and are engineered to help enhance future trend predictability. All of these visual characteristics make for an easy transition among data methods – you only need to find the right types of data visualization to tell your data story the best way possible.

4) Collaboration. Whether in a business environment or a research project, collaboration is key in data interpretation and analysis. Dashboards are online tools that can be easily shared through a password-protected URL or automated email. Through them, users can collaborate and communicate through the data in an efficient way. Eliminating the need for infinite files with lost updates. Tools such as datapine offer real-time updates, meaning your dashboards will update on their own as soon as new information is available.  

Examples Of Data Interpretation In Business

To give you an idea of how a dashboard can fulfill the need to bridge quantitative and qualitative analysis and help in understanding how to interpret data in research thanks to visualization, below, we will discuss three valuable examples to put their value into perspective.

1. Customer Satisfaction Dashboard 

This market research dashboard brings together both qualitative and quantitative data that are knowledgeably analyzed and visualized in a meaningful way that everyone can understand, thus empowering any viewer to interpret it. Let’s explore it below. 

Data interpretation example on customers' satisfaction with a brand

**click to enlarge**

The value of this template lies in its highly visual nature. As mentioned earlier, visuals make the interpretation process way easier and more efficient. Having critical pieces of data represented with colorful and interactive icons and graphs makes it possible to uncover insights at a glance. For example, the colors green, yellow, and red on the charts for the NPS and the customer effort score allow us to conclude that most respondents are satisfied with this brand with a short glance. A further dive into the line chart below can help us dive deeper into this conclusion, as we can see both metrics developed positively in the past 6 months. 

The bottom part of the template provides visually stunning representations of different satisfaction scores for quality, pricing, design, and service. By looking at these, we can conclude that, overall, customers are satisfied with this company in most areas. 

2. Brand Analysis Dashboard

Next, in our list of data interpretation examples, we have a template that shows the answers to a survey on awareness for Brand D. The sample size is listed on top to get a perspective of the data, which is represented using interactive charts and graphs. 

Data interpretation example using a market research dashboard for brand awareness analysis

When interpreting information, context is key to understanding it correctly. For that reason, the dashboard starts by offering insights into the demographics of the surveyed audience. In general, we can see ages and gender are diverse. Therefore, we can conclude these brands are not targeting customers from a specified demographic, an important aspect to put the surveyed answers into perspective. 

Looking at the awareness portion, we can see that brand B is the most popular one, with brand D coming second on both questions. This means brand D is not doing wrong, but there is still room for improvement compared to brand B. To see where brand D could improve, the researcher could go into the bottom part of the dashboard and consult the answers for branding themes and celebrity analysis. These are important as they give clear insight into what people and messages the audience associates with brand D. This is an opportunity to exploit these topics in different ways and achieve growth and success. 

3. Product Innovation Dashboard 

Our third and last dashboard example shows the answers to a survey on product innovation for a technology company. Just like the previous templates, the interactive and visual nature of the dashboard makes it the perfect tool to interpret data efficiently and effectively. 

Market research results on product innovation, useful for product development and pricing decisions as an example of data interpretation using dashboards

Starting from right to left, we first get a list of the top 5 products by purchase intention. This information lets us understand if the product being evaluated resembles what the audience already intends to purchase. It is a great starting point to see how customers would respond to the new product. This information can be complemented with other key metrics displayed in the dashboard. For example, the usage and purchase intention track how the market would receive the product and if they would purchase it, respectively. Interpreting these values as positive or negative will depend on the company and its expectations regarding the survey. 

Complementing these metrics, we have the willingness to pay. Arguably, one of the most important metrics to define pricing strategies. Here, we can see that most respondents think the suggested price is a good value for money. Therefore, we can interpret that the product would sell for that price. 

To see more data analysis and interpretation examples for different industries and functions, visit our library of business dashboards .

To Conclude…

As we reach the end of this insightful post about data interpretation and analysis, we hope you have a clear understanding of the topic. We've covered the definition and given some examples and methods to perform a successful interpretation process.

The importance of data interpretation is undeniable. Dashboards not only bridge the information gap between traditional data interpretation methods and technology, but they can help remedy and prevent the major pitfalls of the process. As a digital age solution, they combine the best of the past and the present to allow for informed decision-making with maximum data interpretation ROI.

To start visualizing your insights in a meaningful and actionable way, test our online reporting software for free with our 14-day trial !

  • Privacy Policy

Research Method

Home » Data Interpretation – Process, Methods and Questions

Data Interpretation – Process, Methods and Questions

Table of Contents

Data Interpretation

Data Interpretation

Definition :

Data interpretation refers to the process of making sense of data by analyzing and drawing conclusions from it. It involves examining data in order to identify patterns, relationships, and trends that can help explain the underlying phenomena being studied. Data interpretation can be used to make informed decisions and solve problems across a wide range of fields, including business, science, and social sciences.

Data Interpretation Process

Here are the steps involved in the data interpretation process:

  • Define the research question : The first step in data interpretation is to clearly define the research question. This will help you to focus your analysis and ensure that you are interpreting the data in a way that is relevant to your research objectives.
  • Collect the data: The next step is to collect the data. This can be done through a variety of methods such as surveys, interviews, observation, or secondary data sources.
  • Clean and organize the data : Once the data has been collected, it is important to clean and organize it. This involves checking for errors, inconsistencies, and missing data. Data cleaning can be a time-consuming process, but it is essential to ensure that the data is accurate and reliable.
  • Analyze the data: The next step is to analyze the data. This can involve using statistical software or other tools to calculate summary statistics, create graphs and charts, and identify patterns in the data.
  • Interpret the results: Once the data has been analyzed, it is important to interpret the results. This involves looking for patterns, trends, and relationships in the data. It also involves drawing conclusions based on the results of the analysis.
  • Communicate the findings : The final step is to communicate the findings. This can involve creating reports, presentations, or visualizations that summarize the key findings of the analysis. It is important to communicate the findings in a way that is clear and concise, and that is tailored to the audience’s needs.

Types of Data Interpretation

There are various types of data interpretation techniques used for analyzing and making sense of data. Here are some of the most common types:

Descriptive Interpretation

This type of interpretation involves summarizing and describing the key features of the data. This can involve calculating measures of central tendency (such as mean, median, and mode), measures of dispersion (such as range, variance, and standard deviation), and creating visualizations such as histograms, box plots, and scatterplots.

Inferential Interpretation

This type of interpretation involves making inferences about a larger population based on a sample of the data. This can involve hypothesis testing, where you test a hypothesis about a population parameter using sample data, or confidence interval estimation, where you estimate a range of values for a population parameter based on sample data.

Predictive Interpretation

This type of interpretation involves using data to make predictions about future outcomes. This can involve building predictive models using statistical techniques such as regression analysis, time-series analysis, or machine learning algorithms.

Exploratory Interpretation

This type of interpretation involves exploring the data to identify patterns and relationships that were not previously known. This can involve data mining techniques such as clustering analysis, principal component analysis, or association rule mining.

Causal Interpretation

This type of interpretation involves identifying causal relationships between variables in the data. This can involve experimental designs, such as randomized controlled trials, or observational studies, such as regression analysis or propensity score matching.

Data Interpretation Methods

There are various methods for data interpretation that can be used to analyze and make sense of data. Here are some of the most common methods:

Statistical Analysis

This method involves using statistical techniques to analyze the data. Statistical analysis can involve descriptive statistics (such as measures of central tendency and dispersion), inferential statistics (such as hypothesis testing and confidence interval estimation), and predictive modeling (such as regression analysis and time-series analysis).

Data Visualization

This method involves using visual representations of the data to identify patterns and trends. Data visualization can involve creating charts, graphs, and other visualizations, such as heat maps or scatterplots.

Text Analysis

This method involves analyzing text data, such as survey responses or social media posts, to identify patterns and themes. Text analysis can involve techniques such as sentiment analysis, topic modeling, and natural language processing.

Machine Learning

This method involves using algorithms to identify patterns in the data and make predictions or classifications. Machine learning can involve techniques such as decision trees, neural networks, and random forests.

Qualitative Analysis

This method involves analyzing non-numeric data, such as interviews or focus group discussions, to identify themes and patterns. Qualitative analysis can involve techniques such as content analysis, grounded theory, and narrative analysis.

Geospatial Analysis

This method involves analyzing spatial data, such as maps or GPS coordinates, to identify patterns and relationships. Geospatial analysis can involve techniques such as spatial autocorrelation, hot spot analysis, and clustering.

Applications of Data Interpretation

Data interpretation has a wide range of applications across different fields, including business, healthcare, education, social sciences, and more. Here are some examples of how data interpretation is used in different applications:

  • Business : Data interpretation is widely used in business to inform decision-making, identify market trends, and optimize operations. For example, businesses may analyze sales data to identify the most popular products or customer demographics, or use predictive modeling to forecast demand and adjust pricing accordingly.
  • Healthcare : Data interpretation is critical in healthcare for identifying disease patterns, evaluating treatment effectiveness, and improving patient outcomes. For example, healthcare providers may use electronic health records to analyze patient data and identify risk factors for certain diseases or conditions.
  • Education : Data interpretation is used in education to assess student performance, identify areas for improvement, and evaluate the effectiveness of instructional methods. For example, schools may analyze test scores to identify students who are struggling and provide targeted interventions to improve their performance.
  • Social sciences : Data interpretation is used in social sciences to understand human behavior, attitudes, and perceptions. For example, researchers may analyze survey data to identify patterns in public opinion or use qualitative analysis to understand the experiences of marginalized communities.
  • Sports : Data interpretation is increasingly used in sports to inform strategy and improve performance. For example, coaches may analyze performance data to identify areas for improvement or use predictive modeling to assess the likelihood of injuries or other risks.

When to use Data Interpretation

Data interpretation is used to make sense of complex data and to draw conclusions from it. It is particularly useful when working with large datasets or when trying to identify patterns or trends in the data. Data interpretation can be used in a variety of settings, including scientific research, business analysis, and public policy.

In scientific research, data interpretation is often used to draw conclusions from experiments or studies. Researchers use statistical analysis and data visualization techniques to interpret their data and to identify patterns or relationships between variables. This can help them to understand the underlying mechanisms of their research and to develop new hypotheses.

In business analysis, data interpretation is used to analyze market trends and consumer behavior. Companies can use data interpretation to identify patterns in customer buying habits, to understand market trends, and to develop marketing strategies that target specific customer segments.

In public policy, data interpretation is used to inform decision-making and to evaluate the effectiveness of policies and programs. Governments and other organizations use data interpretation to track the impact of policies and programs over time, to identify areas where improvements are needed, and to develop evidence-based policy recommendations.

In general, data interpretation is useful whenever large amounts of data need to be analyzed and understood in order to make informed decisions.

Data Interpretation Examples

Here are some real-time examples of data interpretation:

  • Social media analytics : Social media platforms generate vast amounts of data every second, and businesses can use this data to analyze customer behavior, track sentiment, and identify trends. Data interpretation in social media analytics involves analyzing data in real-time to identify patterns and trends that can help businesses make informed decisions about marketing strategies and customer engagement.
  • Healthcare analytics: Healthcare organizations use data interpretation to analyze patient data, track outcomes, and identify areas where improvements are needed. Real-time data interpretation can help healthcare providers make quick decisions about patient care, such as identifying patients who are at risk of developing complications or adverse events.
  • Financial analysis: Real-time data interpretation is essential for financial analysis, where traders and analysts need to make quick decisions based on changing market conditions. Financial analysts use data interpretation to track market trends, identify opportunities for investment, and develop trading strategies.
  • Environmental monitoring : Real-time data interpretation is important for environmental monitoring, where data is collected from various sources such as satellites, sensors, and weather stations. Data interpretation helps to identify patterns and trends that can help predict natural disasters, track changes in the environment, and inform decision-making about environmental policies.
  • Traffic management: Real-time data interpretation is used for traffic management, where traffic sensors collect data on traffic flow, congestion, and accidents. Data interpretation helps to identify areas where traffic congestion is high, and helps traffic management authorities make decisions about road maintenance, traffic signal timing, and other strategies to improve traffic flow.

Data Interpretation Questions

Data Interpretation Questions samples:

  • Medical : What is the correlation between a patient’s age and their risk of developing a certain disease?
  • Environmental Science: What is the trend in the concentration of a certain pollutant in a particular body of water over the past 10 years?
  • Finance : What is the correlation between a company’s stock price and its quarterly revenue?
  • Education : What is the trend in graduation rates for a particular high school over the past 5 years?
  • Marketing : What is the correlation between a company’s advertising budget and its sales revenue?
  • Sports : What is the trend in the number of home runs hit by a particular baseball player over the past 3 seasons?
  • Social Science: What is the correlation between a person’s level of education and their income level?

In order to answer these questions, you would need to analyze and interpret the data using statistical methods, graphs, and other visualization tools.

Purpose of Data Interpretation

The purpose of data interpretation is to make sense of complex data by analyzing and drawing insights from it. The process of data interpretation involves identifying patterns and trends, making comparisons, and drawing conclusions based on the data. The ultimate goal of data interpretation is to use the insights gained from the analysis to inform decision-making.

Data interpretation is important because it allows individuals and organizations to:

  • Understand complex data : Data interpretation helps individuals and organizations to make sense of complex data sets that would otherwise be difficult to understand.
  • Identify patterns and trends : Data interpretation helps to identify patterns and trends in data, which can reveal important insights about the underlying processes and relationships.
  • Make informed decisions: Data interpretation provides individuals and organizations with the information they need to make informed decisions based on the insights gained from the data analysis.
  • Evaluate performance : Data interpretation helps individuals and organizations to evaluate their performance over time and to identify areas where improvements can be made.
  • Communicate findings: Data interpretation allows individuals and organizations to communicate their findings to others in a clear and concise manner, which is essential for informing stakeholders and making changes based on the insights gained from the analysis.

Characteristics of Data Interpretation

Here are some characteristics of data interpretation:

  • Contextual : Data interpretation is always contextual, meaning that the interpretation of data is dependent on the context in which it is analyzed. The same data may have different meanings depending on the context in which it is analyzed.
  • Iterative : Data interpretation is an iterative process, meaning that it often involves multiple rounds of analysis and refinement as more data becomes available or as new insights are gained from the analysis.
  • Subjective : Data interpretation is often subjective, as it involves the interpretation of data by individuals who may have different perspectives and biases. It is important to acknowledge and address these biases when interpreting data.
  • Analytical : Data interpretation involves the use of analytical tools and techniques to analyze and draw insights from data. These may include statistical analysis, data visualization, and other data analysis methods.
  • Evidence-based : Data interpretation is evidence-based, meaning that it is based on the data and the insights gained from the analysis. It is important to ensure that the data used in the analysis is accurate, relevant, and reliable.
  • Actionable : Data interpretation is actionable, meaning that it provides insights that can be used to inform decision-making and to drive action. The ultimate goal of data interpretation is to use the insights gained from the analysis to improve performance or to achieve specific goals.

Advantages of Data Interpretation

Data interpretation has several advantages, including:

  • Improved decision-making: Data interpretation provides insights that can be used to inform decision-making. By analyzing data and drawing insights from it, individuals and organizations can make informed decisions based on evidence rather than intuition.
  • Identification of patterns and trends: Data interpretation helps to identify patterns and trends in data, which can reveal important insights about the underlying processes and relationships. This information can be used to improve performance or to achieve specific goals.
  • Evaluation of performance: Data interpretation helps individuals and organizations to evaluate their performance over time and to identify areas where improvements can be made. By analyzing data, organizations can identify strengths and weaknesses and make changes to improve their performance.
  • Communication of findings: Data interpretation allows individuals and organizations to communicate their findings to others in a clear and concise manner, which is essential for informing stakeholders and making changes based on the insights gained from the analysis.
  • Better resource allocation: Data interpretation can help organizations allocate resources more efficiently by identifying areas where resources are needed most. By analyzing data, organizations can identify areas where resources are being underutilized or where additional resources are needed to improve performance.
  • Improved competitiveness : Data interpretation can give organizations a competitive advantage by providing insights that help to improve performance, reduce costs, or identify new opportunities for growth.

Limitations of Data Interpretation

Data interpretation has some limitations, including:

  • Limited by the quality of data: The quality of data used in data interpretation can greatly impact the accuracy of the insights gained from the analysis. Poor quality data can lead to incorrect conclusions and decisions.
  • Subjectivity: Data interpretation can be subjective, as it involves the interpretation of data by individuals who may have different perspectives and biases. This can lead to different interpretations of the same data.
  • Limited by analytical tools: The analytical tools and techniques used in data interpretation can also limit the accuracy of the insights gained from the analysis. Different analytical tools may yield different results, and some tools may not be suitable for certain types of data.
  • Time-consuming: Data interpretation can be a time-consuming process, particularly for large and complex data sets. This can make it difficult to quickly make decisions based on the insights gained from the analysis.
  • Incomplete data: Data interpretation can be limited by incomplete data sets, which may not provide a complete picture of the situation being analyzed. Incomplete data can lead to incorrect conclusions and decisions.
  • Limited by context: Data interpretation is always contextual, meaning that the interpretation of data is dependent on the context in which it is analyzed. The same data may have different meanings depending on the context in which it is analyzed.

Difference between Data Interpretation and Data Analysis

Data interpretation and data analysis are two different but closely related processes in data-driven decision-making.

Data analysis refers to the process of examining and examining data using statistical and computational methods to derive insights and conclusions from it. It involves cleaning, transforming, and modeling the data to uncover patterns, relationships, and trends that can help in understanding the underlying phenomena.

Data interpretation, on the other hand, refers to the process of making sense of the findings from the data analysis by contextualizing them within the larger problem domain. It involves identifying the key takeaways from the data analysis, assessing their relevance and significance to the problem at hand, and communicating the insights in a clear and actionable manner.

In short, data analysis is about uncovering insights from the data, while data interpretation is about making sense of those insights and translating them into actionable recommendations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

data representation in research methodology

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

17 Data Visualization Techniques All Professionals Should Know

Data Visualizations on a Page

  • 17 Sep 2019

There’s a growing demand for business analytics and data expertise in the workforce. But you don’t need to be a professional analyst to benefit from data-related skills.

Becoming skilled at common data visualization techniques can help you reap the rewards of data-driven decision-making , including increased confidence and potential cost savings. Learning how to effectively visualize data could be the first step toward using data analytics and data science to your advantage to add value to your organization.

Several data visualization techniques can help you become more effective in your role. Here are 17 essential data visualization techniques all professionals should know, as well as tips to help you effectively present your data.

Access your free e-book today.

What Is Data Visualization?

Data visualization is the process of creating graphical representations of information. This process helps the presenter communicate data in a way that’s easy for the viewer to interpret and draw conclusions.

There are many different techniques and tools you can leverage to visualize data, so you want to know which ones to use and when. Here are some of the most important data visualization techniques all professionals should know.

Data Visualization Techniques

The type of data visualization technique you leverage will vary based on the type of data you’re working with, in addition to the story you’re telling with your data .

Here are some important data visualization techniques to know:

  • Gantt Chart
  • Box and Whisker Plot
  • Waterfall Chart
  • Scatter Plot
  • Pictogram Chart
  • Highlight Table
  • Bullet Graph
  • Choropleth Map
  • Network Diagram
  • Correlation Matrices

1. Pie Chart

Pie Chart Example

Pie charts are one of the most common and basic data visualization techniques, used across a wide range of applications. Pie charts are ideal for illustrating proportions, or part-to-whole comparisons.

Because pie charts are relatively simple and easy to read, they’re best suited for audiences who might be unfamiliar with the information or are only interested in the key takeaways. For viewers who require a more thorough explanation of the data, pie charts fall short in their ability to display complex information.

2. Bar Chart

Bar Chart Example

The classic bar chart , or bar graph, is another common and easy-to-use method of data visualization. In this type of visualization, one axis of the chart shows the categories being compared, and the other, a measured value. The length of the bar indicates how each group measures according to the value.

One drawback is that labeling and clarity can become problematic when there are too many categories included. Like pie charts, they can also be too simple for more complex data sets.

3. Histogram

Histogram Example

Unlike bar charts, histograms illustrate the distribution of data over a continuous interval or defined period. These visualizations are helpful in identifying where values are concentrated, as well as where there are gaps or unusual values.

Histograms are especially useful for showing the frequency of a particular occurrence. For instance, if you’d like to show how many clicks your website received each day over the last week, you can use a histogram. From this visualization, you can quickly determine which days your website saw the greatest and fewest number of clicks.

4. Gantt Chart

Gantt Chart Example

Gantt charts are particularly common in project management, as they’re useful in illustrating a project timeline or progression of tasks. In this type of chart, tasks to be performed are listed on the vertical axis and time intervals on the horizontal axis. Horizontal bars in the body of the chart represent the duration of each activity.

Utilizing Gantt charts to display timelines can be incredibly helpful, and enable team members to keep track of every aspect of a project. Even if you’re not a project management professional, familiarizing yourself with Gantt charts can help you stay organized.

5. Heat Map

Heat Map Example

A heat map is a type of visualization used to show differences in data through variations in color. These charts use color to communicate values in a way that makes it easy for the viewer to quickly identify trends. Having a clear legend is necessary in order for a user to successfully read and interpret a heatmap.

There are many possible applications of heat maps. For example, if you want to analyze which time of day a retail store makes the most sales, you can use a heat map that shows the day of the week on the vertical axis and time of day on the horizontal axis. Then, by shading in the matrix with colors that correspond to the number of sales at each time of day, you can identify trends in the data that allow you to determine the exact times your store experiences the most sales.

6. A Box and Whisker Plot

Box and Whisker Plot Example

A box and whisker plot , or box plot, provides a visual summary of data through its quartiles. First, a box is drawn from the first quartile to the third of the data set. A line within the box represents the median. “Whiskers,” or lines, are then drawn extending from the box to the minimum (lower extreme) and maximum (upper extreme). Outliers are represented by individual points that are in-line with the whiskers.

This type of chart is helpful in quickly identifying whether or not the data is symmetrical or skewed, as well as providing a visual summary of the data set that can be easily interpreted.

7. Waterfall Chart

Waterfall Chart Example

A waterfall chart is a visual representation that illustrates how a value changes as it’s influenced by different factors, such as time. The main goal of this chart is to show the viewer how a value has grown or declined over a defined period. For example, waterfall charts are popular for showing spending or earnings over time.

8. Area Chart

Area Chart Example

An area chart , or area graph, is a variation on a basic line graph in which the area underneath the line is shaded to represent the total value of each data point. When several data series must be compared on the same graph, stacked area charts are used.

This method of data visualization is useful for showing changes in one or more quantities over time, as well as showing how each quantity combines to make up the whole. Stacked area charts are effective in showing part-to-whole comparisons.

9. Scatter Plot

Scatter Plot Example

Another technique commonly used to display data is a scatter plot . A scatter plot displays data for two variables as represented by points plotted against the horizontal and vertical axis. This type of data visualization is useful in illustrating the relationships that exist between variables and can be used to identify trends or correlations in data.

Scatter plots are most effective for fairly large data sets, since it’s often easier to identify trends when there are more data points present. Additionally, the closer the data points are grouped together, the stronger the correlation or trend tends to be.

10. Pictogram Chart

Pictogram Example

Pictogram charts , or pictograph charts, are particularly useful for presenting simple data in a more visual and engaging way. These charts use icons to visualize data, with each icon representing a different value or category. For example, data about time might be represented by icons of clocks or watches. Each icon can correspond to either a single unit or a set number of units (for example, each icon represents 100 units).

In addition to making the data more engaging, pictogram charts are helpful in situations where language or cultural differences might be a barrier to the audience’s understanding of the data.

11. Timeline

Timeline Example

Timelines are the most effective way to visualize a sequence of events in chronological order. They’re typically linear, with key events outlined along the axis. Timelines are used to communicate time-related information and display historical data.

Timelines allow you to highlight the most important events that occurred, or need to occur in the future, and make it easy for the viewer to identify any patterns appearing within the selected time period. While timelines are often relatively simple linear visualizations, they can be made more visually appealing by adding images, colors, fonts, and decorative shapes.

12. Highlight Table

Highlight Table Example

A highlight table is a more engaging alternative to traditional tables. By highlighting cells in the table with color, you can make it easier for viewers to quickly spot trends and patterns in the data. These visualizations are useful for comparing categorical data.

Depending on the data visualization tool you’re using, you may be able to add conditional formatting rules to the table that automatically color cells that meet specified conditions. For instance, when using a highlight table to visualize a company’s sales data, you may color cells red if the sales data is below the goal, or green if sales were above the goal. Unlike a heat map, the colors in a highlight table are discrete and represent a single meaning or value.

13. Bullet Graph

Bullet Graph Example

A bullet graph is a variation of a bar graph that can act as an alternative to dashboard gauges to represent performance data. The main use for a bullet graph is to inform the viewer of how a business is performing in comparison to benchmarks that are in place for key business metrics.

In a bullet graph, the darker horizontal bar in the middle of the chart represents the actual value, while the vertical line represents a comparative value, or target. If the horizontal bar passes the vertical line, the target for that metric has been surpassed. Additionally, the segmented colored sections behind the horizontal bar represent range scores, such as “poor,” “fair,” or “good.”

14. Choropleth Maps

Choropleth Map Example

A choropleth map uses color, shading, and other patterns to visualize numerical values across geographic regions. These visualizations use a progression of color (or shading) on a spectrum to distinguish high values from low.

Choropleth maps allow viewers to see how a variable changes from one region to the next. A potential downside to this type of visualization is that the exact numerical values aren’t easily accessible because the colors represent a range of values. Some data visualization tools, however, allow you to add interactivity to your map so the exact values are accessible.

15. Word Cloud

Word Cloud Example

A word cloud , or tag cloud, is a visual representation of text data in which the size of the word is proportional to its frequency. The more often a specific word appears in a dataset, the larger it appears in the visualization. In addition to size, words often appear bolder or follow a specific color scheme depending on their frequency.

Word clouds are often used on websites and blogs to identify significant keywords and compare differences in textual data between two sources. They are also useful when analyzing qualitative datasets, such as the specific words consumers used to describe a product.

16. Network Diagram

Network Diagram Example

Network diagrams are a type of data visualization that represent relationships between qualitative data points. These visualizations are composed of nodes and links, also called edges. Nodes are singular data points that are connected to other nodes through edges, which show the relationship between multiple nodes.

There are many use cases for network diagrams, including depicting social networks, highlighting the relationships between employees at an organization, or visualizing product sales across geographic regions.

17. Correlation Matrix

Correlation Matrix Example

A correlation matrix is a table that shows correlation coefficients between variables. Each cell represents the relationship between two variables, and a color scale is used to communicate whether the variables are correlated and to what extent.

Correlation matrices are useful to summarize and find patterns in large data sets. In business, a correlation matrix might be used to analyze how different data points about a specific product might be related, such as price, advertising spend, launch date, etc.

Other Data Visualization Options

While the examples listed above are some of the most commonly used techniques, there are many other ways you can visualize data to become a more effective communicator. Some other data visualization options include:

  • Bubble clouds
  • Circle views
  • Dendrograms
  • Dot distribution maps
  • Open-high-low-close charts
  • Polar areas
  • Radial trees
  • Ring Charts
  • Sankey diagram
  • Span charts
  • Streamgraphs
  • Wedge stack graphs
  • Violin plots

Business Analytics | Become a data-driven leader | Learn More

Tips For Creating Effective Visualizations

Creating effective data visualizations requires more than just knowing how to choose the best technique for your needs. There are several considerations you should take into account to maximize your effectiveness when it comes to presenting data.

Related : What to Keep in Mind When Creating Data Visualizations in Excel

One of the most important steps is to evaluate your audience. For example, if you’re presenting financial data to a team that works in an unrelated department, you’ll want to choose a fairly simple illustration. On the other hand, if you’re presenting financial data to a team of finance experts, it’s likely you can safely include more complex information.

Another helpful tip is to avoid unnecessary distractions. Although visual elements like animation can be a great way to add interest, they can also distract from the key points the illustration is trying to convey and hinder the viewer’s ability to quickly understand the information.

Finally, be mindful of the colors you utilize, as well as your overall design. While it’s important that your graphs or charts are visually appealing, there are more practical reasons you might choose one color palette over another. For instance, using low contrast colors can make it difficult for your audience to discern differences between data points. Using colors that are too bold, however, can make the illustration overwhelming or distracting for the viewer.

Related : Bad Data Visualization: 5 Examples of Misleading Data

Visuals to Interpret and Share Information

No matter your role or title within an organization, data visualization is a skill that’s important for all professionals. Being able to effectively present complex data through easy-to-understand visual representations is invaluable when it comes to communicating information with members both inside and outside your business.

There’s no shortage in how data visualization can be applied in the real world. Data is playing an increasingly important role in the marketplace today, and data literacy is the first step in understanding how analytics can be used in business.

Are you interested in improving your analytical skills? Learn more about Business Analytics , our eight-week online course that can help you use data to generate insights and tackle business decisions.

This post was updated on January 20, 2022. It was originally published on September 17, 2019.

data representation in research methodology

About the Author

  • Increase Font Size

46 Presentation of data II – Graphical representation

Pa . Raajeswari

Graphical representation is the visual display of data using plots and charts. It is used in many academic and professional disciplines but most widely so in the fields of mathematics, medicine and sciences. Graphical representation helps to quantify, sort and present data in a method that is understandable to a large variety of audiences. A graph is the representation of data by using graphical symbols such as lines, bars, pie slices, dots etc. A graph does represent a numerical data in the form of a qualitative structure and provides important information.

Statistical surveys and experiments provides valuable information about numerical scores. For better understanding and making conclusions and interpretations, the data should be managed and organized in a systematic form.

Graphs also enable in studying both time series and frequency distribution as they give clear account and precise picture of problem. Above all graphs are also easy to understand and eye catching and can create a storing impact on memory.

General Principles of Graphic Representation:

There are some algebraic principles which apply to all types of graphic representation of data. In a graph there are two lines called coordinate axes. One is vertical known as Y axis and the other is horizontal called X axis. These two lines are perpendicular to each other. Where these two lines intersect each other is called ‘0’ or the Origin. On the X axis the distances right to the origin have positive value and distances left to the origin have negative value. On the Y axis distances above the origin have a positive value and below the origin have a negative value.

TYPES OF GRAPHICAL REPRESENTATON:

The various types of graphical representations of the data are

  • Circle Graph
  • Histogram and Frequency Polygon

1. Dot Plots

The dot plot is one of the most simplest ways of graphical representation of the statistical data. As the name itself suggests, a dot plot uses the dots. It is a graphic display which usually compares frequency within different categories. The dot plot is composed of dots that are to be plotted on a graph paper.

In the dot plot, every dot denotes a specific number of observations belonging to a data set. One dot usually represents one observation. These dots are to be marked in the form of a column for each category. In this way, the height of each column shows the corresponding frequency of some category. The dot plots are quite useful when there are small amount of data is given within the small number of categories.

2. Bar Graph

A bar graph is a very frequently used graph in statistics as well as in media. A bar graph is a type of graph which contains rectangles or rectangular bars. The lengths of these bars should be proportional to the numerical values represented by them. In bar graph, the bars may be plotted either horizontally or vertically. But a vertical bar graph (also known as column bar graph) is used more than a horizontal one.

A vertical bar graph is shown below:

Number of students went to different countries for study:

The rectangular bars are separated by some distance in order to distinguish them from one another. The bar graph shows comparison among the given categories.

Mostly, horizontal axis of the graph represents specific categories and vertical axis shows the discrete numerical values.

3.Line Graph

A line graph is a kind of graph which represents data in a way that a series of points are to be connected by segments of straight lines. In a line graph, the data points are plotted on a graph and they are joined together with straight line.

A   sample   line   graph   is    illustrated    in    the   following   diagram:

The line graphs are used in the science, statistics and media. Line graphs are very easy to create. These are quite popular in comparison with other graphs since they visualize characteristics revealing data trends very clearly. A line graph gives a clear visual comparison between two variables which are represented on X-axis and Y-axis.

4.Circle Graph

A circle graph is also known as a pie graph or pie chart. It is called so since it is similar to slice of a “pie”. A pie graph is defined as a graph which contains a circle which is divided into sectors. These sectors illustrate the numerical proportion of the data.

A pie chart are shown in the following diagram:

The arc lengths of the sectors, in pie chart, are proportional to the numerical value they represent.Circle graphs are quite commonly seen in mass media as well as in business world.

5. Histogram and Frequency Polygon

The histograms and frequency polygons are very common graphs in statistics. A histogram is defined as a graphical representation of the mutually exclusive events. A histogram is quite similar to the bar graph. Both are made up of rectangular bars. The difference is that there is no gap between any two bars in the histogram. The histogram is used to represent the continuous data.

A histogram may look like the following graph:

The frequency polygon is a type of graphical representation which gives us better understanding of the shape of given distribution. Frequency polygons serve almost the similar purpose as histograms do. But the frequency polygon is quite helpful for the purpose of comparing two or more sets of data. The frequency polygons are said to be the extension of the histogram. When the midpoints of tops of the rectangular bars are joined together, the frequency polygon is made.

Few   examples    of    graphical    representation    of    statistical    data    are    given    below:

Example 1: Draw a dot plot for the following data.

Solution: The pie graph of the above data is:

Methods to Represent a Frequency Distribution:

Generally four methods are used to represent a frequency distribution graphically. These are Histogram, Smoothed frequency graph and Ogive or Cumulative frequency graph and pie diagram.

1. Histogram:

Histogram is a non-cumulative frequency graph, it is drawn on a natural scale in which the representative frequencies of the different class of values are represented through vertical rectangles drawn closed to each other. Measure of central tendency, mode can be easily determined with the help of this graph.

How to draw a Histogram:

Represent the class intervals of the variables along the X axis and their frequencies along the Y-axis on natural scale.

Start X axis with the lower limit of the lowest class interval. When the lower limit happens to be a distant score from the origin give a break in the X-axis n to indicate that the vertical axis has been moved in for convenience.

Now draw rectangular bars in parallel to Y axis above each of the class intervals with class units as base: The areas of rectangles must be proportional to the frequencies of the corresponding classes.

In this graph we shall take class intervals in the X axis and frequencies in the Y axis. Before plotting the graph we have to convert the class into their exact limits.

Advantages of histogram:

1.  It is easy to draw and simple to understand.

2.  It helps us to understand the distribution easily and quickly.

3.  It is more precise than the polygene.

Limitations of histogram:

1.  It is not possible to plot more than one distribution on same axes as histogram.

2.  Comparison of more than one frequency distribution on the same axes is not possible.

3.  It is not possible to make it smooth.

Uses of histogram:

1.Represents the data in graphic form.

2.Provides the knowledge of how the scores in the group are distributed. Whether the scores are piled up at the lower or higher end of the distribution or are evenly and regularly distributed throughout the scale.

3.Frequency Polygon. The frequency polygon is a frequency graph which is drawn by joining the coordinating points of the mid-values of the class intervals and their corresponding fre-quencies.

How to draw a frequency polygon:

Draw a horizontal line at the bottom of graph paper named ‘OX’ axis. Mark off the exact limits of the class intervals along this axis. It is better to start with i. of lowest value. When the lowest score in the distribution is a large number we cannot show it graphically if we start with the origin. Therefore put a break in the X axis to indicate that the vertical axis has been moved in for convenience. Two additional points may be added to the two extreme ends.

Draw a vertical line through the extreme end of the horizontal axis known as OY axis. Along this line mark off the units to represent the frequencies of the class intervals. The scale should be chosen in such a way that it will make the largest frequency (height) of the polygon approximately 75 percent of the width of the figure.

Plot the points at a height proportional to the frequencies directly above the point on the horizontal axis representing the mid-point of each class interval.

After plotting all the points on the graph join these points by a series of short straight lines to form the frequency polygon. In order to complete the figure two additional intervals at the high end and low end of the distribution should be included. The frequency of these two intervals will be zero.

Illustration: No. 7.3:

Draw a frequency polygon from the following data:

Advantages of frequency polygon:

2.  It is possible to plot two distributions at a time on same axes.

3.  Comparison of two distributions can be made through frequency polygon.

4.  It is possible to make it smooth.

Limitations of frequency polygon:

1.  It is less precise.

2.  It is not accurate in terms of area the frequency upon each interval.

Uses of frequency polygon:

1. When two or more distributions are to be compared the frequency polygon is used.

2. It represents the data in graphic form.

3. It provides knowledge of how the scores in one or more group are distributed. Whether the scores are piled up at the lower or higher end of the distribution or are evenly and regularly distributed throughout the scale.

2. Smoothed Frequency Polygon:

When the sample is very small and the frequency distribution is irregular the polygon is very jig-jag. In order to wipe out the irregularities and “also get a better notion of how the figure might  look if the data were more numerous, the frequency polygon may be smoothed.”

In this process to adjust the frequencies we take a series of ‘moving’ or ‘running’ averages. To get an adjusted or smoothed frequency we add the frequency of a class interval with the two adjacent intervals, just below and above the class interval. Then the sum is divided by 3. When these adjusted frequencies are plotted against the class intervals on a graph we get a smoothed frequency polygon.

Illustration 7.4:

Draw a smoothed frequency polygon, of the data given in the illustration No. 7.3:

Here we have to first convert the class intervals into their exact limits. Then we have to determine the adjusted or smoothed frequencies.

3. Ogive or Cumulative Frequency Polygon:

Ogive is a cumulative frequency graphs drawn on natural scale to determine the values of certain factors like median, Quartile, Percentile etc. In these graphs the exact limits of the class intervals  are shown along the X-axis and the cumulative frequencies are shown along the Y-axis. Below are given the steps to draw an ogive.

Get the cumulative frequency by adding the frequencies cumulatively, from the lower end (to get a less than ogive) or from the upper end (to get a more than ogive).

Mark off the class intervals in the X-axis.

Represent the cumulative frequencies along the Y-axis beginning with zero at the base.

Put dots at each of the coordinating points of the upper limit and the corresponding frequencies.

Join all the dots with a line drawing smoothly. This will result in curve called ogive.

Illustration No. 7.5:

Draw an ogive from the data given below:

To plot this graph first we have to convert, the class intervals into their exact limits. Then we have to calculate the cumulative frequencies of the distribution.

Uses of Ogive:

1.  Ogive is useful to determine the number of students below and above a particular score.

2.  When the median as a measure of central tendency is wanted.

3.  When the quartiles, deciles and percentiles are wanted.

4.  By plotting the scores of two groups on a same scale we can compare both the groups.

4. The Pie Diagram:

Figure given below shows the distribution of elementary pupils by their academic achievement in a school. Of the total, 60% are high achievers, 25% middle achievers and 15% low achievers. The construction of this pie diagram is quite simple. There are 360 degree in the circle. Hence, 60% of 360′ or 216° are counted off as shown in the diagram; this sector represents the proportion of high achievers students.

Ninety degrees counted off for the middle achiever students (25%) and 54 degrees for low achiever students (15%). The pie-diagram is useful when one wishes to picture proportions of the total in a striking way. Numbers of degrees may be measured off “by eye” or more accurately with a protractor.

Uses of Pie diagram:

1.  Pie diagram is useful when one wants to picture proportions of the total in a striking way.

2.  When a population is stratified and each strata is to be presented as a percentage at that time pie diagram is used.

PURPOSE OF GRAPHICAL REPRESENTATION:

The purpose of graphical presentation of data is to provide a quick and easy-to-read picture of information that clearly shows what otherwise takes a great deal of explanation. The impact of graphical data is typically more pointed and memorable than paragraphs of written information

For example, a person making a presentation regarding sales in various states across the country establishes the point of the presentation to the audience more quickly by using a color-coded map rather than merely stating the sales figures for each state. Observers quickly determine which states are ahead and which are behind in sales, and they know where emphasis needs to be placed. Alternatively, when making a presentation on sales by age groups using a pie chart that divides the pie into various ages, the audience quickly sees the results of sales by age. This  means that the audience is more likely to retain that information than if the presenter simply reads the results aloud or puts it into writing.

GENERAL RULES DISPLAYING DATA

  • Simpler is Better
  • Graphs, Tables and charts can be used together
  • Use clear Description, title and labels
  • Provide a narrative Description of the highlights
  • Don’t compare variables with different scales of magnitude.
  • A Diagram must be attractive, well proportioned,neat and pleasing to the eyes.
  • They should be geometrically Accurate
  • Size of the diagram should be proportional to paper should not be too big or too small
  • Different colors should be used to classify data’s.

ADVANTAGES:

  • Acceptability: graphical report is acceptable to the busy persons because it easily highlights about the theme of the report. This helps to avoid wastage of time.
  • Comparative Analysis : Information can be compared in terms of graphical representation. Â Such comparative analysis helps for quick understanding and attention.
  • Less cost : Information if descriptive involves huge time to present properly. It involves more money to print the information but graphical presentation can be made in short but catchy view to make the report understandable. It obviously involves less cost.
  • Decision Making: Business executives can view the graphs at a glance and can make decision very quickly which is hardly possible through descriptive report.
  • Logical Ideas: If tables, design and graphs are used to represent information then a logical sequence is created to clear the idea of the audience.
  • Helpful for less literate Audience: Less literate or illiterate people can understand graphical representation easily because it does not involve going through line by line of any descriptive report.
  • Less Effort and Time: To present any table, design, image or graphs require less effort and time. Furthermore, such presentation makes quick understanding of the information.
  • Less Error and Mistakes: Qualitative or informative or descriptive reports involve errors or mistakes. As graphical representations are exhibited through numerical figures, tables or graphs, it usually involves less error and mistake.
  • A complete Idea: Such representation creates clear and complete idea in the mind of audience. Reading hundred pages may not give any scope to make decision. But an instant view or looking at a glance obviously makes an impression in  the mind of audience regarding the topic or subject.
  • Use in the Notice Board: Such representation can be hanged in the notice board to quickly raise the attention of employees in any organization.

DISADVANTAGES:

Graphical representation of reports is not free from limitations. The following are the problems of graphical representation of data or reports:

  • Costly : Graphical representation pf reports are costly because it involves images, colors and paints. Combination of material with human efforts makes the graphical presentation expensive.
  • More time : Normal report involves less time to represent but graphical representation involves more time as it requires graphs and figures which are dependent to more time.
  • Errors and Mistakes : Since graphical representations are complex, there is- each and every chance of errors and mistake. This causes problems for better understanding to general people.
  • Lack of Secrecy: Graphical representation makes full presentation of information which may hamper the objective to keep something secret.
  • Problems to select the suitable method: Information can be presented through various graphical methods and ways. Which should be the suitable method is very hard to select.
  • Problem of Understanding: All may not be able to get the meaning of graphical representation because it involves various technical matters which are complex to general people.

Last of all it can be said that graphical representation does not provide proper information to general people.

CONCLUSION:

Graphical representation makes the datamore possible to easily draw; visual impression of data. Graphical representation of data enhances the understandings of the observer. It makes comparisons easy. This kind of method creates an imprint on mind for a long period of time. Well in this chapter we have discussed about the definition ,types ,advantages and disadvantages in detail with relevant examples which will have an impact in the power of understanding. I request you all to go through the various types of graphs commonly used in research studies in with reference to home science research studies to explore new ideas in the field of research.

  • http://shodhganga.inflibnet.ac.in/bitstream/10603/143688/2/file%202%20chapter%201 %20data%20representation%20techniques.pdf
  • http://www.mas.ncl.ac.uk/~ndah6/teaching/MAS1403/notes_chapter2.pdf https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453888/
  • http://cec.nic.in/wpresources/module/Anthropology/PaperIX/9/content/downloads/file1. pdf
  • https://www.kluniversity.in/arp/uploads/2096.pdf
  • School Guide
  • Mathematics
  • Number System and Arithmetic
  • Trigonometry
  • Probability
  • Mensuration
  • Maths Formulas
  • Class 8 Maths Notes
  • Class 9 Maths Notes
  • Class 10 Maths Notes
  • Class 11 Maths Notes
  • Class 12 Maths Notes

What are the different ways of Data Representation?

  • What are the Different Kinds of Data Scientists?
  • Different types of Coding Schemes to represent data
  • Graphical Representation of Data
  • What are the types of statistics?
  • Textual Presentation of Data: Meaning, Suitability, and Drawbacks
  • Diagrammatic and Graphic Presentation of Data
  • Different Types of Data in Data Mining
  • Tabular Presentation of Data: Meaning, Objectives, Features and Merits
  • What is a Dataset: Types, Features, and Examples
  • Data Manipulation: Definition, Examples, and Uses
  • Collection and Presentation of Data
  • What is Data Organization?
  • What are the HTML tags used to display the data in the tabular form ?
  • What are the 5 methods of statistical analysis?
  • Class 9 RD Sharma- Chapter 22 Tabular Representation of Statistical Data - Exercise 22.1 | Set 1
  • Different Ways To Declare And Initialize 2-D Array in Java
  • Difference between Data and Metadata
  • Different forms of data representation in today's world
  • Difference Between Presentation and Representation
  • What are the Basic Data Types in PHP ?
  • Processing of Raw Data to Tidy Data in R
  • Graph and its representations
  • Difference between Information and Data
  • Data Preprocessing and Its Types
  • What is Meta Data in Data Warehousing?
  • Different Sources of Data for Data Analysis
  • What is Data Visualization and Why is It Important?
  • Difference between Physical and Logical Data Independence
  • Difference between Software and Data

The process of collecting the data and analyzing that data in large quantity is known as statistics. It is a branch of mathematics trading with the collection, analysis, interpretation, and presentation of numeral facts and figures.

It is a numerical statement that helps us to collect and analyze the data in large quantity the statistics are based on two of its concepts:

  • Statistical Data 
  • Statistical Science

Statistics must be expressed numerically and should be collected systematically.

Data Representation

The word data refers to constituting people, things, events, ideas. It can be a title, an integer, or anycast.  After collecting data the investigator has to condense them in tabular form to study their salient features. Such an arrangement is known as the presentation of data.

It refers to the process of condensing the collected data in a tabular form or graphically. This arrangement of data is known as Data Representation.

The row can be placed in different orders like it can be presented in ascending orders, descending order, or can be presented in alphabetical order. 

Example: Let the marks obtained by 10 students of class V in a class test, out of 50 according to their roll numbers, be: 39, 44, 49, 40, 22, 10, 45, 38, 15, 50 The data in the given form is known as raw data. The above given data can be placed in the serial order as shown below: Roll No. Marks 1 39 2 44 3 49 4 40 5 22 6 10 7 45 8 38 9 14 10 50 Now, if you want to analyse the standard of achievement of the students. If you arrange them in ascending or descending order, it will give you a better picture. Ascending order: 10, 15, 22, 38, 39, 40, 44. 45, 49, 50 Descending order: 50, 49, 45, 44, 40, 39, 38, 22, 15, 10 When the row is placed in ascending or descending order is known as arrayed data.

Types of Graphical Data Representation

Bar chart helps us to represent the collected data visually. The collected data can be visualized horizontally or vertically in a bar chart like amounts and frequency. It can be grouped or single. It helps us in comparing different items. By looking at all the bars, it is easy to say which types in a group of data influence the other.

Now let us understand bar chart by taking this example  Let the marks obtained by 5 students of class V in a class test, out of 10 according to their names, be: 7,8,4,9,6 The data in the given form is known as raw data. The above given data can be placed in the bar chart as shown below: Name Marks Akshay 7 Maya 8 Dhanvi 4 Jaslen 9 Muskan 6

A histogram is the graphical representation of data. It is similar to the appearance of a bar graph but there is a lot of difference between histogram and bar graph because a bar graph helps to measure the frequency of categorical data. A categorical data means it is based on two or more categories like gender, months, etc. Whereas histogram is used for quantitative data.

For example:

The graph which uses lines and points to present the change in time is known as a line graph. Line graphs can be based on the number of animals left on earth, the increasing population of the world day by day, or the increasing or decreasing the number of bitcoins day by day, etc. The line graphs tell us about the changes occurring across the world over time. In a  line graph, we can tell about two or more types of changes occurring around the world.

For Example:

Pie chart is a type of graph that involves a structural graphic representation of numerical proportion. It can be replaced in most cases by other plots like a bar chart, box plot, dot plot, etc. As per the research, it is shown that it is difficult to compare the different sections of a given pie chart, or if it is to compare data across different pie charts.

Frequency Distribution Table

A frequency distribution table is a chart that helps us to summarise the value and the frequency of the chart. This frequency distribution table has two columns, The first column consist of the list of the various outcome in the data, While the second column list the frequency of each outcome of the data. By putting this kind of data into a table it helps us to make it easier to understand and analyze the data. 

For Example: To create a frequency distribution table, we would first need to list all the outcomes in the data. In this example, the results are 0 runs, 1 run, 2 runs, and 3 runs. We would list these numerals in numerical ranking in the foremost queue. Subsequently, we ought to calculate how many times per result happened. They scored 0 runs in the 1st, 4th, 7th, and 8th innings, 1 run in the 2nd, 5th, and the 9th innings, 2 runs in the 6th inning, and 3 runs in the 3rd inning. We set the frequency of each result in the double queue. You can notice that the table is a vastly more useful method to show this data.  Baseball Team Runs Per Inning Number of Runs Frequency           0       4           1        3            2        1            3        1

Sample Questions

Question 1: Considering the school fee submission of 10 students of class 10th is given below:

In order to draw the bar graph for the data above, we prepare the frequency table as given below. Fee submission No. of Students Paid   6 Not paid    4 Now we have to represent the data by using the bar graph. It can be drawn by following the steps given below: Step 1: firstly we have to draw the two axis of the graph X-axis and the Y-axis. The varieties of the data must be put on the X-axis (the horizontal line) and the frequencies of the data must be put on the Y-axis (the vertical line) of the graph. Step 2: After drawing both the axis now we have to give the numeric scale to the Y-axis (the vertical line) of the graph It should be started from zero and ends up with the highest value of the data. Step 3: After the decision of the range at the Y-axis now we have to give it a suitable difference of the numeric scale. Like it can be 0,1,2,3…….or 0,10,20,30 either we can give it a numeric scale like 0,20,40,60… Step 4: Now on the X-axis we have to label it appropriately. Step 5: Now we have to draw the bars according to the data but we have to keep in mind that all the bars should be of the same length and there should be the same distance between each graph

Question 2: Watch the subsequent pie chart that denotes the money spent by Megha at the funfair. The suggested colour indicates the quantity paid for each variety. The total value of the data is 15 and the amount paid on each variety is diagnosed as follows:

Chocolates – 3

Wafers – 3

Toys – 2

Rides – 7

To convert this into pie chart percentage, we apply the formula:  (Frequency/Total Frequency) × 100 Let us convert the above data into a percentage: Amount paid on rides: (7/15) × 100 = 47% Amount paid on toys: (2/15) × 100 = 13% Amount paid on wafers: (3/15) × 100 = 20% Amount paid on chocolates: (3/15) × 100 = 20 %

Question 3: The line graph given below shows how Devdas’s height changes as he grows.

Given below is a line graph showing the height changes in Devdas’s as he grows. Observe the graph and answer the questions below.

data representation in research methodology

(i) What was the height of  Devdas’s at 8 years? Answer: 65 inches (ii) What was the height of  Devdas’s at 6 years? Answer:  50 inches (iii) What was the height of  Devdas’s at 2 years? Answer: 35 inches (iv) How much has  Devdas’s grown from 2 to 8 years? Answer: 30 inches (v) When was  Devdas’s 35 inches tall? Answer: 2 years.

Please Login to comment...

Similar reads.

  • School Learning

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

COMMENTS

  1. Methods of Data Collection, Representation, and Analysis

    This chapter concerns research on collecting, representing, and analyzing the data that underlie behavioral and social sciences knowledge. Such research, methodological in character, includes ethnographic and historical approaches, scaling, axiomatic measurement, and statistics, with its important relatives, econometrics and psychometrics. The field can be described as including the self ...

  2. PDF Data Analysis and or Representation post,

    Data analysis in qualitative research consists of preparing and organizing the data (i.e., text data as in transcripts, or image data as in photographs) for analysis; then . reducing the data into themes through a process of coding and condensing the codes; and finally representing the data in figures, tables, or a discussion. Across many books

  3. Data Display in Qualitative Research

    International Journal of Qualitative Methods 2013, 12 360 Data display has been considered an important step during the qualitative data analysis or the ... indicates that a visualization method is "a graphic representation that depicts information in a way ... research from various fields, such as anthropology, communication, cultural ...

  4. Data Collection

    Revised on June 21, 2023. Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem. While methods and aims may differ between ...

  5. Listening to Voices and Visualizing Data in Qualitative Research:

    Data visualization of qualitative research has received minimal attention thus far (Sloan, 2009). Miles and Huberman (1994) were among the first to describe the importance of some visual data display methods (such as matrices and network displays) in qualitative research dissemination. More recently, representing qualitative data visually has ...

  6. 5. Methods of Data Collection, Representation, and Anlysis

    Methods of Data Collection, Representation, and Analysis / 169 This discussion of methodological research is divided into three areas: de- sign, representation, and analysis. The efficient design of investigations must take place before data are collected because it involves how much, what kind of, and how data are to be collected.

  7. PDF Presenting Methodology and Research Approach

    3. Presenting Methodology and Research Approach. OVERVIEW. Chapter 3 of the dissertation presents the research design and the specific procedures used in conducting your study. A research design includes various interrelated elements that reflect its sequential nature. This chapter is intended to show the reader that you have an understanding ...

  8. Methods for Data Representation

    The choice of data representation methods should take into account the data fusion approach being used. Feature extraction: Feature extraction is the process of selecting relevant features from the raw data. The choice of representation methods should ensure that the extracted features capture the relevant information from each modality of data.

  9. Methods for Data Representation

    There are several methods for data representation in personality recognition, and each method has advantages and limitations. These methods can be divided by the resulting data created by the technique, such as vectors, embeddings, graphs, and matrices, or by modalities, such as speech, text, behavior on images, and physiological signals.

  10. Chapter 18. Data Analysis and Coding

    Qualitative Data Analysis: A Methods Sourcebook. 4th ed. Thousand Oaks, CA; SAGE. A practical methods sourcebook for all qualitative researchers at all levels using visual displays and examples. ... Whereas content analysis is both a research method and a tool of analysis, coding is a tool of analysis that can be used for all kinds of data to ...

  11. Graphical Methods

    Here are some examples of real-time applications of graphical methods: Stock Market: Line graphs, candlestick charts, and bar charts are widely used in real-time trading systems to display stock prices and trends over time. Traders use these charts to analyze historical data and make informed decisions about buying and selling stocks in real-time.

  12. Data Collection

    Data collection is the process of gathering and collecting information from various sources to analyze and make informed decisions based on the data collected. This can involve various methods, such as surveys, interviews, experiments, and observation. In order for data collection to be effective, it is important to have a clear understanding ...

  13. Data Display in Qualitative Research

    Visual representation of data is well facilitated by technology media, and it is expected that visual displays will become more prominent in qualitative research analysis. ... (2005). An introduction to concept mapping as a participatory public health research method. Qualitative Health Research, 15(10), 1392-1410. Crossref. PubMed. ISI ...

  14. What Is Data Interpretation? Meaning & Analysis Examples

    2. Brand Analysis Dashboard. Next, in our list of data interpretation examples, we have a template that shows the answers to a survey on awareness for Brand D. The sample size is listed on top to get a perspective of the data, which is represented using interactive charts and graphs. **click to enlarge**.

  15. Presentation of data I

    Diagramatic form makes it possible to easily draw visual impressions of data. The diagramatic method of the representation of data enhances our understanding. It makes the comparisons easy. Besides, such methods create an imprint on mind for a longer time. Diagrams are visual aids for presentation of statistical data and more appealing.

  16. Data Interpretation

    Data interpretation and data analysis are two different but closely related processes in data-driven decision-making. Data analysis refers to the process of examining and examining data using statistical and computational methods to derive insights and conclusions from it. It involves cleaning, transforming, and modeling the data to uncover ...

  17. 17 Important Data Visualization Techniques

    Some data visualization tools, however, allow you to add interactivity to your map so the exact values are accessible. 15. Word Cloud. A word cloud, or tag cloud, is a visual representation of text data in which the size of the word is proportional to its frequency. The more often a specific word appears in a dataset, the larger it appears in ...

  18. Visual Methodologies in Qualitative Research:

    Visual methodologies are used to understand and interpret images (Barbour, 2014) and include photography, film, video, painting, drawing, collage, sculpture, artwork, graffiti, advertising, and cartoons.Visual methodologies are a new and novel approach to qualitative research derived from traditional ethnography methods used in anthropology and sociology.

  19. Data representations

    A variety of data representations can be used to communicate qualitative (also called categorical) data. A table summarizes the data using rows and columns. Each column contains data for a single variable, and a basic table contains one column for the qualitative variable and one for the quantitative variable.

  20. Presentation of data II

    Graphical representation is the visual display of data using plots and charts. It is used in many academic and professional disciplines but most widely so in the fields of mathematics, medicine and sciences. Graphical representation helps to quantify, sort and present data in a method that is understandable to a large variety of audiences.

  21. Data Representation: Definition, Types, Examples

    Data Representation: Data representation is a technique for analysing numerical data. The relationship between facts, ideas, information, and concepts is depicted in a diagram via data representation. It is a fundamental learning strategy that is simple and easy to understand. It is always determined by the data type in a specific domain.

  22. What are the different ways of Data Representation?

    Data Representation. The word data refers to constituting people, things, events, ideas. It can be a title, an integer, or anycast. After collecting data the investigator has to condense them in tabular form to study their salient features. Such an arrangement is known as the presentation of data.