• Open access
  • Published: 21 January 2022

Behind every great research project is great data management

  • Samantha Kanza   ORCID: orcid.org/0000-0002-4831-9489 1   na1 &
  • Nicola J. Knight   ORCID: orcid.org/0000-0001-8286-3835 1   na1  

BMC Research Notes volume  15 , Article number:  20 ( 2022 ) Cite this article

12k Accesses

8 Citations

24 Altmetric

Metrics details

Research data management (RDM) is the cornerstone of a successful research project, and yet it often remains an underappreciated art that gets overlooked in the hustle and bustle of everyday project management even when required by funding bodies. If researchers are to strive for reproducible science that adheres to the principles of FAIR, then they need to manage the data associated with their research projects effectively. It is imperative to plan your RDM strategies early on, and setup your project organisation before embarking on the work. There are several different factors to consider: data management plans, data organisation and storage, publishing and sharing your data, ensuring reproducibility and adhering to data standards. Additionally it is important to reflect upon the ethical implications that might need to be planned for, and adverse issues that may need a mitigation strategy. This short article discusses these different areas, noting some best practices and detailing how to incorporate these strategies into your work. Finally, the article ends with a set of top ten tips for effective research data management.

Introduction

A research project without proper research data management (RDM) is akin to building a house without laying the foundations. Good RDM is critical to the success of a research project; however, it is an element that is often neglected even when required by funding bodies. Planning your RDM needs to take into account not just the current moment, but considering how you will look back on your information in several years or how you might be able to share the information with colleagues, possibly across multiple disciplines, in a form that they can easily understand. There are many aspects involved in the data research lifecycle that will help a research project and its data to be findable, accessible, interoperable and re-useable (FAIR) [ 1 ]. In this short article we are going to discuss some of the key areas involved in RDM including: Organising, storing and sharing your data, creating data management plans and ensuring that any research conducted is both ethical and reproducible. We discuss why these areas are important and how they might be incorporated in your work and conclude with a list of our top ten tips for how to manage your research data.

Data organisation and storage

How you organise and store your data will shape your capacity to find, manage, publish and re-use it at a later date [ 2 ]. The first person likely to benefit from a sensible organisational system is your future self. Using sensible easy to follow folder and file structures will enable you to easily locate different pieces of your data. Just randomly naming files and putting in a haphazard folder structure will not benefit either you or anyone looking to use your data in the future. Another potential consideration is being aware of restrictions on where you are permitted to store your research data, such as institutional requirements or specific collaborator requirements related to security and international transfer of data.

This should be something that you think about at the very beginning of your work, as it is much simpler to add to an existing structure than having to go back and rework years of files at the end of the project (if you can even remember what each file referred to). If you are storing lots of similar types of data then you might want to consider making template folders that you can use each time you create a new dataset. When working in a collaborative research project it is also important that the organisational strategies are agreed upon as a group at the start to ensure consistency across the team with respect to both where and how team members are storing and organising the project data.

It is also worth identifying which aspects of your data you will need to store for the short term and long term, and how you are going to store the data. Further, it is worth considering the trade-off between data storage and recreating data, as data that is expensive to store but easy to re-create doesn’t necessarily need to be stored [ 3 ].

If your data is being produced in a proprietary format, then you need to work out how to store it in an accessible way that you and others can use it later down the line even if you don’t have access to the software that produced it. One way of ensuring the longevity of your data is to save it in a .txt file, meaning that even if the proprietary files become unusable, the data still remains in a readable and editable format. However, this strategy should only be employed alongside saving the data in the original data formats as opposed to relying on this as the primary storage method. Additionally, when doing this, it is important to supply context alongside the data potentially in the form of a README data description file or as additional metadata as merely saving the data in raw text files isn’t very helpful when it comes to sharing or understanding it later down the line.

It is also worth remembering that if you are working on collaborative research projects, then a key aspect of organising your data is communication. Even with the most organised group members, projects and data cannot be effectively managed unless all group members are communicating and have agreed on who is doing what with the different pieces of data [ 4 ]. The more data, and the more complex the data, the more time you need to devote to planning the organisation and communication of the data.

Data management

Poor data management can lead to data breaches and subsequently, unsuccessful and potentially harmful research projects. Managing your data well and planning how to achieve this from the start is absolutely key to a successful research project and is often a requirement of Research Application Funding Bodies. In order to achieve this, a Data Management Plan (DMP) should be created which outlines how the data is going to be managed throughout the entire project lifecycle. Many universities have their own internal resources for creating these plans, but there are also templates available from DMP Online [ 5 ].

A DMP should be an active document that is referred to throughout the project and used to measure whether it is on track. It is essential that these documents are updated throughout the project to reflect any changes, and data managers should be consulted with respect to the DMP throughout the entire project lifecycle, rather than only at the beginning. Further, in collaborative data projects these plans become even more essential as all group members should be collecting and handling data in the same way.

Another core aspect of data management is version control. All the work associated with a research project should be backed up, but versions should also be kept such that changes can be recorded and documents or data can be rolled back to a previous version if necessary. There are a number of ways to version data depending on the nature of the data and the project teams expertise. There are version control systems such as GitHub [ 6 ] for code or datasets. For documents, you can use integrated track changes, alternatively separate files can be created with version numbers, or version control tables can be added at the top of documents to record in document changes.

Data publication and sharing

Publishing your data and making it shareable is an important outcome for any successful research project. Ultimately it is desirable to disseminate the useful and relevant outputs of a research project to those who might be interested in reading or using them. It is important to give careful consideration to what parts of the project are published, and where they are published. Ultimately, the choice of what to publish and where to publish might be a requirement of the research funding, in which case that should be adhered to. If there is no specific data mandate, then publishing data in an open access repository that is relevant and well used within the research domain is advisable.

Data should always be published with suitable metadata, README files, and it should adhere to the FAIR standards of being findable, accessible, interoperable and re-useable [ 1 ]. Ideally, the datasets would have their own DOI and would be published under a license that enables their re-use. When considering what extent of the data and descriptions to publish, it is worth establishing what level of data (and methods) needs to be shared in order for the project results to be reproduced. Depending on the nature of your data (e.g. if it contains any sensitive or personal data) it may be necessary to anonymise and or aggregate the data before making it available [ 7 ].

Data reproducibility

Reproducibility (or the lack thereof) is a significant problem in scientific research in the 21st Century, as in order to allow other scientists to assess your work and also use it in the advancement of scientific knowledge it is crucial that the work can be reproduced. There are unfortunately a large number of peer reviewed scientific studies that are not reproducible [ 8 , 9 ], which could be due to lack of availability of raw data, poor methodological explanations, missing data, and a number of other considerations. There are so many factors, parameters and methods that can be used on data, right from the point of acquisition, through analysis, up to the visualisation of outputs. All of these changes can affect the data findings, and it essential that these are all captured alongside the data if it is to stand a chance of being reproducible.

There are a number of steps that can be taken to aid with facilitating reproducibility. One of the crucial elements in reproducibility is sharing your data provenance, that could be pointing researchers to specific datasets, if using existing data, or your detailed protocols if you collected the data yourself. It is also becoming increasingly important to share your code and detailed methods alongside the data used in the analysis, as this enables other researchers to understand the processes that were undertaken and attempt to reproduce them. It is worth considering using an electronic lab notebook (ELN) System or a notebook that can combine commentary and analysis code such as Jupyter Notebooks [ 10 ]. Additionally, using version control systems for your documents and code will allow others to see any changes that you have made, and specific versions can be viewed and used. Ultimately, if you yourself could not reproduce the project results from the data and documents that you have shared, then you cannot expect another researcher to be able to. This is something that should be considered and evaluated before finalising what data to share.

  • Data ethics

Data ethics is another vital aspect of responsible research. In most jurisdictions any study that involves humans (whether through direct data generation, the use of their tissue/cells, or the use of their previously generated data e.g. tweets or online contributions) will need specific ethics approval [ 11 ], but ethical considerations should apply generally as well.

The core requirements of an ethics application are to lay out the purposes of the study, what data you are collecting and why, and to ensure that participants are fully informed about their involvement [ 12 ]. Consent needs to be obtained from any active participants (and that includes the researchers themselves), and researchers need to make a data protection plan and devise a risk assessment to ensure that the research is being conducted safely, with mitigated risks, and that the data collected is going to be adequately protected.

If you are working with personal data then there are ethical considerations around collection of the appropriate amount of data to collect and ensuring that it is anonymised as soon as possible. It is also worth remembering that, even when projects are not working with personal data there are ethical considerations around the potential effects of your research and possible unintended consequences to the communities involved [ 13 ].

The biggest piece of advice that we can give to improve your data management is start early! Don’t leave thinking about this until the project wraps up, or when writing up your results, think about it when you start out, and continue to evolve this as your project matures. Don’t be afraid to ask for advice, as there is lots of expertise out there, and remember that changes can always be made. It is obviously preferable to start out with an optimum data management plan, but it is much better to change a system that isn’t working or to make improvements than to just stick to a plan that isn’t working. Making small steps towards better overall data handling is better than not taking any steps.

figure 1

Top ten tips for good research data management

To help with this here are our top ten tips for good research data management as shown in Fig. 1 .

Start early: Plan your data management strategy right from the start, think about every aspect of your project from the data collection, organisation, storage, and even where you are planning on publishing and sharing the results.

Data management plan: Make one of these right at the beginning and refer to it and improve it throughout the entire project life cycle.

Organisation is key: Use sensible folder/file structures that have been agreed with the entire team.

Version control your work: Decide on what version control systems you are going to use and implement these plans from the beginning.

Storage strategy: Consider your long term and short term data storage. And implement the 321 data storage rule: (3 copies of the data, within 2 types of media, with 1 stored at a separate site), and NEVER rely on USB sticks.

Remember your standards and be FAIR: Think about what standards you are going to make your data available in. Data should be Findable, Accessible, Interoperable and Re-useable.

Consider ethics: If you are interacting with human data in any way, you will need ethics! These applications can take a while to write and obtain approval for, so start straight away!

Factor in resources: Time and costs should be factored in for all required resources, including your data management!

Future proof your data: Metadata alone will not future proof your data, you should get DOI’s for your datasets and include relevant README’s and description files.

Communicate: If you are working on collaborative research projects then communication is key both in setting up the initial organisational strategies, and throughout the entire project life cycle to ensure that team members are working consistently with respect to data collection, organisation, storage etc.

These tips and the content of this article was collated from our own research, and through the results of running our “Failed it to Nailed it Getting Data Sharing Right” and “Skills4Scientists” series. More information on these series including links to videos can be found here: http://www.ai3sd.org/fi2ni and http://www.ai3sd.org/s4s .

Availability of data and materials

These tips and the content of this article was collated from our own research, and through the results of running our “Failed it to Nailed it Getting Data Sharing Right” and “Skills4Scientists” series. All referenced videos have already been published on YouTube and deposited in the Southampton ePrints repository with a CC-BY 4.0 License. More information on these series including links to videos can be found here: http://www.ai3sd.org/fi2ni and http://www.ai3sd.org/s4s .

Abbreviations

  • Research data management

Findable, accessible, interoperable, reusable

Data management plan

Digital object identifier

Electronic lab notebook

Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten J-W, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa J, ’t Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S-A, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3(1):1–9. https://doi.org/10.1038/sdata.2016.18 .

Article   Google Scholar  

Kanza S, Knight N. Failed it to nailed it! Getting data sharing right: event 1 report - dealing with data: tips and tricks. University of Southampton; 2020. p. 16. https://doi.org/10.5258/SOTON/P0032 . https://eprints.soton.ac.uk/445061/ . Accessed 13 Oct 2021.

Stark I. AI3SD video: love notes to the future: the importance of metadata. In: Kanza S, Frey JG, Hooper V, Knight N, editors. 2020. https://doi.org/10.5258/SOTON/P0067 . https://eprints.soton.ac.uk/447529/ . Accessed 13 Oct 2021.

Kanza S. AI3SD video: collaborative data management. In: Knight N, Frey JG, editors. 2021. https://doi.org/10.5258/SOTON/P0115 . https://eprints.soton.ac.uk/450268/ . Accessed 13 Oct 2021.

DMPonline. https://dmponline.dcc.ac.uk/ . Accessed 13 Oct 2021.

GitHub: where the world builds software. https://github.com/ . Accessed 13 Oct 2021.

Kanza S, Knight N. Failed it to nailed it! Getting data sharing right: event 3 report—responsible data management. University of Southampton; 2020. p. 40. https://doi.org/10.5258/SOTON/P0034 . https://eprints.soton.ac.uk/447534/ . Accessed 13 Oct 2021.

McNutt M. Reproducibility. Science. 2014;343(6168):229–229. https://doi.org/10.1126/science.1250475 .

Article   CAS   PubMed   Google Scholar  

Miyakawa T. No raw data, no science: another possible source of the reproducibility crisis. Mol Brain. 2020;13(1):24. https://doi.org/10.1186/s13041-020-0552-2 .

Article   PubMed   PubMed Central   Google Scholar  

Project Jupyter. https://www.jupyter.org . Accessed 13 Oct 2021.

Craigon P. AI3SD video: intro to ethics. In: Kanza S, Frey JG, Knight N, editors. 2021. https://doi.org/10.5258/SOTON/P0147 . https://eprints.soton.ac.uk/451137/ . Accessed 13 Oct 2021.

Kanza S. AI3SD video: writing an ethics application. In: Frey JG, Knight N, editors. 2021. https://doi.org/10.5258/SOTON/P0148 . https://eprints.soton.ac.uk/451154/ . Accessed 13 Oct 2021.

Kanza S, Knight N. Failed it to nailed it! Getting data sharing right: event 2 report - data standards. University of Southampton; 2020. p. 23. https://doi.org/10.5258/SOTON/P0033 . https://eprints.soton.ac.uk/445483/ . Accessed 17 Aug 2021.

Download references

Acknowledgements

We wish to acknowledge Professor Jeremy Frey and Dr Sarah Callaghan for their support in planning and organising the event series and for proof-reading our article. We also extend our heartfelt thanks to all our speakers and contributors who participated in our Failed it to nailed it and Skills4Scientists series.

This work was funded by EPSRC through grants EP/S000356/1-AI3SD Network+ (Artificial Intelligence and Augmented Intelligence for Automated Investigations for Scientific Discovery) and EP/S020357/1-PSDS (Physical Sciences Data science Service).

Author information

Samantha Kanza and Nicola J. Knight contributed equally to this work

Authors and Affiliations

Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK

Samantha Kanza & Nicola J. Knight

You can also search for this author in PubMed   Google Scholar

Contributions

SK and NK jointly organised and co-ordinated the survey and event series that provided the basis for this commentary. The article was also written and edited jointly. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Samantha Kanza .

Ethics declarations

Ethics approval and consent to participate.

The survey used in the design of our event series was approved by University of Southampton ethics panel ERGO No: 57287.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Kanza, S., Knight, N.J. Behind every great research project is great data management. BMC Res Notes 15 , 20 (2022). https://doi.org/10.1186/s13104-022-05908-5

Download citation

Received : 01 December 2021

Accepted : 11 January 2022

Published : 21 January 2022

DOI : https://doi.org/10.1186/s13104-022-05908-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Data management plans
  • Data organisation
  • Data sharing
  • Reproducibility

BMC Research Notes

ISSN: 1756-0500

article on research project

Education During Coronavirus

A Smithsonian magazine special report

Science | June 15, 2020

Seventy-Five Scientific Research Projects You Can Contribute to Online

From astrophysicists to entomologists, many researchers need the help of citizen scientists to sift through immense data collections

Citizen science (mobile)

Rachael Lallensack

Former Assistant Editor, Science and Innovation

If you find yourself tired of streaming services, reading the news or video-chatting with friends, maybe you should consider becoming a citizen scientist. Though it’s true that many field research projects are paused , hundreds of scientists need your help sifting through wildlife camera footage and images of galaxies far, far away, or reading through diaries and field notes from the past.

Plenty of these tools are free and easy enough for children to use. You can look around for projects yourself on Smithsonian Institution’s citizen science volunteer page , National Geographic ’s list of projects and CitizenScience.gov ’s catalog of options. Zooniverse is a platform for online-exclusive projects , and Scistarter allows you to restrict your search with parameters, including projects you can do “on a walk,” “at night” or “on a lunch break.”

To save you some time, Smithsonian magazine has compiled a collection of dozens of projects you can take part in from home.

A blue heron caught on a trail cam.

American Wildlife

If being home has given you more time to look at wildlife in your own backyard, whether you live in the city or the country, consider expanding your view, by helping scientists identify creatures photographed by camera traps. Improved battery life, motion sensors, high-resolution and small lenses have made camera traps indispensable tools for conservation.These cameras capture thousands of images that provide researchers with more data about ecosystems than ever before.

Smithsonian Conservation Biology Institute’s eMammal platform , for example, asks users to identify animals for conservation projects around the country. Currently, eMammal is being used by the Woodland Park Zoo ’s Seattle Urban Carnivore Project, which studies how coyotes, foxes, raccoons, bobcats and other animals coexist with people, and the Washington Wolverine Project, an effort to monitor wolverines in the face of climate change. Identify urban wildlife for the Chicago Wildlife Watch , or contribute to wilderness projects documenting North American biodiversity with The Wilds' Wildlife Watch in Ohio , Cedar Creek: Eyes on the Wild in Minnesota , Michigan ZoomIN , Western Montana Wildlife and Snapshot Wisconsin .

"Spend your time at home virtually exploring the Minnesota backwoods,” writes the lead researcher of the Cedar Creek: Eyes on the Wild project. “Help us understand deer dynamics, possum populations, bear behavior, and keep your eyes peeled for elusive wolves!"

A baby elephant stands between the legs of an adult elephant.

If being cooped up at home has you daydreaming about traveling, Snapshot Safari has six active animal identification projects. Try eyeing lions, leopards, cheetahs, wild dogs, elephants, giraffes, baobab trees and over 400 bird species from camera trap photos taken in South African nature reserves, including De Hoop Nature Reserve and Madikwe Game Reserve .

With South Sudan DiversityCam , researchers are using camera traps to study biodiversity in the dense tropical forests of southwestern South Sudan. Part of the Serenegeti Lion Project, Snapshot Serengeti needs the help of citizen scientists to classify millions of camera trap images of species traveling with the wildebeest migration.

Classify all kinds of monkeys with Chimp&See . Count, identify and track giraffes in northern Kenya . Watering holes host all kinds of wildlife, but that makes the locales hotspots for parasite transmission; Parasite Safari needs volunteers to help figure out which animals come in contact with each other and during what time of year.

Mount Taranaki in New Zealand is a volcanic peak rich in native vegetation, but native wildlife, like the North Island brown kiwi, whio/blue duck and seabirds, are now rare—driven out by introduced predators like wild goats, weasels, stoats, possums and rats. Estimate predator species compared to native wildlife with Taranaki Mounga by spotting species on camera trap images.

The Zoological Society of London’s (ZSL) Instant Wild app has a dozen projects showcasing live images and videos of wildlife around the world. Look for bears, wolves and lynx in Croatia ; wildcats in Costa Rica’s Osa Peninsula ; otters in Hampshire, England ; and both black and white rhinos in the Lewa-Borana landscape in Kenya.

An image featuring marine life from Invader ID.

Under the Sea

Researchers use a variety of technologies to learn about marine life and inform conservation efforts. Take, for example, Beluga Bits , a research project focused on determining the sex, age and pod size of beluga whales visiting the Churchill River in northern Manitoba, Canada. With a bit of training, volunteers can learn how to differentiate between a calf, a subadult (grey) or an adult (white)—and even identify individuals using scars or unique pigmentation—in underwater videos and images. Beluga Bits uses a “ beluga boat ,” which travels around the Churchill River estuary with a camera underneath it, to capture the footage and collect GPS data about the whales’ locations.

Many of these online projects are visual, but Manatee Chat needs citizen scientists who can train their ear to decipher manatee vocalizations. Researchers are hoping to learn what calls the marine mammals make and when—with enough practice you might even be able to recognize the distinct calls of individual animals.

Several groups are using drone footage to monitor seal populations. Seals spend most of their time in the water, but come ashore to breed. One group, Seal Watch , is analyzing time-lapse photography and drone images of seals in the British territory of South Georgia in the South Atlantic. A team in Antarctica captured images of Weddell seals every ten minutes while the seals were on land in spring to have their pups. The Weddell Seal Count project aims to find out what threats—like fishing and climate change—the seals face by monitoring changes in their population size. Likewise, the Año Nuevo Island - Animal Count asks volunteers to count elephant seals, sea lions, cormorants and more species on a remote research island off the coast of California.

With Floating Forests , you’ll sift through 40 years of satellite images of the ocean surface identifying kelp forests, which are foundational for marine ecosystems, providing shelter for shrimp, fish and sea urchins. A project based in southwest England, Seagrass Explorer , is investigating the decline of seagrass beds. Researchers are using baited cameras to spot commercial fish in these habitats as well as looking out for algae to study the health of these threatened ecosystems. Search for large sponges, starfish and cold-water corals on the deep seafloor in Sweden’s first marine park with the Koster seafloor observatory project.

The Smithsonian Environmental Research Center needs your help spotting invasive species with Invader ID . Train your eye to spot groups of organisms, known as fouling communities, that live under docks and ship hulls, in an effort to clean up marine ecosystems.

If art history is more your speed, two Dutch art museums need volunteers to start “ fishing in the past ” by analyzing a collection of paintings dating from 1500 to 1700. Each painting features at least one fish, and an interdisciplinary research team of biologists and art historians wants you to identify the species of fish to make a clearer picture of the “role of ichthyology in the past.”

Pictured is a Zerene eurydice specimen, or California dogface butterfly, caught in 1951.

Interesting Insects

Notes from Nature is a digitization effort to make the vast resources in museums’ archives of plants and insects more accessible. Similarly, page through the University of California Berkeley’s butterfly collection on CalBug to help researchers classify these beautiful critters. The University of Michigan Museum of Zoology has already digitized about 300,000 records, but their collection exceeds 4 million bugs. You can hop in now and transcribe their grasshopper archives from the last century . Parasitic arthropods, like mosquitos and ticks, are known disease vectors; to better locate these critters, the Terrestrial Parasite Tracker project is working with 22 collections and institutions to digitize over 1.2 million specimens—and they’re 95 percent done . If you can tolerate mosquito buzzing for a prolonged period of time, the HumBug project needs volunteers to train its algorithm and develop real-time mosquito detection using acoustic monitoring devices. It’s for the greater good!

Pelicans coming in for landing on PELIcam.

For the Birders

Birdwatching is one of the most common forms of citizen science . Seeing birds in the wilderness is certainly awe-inspiring, but you can birdwatch from your backyard or while walking down the sidewalk in big cities, too. With Cornell University’s eBird app , you can contribute to bird science at any time, anywhere. (Just be sure to remain a safe distance from wildlife—and other humans, while we social distance ). If you have safe access to outdoor space—a backyard, perhaps—Cornell also has a NestWatch program for people to report observations of bird nests. Smithsonian’s Migratory Bird Center has a similar Neighborhood Nest Watch program as well.

Birdwatching is easy enough to do from any window, if you’re sheltering at home, but in case you lack a clear view, consider these online-only projects. Nest Quest currently has a robin database that needs volunteer transcribers to digitize their nest record cards.

You can also pitch in on a variety of efforts to categorize wildlife camera images of burrowing owls , pelicans , penguins (new data coming soon!), and sea birds . Watch nest cam footage of the northern bald ibis or greylag geese on NestCams to help researchers learn about breeding behavior.

Or record the coloration of gorgeous feathers across bird species for researchers at London’s Natural History Museum with Project Plumage .

A pressed Wister's coralroot below a letter and sketch of the flower found in Oct. 1937

Pretty Plants

If you’re out on a walk wondering what kind of plants are around you, consider downloading Leafsnap , an electronic field guide app developed by Columbia University, the University of Maryland and the Smithsonian Institution. The app has several functions. First, it can be used to identify plants with its visual recognition software. Secondly, scientists can learn about the “ the ebb and flow of flora ” from geotagged images taken by app users.

What is older than the dinosaurs, survived three mass extinctions and still has a living relative today? Ginko trees! Researchers at Smithsonian’s National Museum of Natural History are studying ginko trees and fossils to understand millions of years of plant evolution and climate change with the Fossil Atmospheres project . Using Zooniverse, volunteers will be trained to identify and count stomata, which are holes on a leaf’s surface where carbon dioxide passes through. By counting these holes, or quantifying the stomatal index, scientists can learn how the plants adapted to changing levels of carbon dioxide. These results will inform a field experiment conducted on living trees in which a scientist is adjusting the level of carbon dioxide for different groups.

Help digitize and categorize millions of botanical specimens from natural history museums, research institutions and herbaria across the country with the Notes from Nature Project . Did you know North America is home to a variety of beautiful orchid species? Lend botanists a handby typing handwritten labels on pressed specimens or recording their geographic and historic origins for the New York Botanical Garden’s archives. Likewise, the Southeastern U.S. Biodiversity project needs assistance labeling pressed poppies, sedums, valerians, violets and more. Groups in California , Arkansas , Florida , Texas and Oklahoma all invite citizen scientists to partake in similar tasks.

A group of Harvard computers and astronomers.

Historic Women in Astronomy

Become a transcriber for Project PHaEDRA and help researchers at the Harvard-Smithsonian Center for Astrophysics preserve the work of Harvard’s women “computers” who revolutionized astronomy in the 20th century. These women contributed more than 130 years of work documenting the night sky, cataloging stars, interpreting stellar spectra, counting galaxies, and measuring distances in space, according to the project description .

More than 2,500 notebooks need transcription on Project PhaEDRA - Star Notes . You could start with Annie Jump Cannon , for example. In 1901, Cannon designed a stellar classification system that astronomers still use today. Cecilia Payne discovered that stars are made primarily of hydrogen and helium and can be categorized by temperature. Two notebooks from Henrietta Swan Leavitt are currently in need of transcription. Leavitt, who was deaf, discovered the link between period and luminosity in Cepheid variables, or pulsating stars, which “led directly to the discovery that the Universe is expanding,” according to her bio on Star Notes .

Volunteers are also needed to transcribe some of these women computers’ notebooks that contain references to photographic glass plates . These plates were used to study space from the 1880s to the 1990s. For example, in 1890, Williamina Flemming discovered the Horsehead Nebula on one of these plates . With Star Notes, you can help bridge the gap between “modern scientific literature and 100 years of astronomical observations,” according to the project description . Star Notes also features the work of Cannon, Leavitt and Dorrit Hoffleit , who authored the fifth edition of the Bright Star Catalog, which features 9,110 of the brightest stars in the sky.

A microscopic image of white blood cells

Microscopic Musings

Electron microscopes have super-high resolution and magnification powers—and now, many can process images automatically, allowing teams to collect an immense amount of data. Francis Crick Institute’s Etch A Cell - Powerhouse Hunt project trains volunteers to spot and trace each cell’s mitochondria, a process called manual segmentation. Manual segmentation is a major bottleneck to completing biological research because using computer systems to complete the work is still fraught with errors and, without enough volunteers, doing this work takes a really long time.

For the Monkey Health Explorer project, researchers studying the social behavior of rhesus monkeys on the tiny island Cayo Santiago off the southeastern coast of Puerto Rico need volunteers to analyze the monkeys’ blood samples. Doing so will help the team understand which monkeys are sick and which are healthy, and how the animals’ health influences behavioral changes.

Using the Zooniverse’s app on a phone or tablet, you can become a “ Science Scribbler ” and assist researchers studying how Huntington disease may change a cell’s organelles. The team at the United Kingdom's national synchrotron , which is essentially a giant microscope that harnesses the power of electrons, has taken highly detailed X-ray images of the cells of Huntington’s patients and needs help identifying organelles, in an effort to see how the disease changes their structure.

Oxford University’s Comprehensive Resistance Prediction for Tuberculosis: an International Consortium—or CRyPTIC Project , for short, is seeking the aid of citizen scientists to study over 20,000 TB infection samples from around the world. CRyPTIC’s citizen science platform is called Bash the Bug . On the platform, volunteers will be trained to evaluate the effectiveness of antibiotics on a given sample. Each evaluation will be checked by a scientist for accuracy and then used to train a computer program, which may one day make this process much faster and less labor intensive.

12 images from the platform showcasing different galactic formations

Out of This World

If you’re interested in contributing to astronomy research from the comfort and safety of your sidewalk or backyard, check out Globe at Night . The project monitors light pollution by asking users to try spotting constellations in the night sky at designated times of the year . (For example, Northern Hemisphere dwellers should look for the Bootes and Hercules constellations from June 13 through June 22 and record the visibility in Globe at Night’s app or desktop report page .)

For the amateur astrophysicists out there, the opportunities to contribute to science are vast. NASA's Wide-field Infrared Survey Explorer (WISE) mission is asking for volunteers to search for new objects at the edges of our solar system with the Backyard Worlds: Planet 9 project .

Galaxy Zoo on Zooniverse and its mobile app has operated online citizen science projects for the past decade. According to the project description, there are roughly one hundred billion galaxies in the observable universe. Surprisingly, identifying different types of galaxies by their shape is rather easy. “If you're quick, you may even be the first person to see the galaxies you're asked to classify,” the team writes.

With Radio Galaxy Zoo: LOFAR , volunteers can help identify supermassive blackholes and star-forming galaxies. Galaxy Zoo: Clump Scout asks users to look for young, “clumpy” looking galaxies, which help astronomers understand galaxy evolution.

If current events on Earth have you looking to Mars, perhaps you’d be interested in checking out Planet Four and Planet Four: Terrains —both of which task users with searching and categorizing landscape formations on Mars’ southern hemisphere. You’ll scroll through images of the Martian surface looking for terrain types informally called “spiders,” “baby spiders,” “channel networks” and “swiss cheese.”

Gravitational waves are telltale ripples in spacetime, but they are notoriously difficult to measure. With Gravity Spy , citizen scientists sift through data from Laser Interferometer Gravitational­-Wave Observatory, or LIGO , detectors. When lasers beamed down 2.5-mile-long “arms” at these facilities in Livingston, Louisiana and Hanford, Washington are interrupted, a gravitational wave is detected. But the detectors are sensitive to “glitches” that, in models, look similar to the astrophysical signals scientists are looking for. Gravity Spy teaches citizen scientists how to identify fakes so researchers can get a better view of the real deal. This work will, in turn, train computer algorithms to do the same.

Similarly, the project Supernova Hunters needs volunteers to clear out the “bogus detections of supernovae,” allowing researchers to track the progression of actual supernovae. In Hubble Space Telescope images, you can search for asteroid tails with Hubble Asteroid Hunter . And with Planet Hunters TESS , which teaches users to identify planetary formations, you just “might be the first person to discover a planet around a nearby star in the Milky Way,” according to the project description.

Help astronomers refine prediction models for solar storms, which kick up dust that impacts spacecraft orbiting the sun, with Solar Stormwatch II. Thanks to the first iteration of the project, astronomers were able to publish seven papers with their findings.

With Mapping Historic Skies , identify constellations on gorgeous celestial maps of the sky covering a span of 600 years from the Adler Planetarium collection in Chicago. Similarly, help fill in the gaps of historic astronomy with Astronomy Rewind , a project that aims to “make a holistic map of images of the sky.”

Get the latest Science stories in your inbox.

Rachael Lallensack

Rachael Lallensack | READ MORE

Rachael Lallensack is the former assistant web editor for science and innovation at Smithsonian .

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications

How to Get Started With a Research Project

Last Updated: October 3, 2023 Fact Checked

This article was co-authored by Chris Hadley, PhD . Chris Hadley, PhD is part of the wikiHow team and works on content strategy and data and analytics. Chris Hadley earned his PhD in Cognitive Psychology from UCLA in 2006. Chris' academic research has been published in numerous scientific journals. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 312,232 times.

You'll be required to undertake and complete research projects throughout your academic career and even, in many cases, as a member of the workforce. Don't worry if you feel stuck or intimidated by the idea of a research project, with care and dedication, you can get the project done well before the deadline!

Development and Foundation

Step 1 Brainstorm an idea or identify a problem or question.

  • Don't hesitate while writing down ideas. You'll end up with some mental noise on the paper – silly or nonsensical phrases that your brain just pushes out. That's fine. Think of it as sweeping the cobwebs out of your attic. After a minute or two, better ideas will begin to form (and you might have a nice little laugh at your own expense in the meantime).

Step 2 Use the tools you've already been given.

  • Some instructors will even provide samples of previously successful topics if you ask for them. Just be careful that you don't end up stuck with an idea you want to do, but are afraid to do because you know someone else did it before.

Step 4 Think from all angles.

  • For example, if your research topic is “urban poverty,” you could look at that topic across ethnic or sexual lines, but you could also look into corporate wages, minimum wage laws, the cost of medical benefits, the loss of unskilled jobs in the urban core, and on and on. You could also try comparing and contrasting urban poverty with suburban or rural poverty, and examine things that might be different about both areas, such as diet and exercise levels, or air pollution.

Step 5 Synthesize specific topics.

  • Think in terms of questions you want answered. A good research project should collect information for the purpose of answering (or at least attempting to answer) a question. As you review and interconnect topics, you'll think of questions that don't seem to have clear answers yet. These questions are your research topics.

Step 7 Brush across information you have access to.

  • Don't limit yourself to libraries and online databases. Think in terms of outside resources as well: primary sources, government agencies, even educational TV programs. If you want to know about differences in animal population between public land and an Indian reservation, call the reservation and see if you can speak to their department of fish and wildlife.
  • If you're planning to go ahead with original research, that's great – but those techniques aren't covered in this article. Instead, speak with qualified advisors and work with them to set up a thorough, controlled, repeatable process for gathering information.

Step 8 Clearly define your project.

  • If your plan comes down to “researching the topic,” and there aren't any more specific things you can say about it, write down the types of sources you plan to use instead: books (library or private?), magazines (which ones?), interviews, and so on. Your preliminary research should have given you a solid idea of where to begin.

Expanding Your Idea with Research

Step 1 Start with the basics.

  • It's generally considered more convincing to source one item from three different authors who all agree on it than it is to rely too heavily on one book. Go for quantity at least as much as quality. Be sure to check citations, endnotes, and bibliographies to get more potential sources (and see whether or not all your authors are just quoting the same, older author).
  • Writing down your sources and any other relevant details (such as context) around your pieces of information right now will save you lots of trouble in the future.

Step 2 Move outward.

  • Use many different queries to get the database results you want. If one phrasing or a particular set of words doesn't yield useful results, try rephrasing it or using synonymous terms. Online academic databases tend to be dumber than the sum of their parts, so you'll have to use tangentially related terms and inventive language to get all the results you want.

Step 3 Gather unusual sources.

  • If it's sensible, consider heading out into the field and speaking to ordinary people for their opinions. This isn't always appropriate (or welcomed) in a research project, but in some cases, it can provide you with some excellent perspective for your research.
  • Review cultural artifacts as well. In many areas of study, there's useful information on attitudes, hopes, and/or concerns of people in a particular time and place contained within the art, music, and writing they produced. One has only to look at the woodblock prints of the later German Expressionists, for example, to understand that they lived in a world they felt was often dark, grotesque, and hopeless. Song lyrics and poetry can likewise express strong popular attitudes.

Step 4 Review and trim.

Expert Q&A

Chris Hadley, PhD

  • Start early. The foundation of a great research project is the research, which takes time and patience to gather even if you aren't performing any original research of your own. Set aside time for it whenever you can, at least until your initial gathering phase is complete. Past that point, the project should practically come together on its own. Thanks Helpful 1 Not Helpful 0
  • When in doubt, write more, rather than less. It's easier to pare down and reorganize an overabundance of information than it is to puff up a flimsy core of facts and anecdotes. Thanks Helpful 1 Not Helpful 0

article on research project

  • Respect the wishes of others. Unless you're a research journalist, it's vital that you yield to the wishes and requests of others before engaging in original research, even if it's technically ethical. Many older American Indians, for instance, harbor a great deal of cultural resentment towards social scientists who visit reservations for research, even those invited by tribal governments for important reasons such as language revitalization. Always tread softly whenever you're out of your element, and only work with those who want to work with you. Thanks Helpful 8 Not Helpful 2
  • Be mindful of ethical concerns. Especially if you plan to use original research, there are very stringent ethical guidelines that must be followed for any credible academic body to accept it. Speak to an advisor (such as a professor) about what you plan to do and what steps you should take to verify that it will be ethical. Thanks Helpful 6 Not Helpful 2

You Might Also Like

Be a Successful High School Student

  • ↑ http://www.butte.edu/departments/cas/tipsheets/research/research_paper.html
  • ↑ https://www.nhcc.edu/academics/library/doing-library-research/basic-steps-research-process
  • ↑ https://library.sacredheart.edu/c.php?g=29803&p=185905
  • ↑ https://owl.purdue.edu/owl/general_writing/common_writing_assignments/research_papers/choosing_a_topic.html
  • ↑ https://www.unr.edu/writing-speaking-center/student-resources/writing-speaking-resources/using-an-interview-in-a-research-paper
  • ↑ https://www.science.org/content/article/how-review-paper

About This Article

Chris Hadley, PhD

The easiest way to get started with a research project is to use your notes and other materials to come up with topics that interest you. Research your favorite topic to see if it can be developed, and then refine it into a research question. Begin thoroughly researching, and collect notes and sources. To learn more about finding reliable and helpful sources while you're researching, continue reading! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Anonymous

Jun 30, 2016

Did this article help you?

Maooz Asghar

Maooz Asghar

Aug 14, 2016

Jun 27, 2016

Calvin Kiyondi

Calvin Kiyondi

Apr 24, 2017

Anonymous

Nov 2, 2016

Am I a Narcissist or an Empath Quiz

Featured Articles

100+ Good Morning Texts for Her (& Other Ways to Make Her Smile)

Trending Articles

How to Make Money on Cash App: A Beginner's Guide

Watch Articles

Make Homemade Liquid Dish Soap

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Get all the best how-tos!

Sign up for wikiHow's weekly email newsletter

PrepScholar

Choose Your Test

Sat / act prep online guides and tips, 113 great research paper topics.

author image

General Education

feature_pencilpaper

One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and cover a wide range of subjects so you can easily find the best topic for you.

In addition to the list of good research topics, we've included advice on what makes a good research paper topic and how you can use your topic to start writing a great paper.

What Makes a Good Research Paper Topic?

Not all research paper topics are created equal, and you want to make sure you choose a great topic before you start writing. Below are the three most important factors to consider to make sure you choose the best research paper topics.

#1: It's Something You're Interested In

A paper is always easier to write if you're interested in the topic, and you'll be more motivated to do in-depth research and write a paper that really covers the entire subject. Even if a certain research paper topic is getting a lot of buzz right now or other people seem interested in writing about it, don't feel tempted to make it your topic unless you genuinely have some sort of interest in it as well.

#2: There's Enough Information to Write a Paper

Even if you come up with the absolute best research paper topic and you're so excited to write about it, you won't be able to produce a good paper if there isn't enough research about the topic. This can happen for very specific or specialized topics, as well as topics that are too new to have enough research done on them at the moment. Easy research paper topics will always be topics with enough information to write a full-length paper.

Trying to write a research paper on a topic that doesn't have much research on it is incredibly hard, so before you decide on a topic, do a bit of preliminary searching and make sure you'll have all the information you need to write your paper.

#3: It Fits Your Teacher's Guidelines

Don't get so carried away looking at lists of research paper topics that you forget any requirements or restrictions your teacher may have put on research topic ideas. If you're writing a research paper on a health-related topic, deciding to write about the impact of rap on the music scene probably won't be allowed, but there may be some sort of leeway. For example, if you're really interested in current events but your teacher wants you to write a research paper on a history topic, you may be able to choose a topic that fits both categories, like exploring the relationship between the US and North Korea. No matter what, always get your research paper topic approved by your teacher first before you begin writing.

113 Good Research Paper Topics

Below are 113 good research topics to help you get you started on your paper. We've organized them into ten categories to make it easier to find the type of research paper topics you're looking for.

Arts/Culture

  • Discuss the main differences in art from the Italian Renaissance and the Northern Renaissance .
  • Analyze the impact a famous artist had on the world.
  • How is sexism portrayed in different types of media (music, film, video games, etc.)? Has the amount/type of sexism changed over the years?
  • How has the music of slaves brought over from Africa shaped modern American music?
  • How has rap music evolved in the past decade?
  • How has the portrayal of minorities in the media changed?

music-277279_640

Current Events

  • What have been the impacts of China's one child policy?
  • How have the goals of feminists changed over the decades?
  • How has the Trump presidency changed international relations?
  • Analyze the history of the relationship between the United States and North Korea.
  • What factors contributed to the current decline in the rate of unemployment?
  • What have been the impacts of states which have increased their minimum wage?
  • How do US immigration laws compare to immigration laws of other countries?
  • How have the US's immigration laws changed in the past few years/decades?
  • How has the Black Lives Matter movement affected discussions and view about racism in the US?
  • What impact has the Affordable Care Act had on healthcare in the US?
  • What factors contributed to the UK deciding to leave the EU (Brexit)?
  • What factors contributed to China becoming an economic power?
  • Discuss the history of Bitcoin or other cryptocurrencies  (some of which tokenize the S&P 500 Index on the blockchain) .
  • Do students in schools that eliminate grades do better in college and their careers?
  • Do students from wealthier backgrounds score higher on standardized tests?
  • Do students who receive free meals at school get higher grades compared to when they weren't receiving a free meal?
  • Do students who attend charter schools score higher on standardized tests than students in public schools?
  • Do students learn better in same-sex classrooms?
  • How does giving each student access to an iPad or laptop affect their studies?
  • What are the benefits and drawbacks of the Montessori Method ?
  • Do children who attend preschool do better in school later on?
  • What was the impact of the No Child Left Behind act?
  • How does the US education system compare to education systems in other countries?
  • What impact does mandatory physical education classes have on students' health?
  • Which methods are most effective at reducing bullying in schools?
  • Do homeschoolers who attend college do as well as students who attended traditional schools?
  • Does offering tenure increase or decrease quality of teaching?
  • How does college debt affect future life choices of students?
  • Should graduate students be able to form unions?

body_highschoolsc

  • What are different ways to lower gun-related deaths in the US?
  • How and why have divorce rates changed over time?
  • Is affirmative action still necessary in education and/or the workplace?
  • Should physician-assisted suicide be legal?
  • How has stem cell research impacted the medical field?
  • How can human trafficking be reduced in the United States/world?
  • Should people be able to donate organs in exchange for money?
  • Which types of juvenile punishment have proven most effective at preventing future crimes?
  • Has the increase in US airport security made passengers safer?
  • Analyze the immigration policies of certain countries and how they are similar and different from one another.
  • Several states have legalized recreational marijuana. What positive and negative impacts have they experienced as a result?
  • Do tariffs increase the number of domestic jobs?
  • Which prison reforms have proven most effective?
  • Should governments be able to censor certain information on the internet?
  • Which methods/programs have been most effective at reducing teen pregnancy?
  • What are the benefits and drawbacks of the Keto diet?
  • How effective are different exercise regimes for losing weight and maintaining weight loss?
  • How do the healthcare plans of various countries differ from each other?
  • What are the most effective ways to treat depression ?
  • What are the pros and cons of genetically modified foods?
  • Which methods are most effective for improving memory?
  • What can be done to lower healthcare costs in the US?
  • What factors contributed to the current opioid crisis?
  • Analyze the history and impact of the HIV/AIDS epidemic .
  • Are low-carbohydrate or low-fat diets more effective for weight loss?
  • How much exercise should the average adult be getting each week?
  • Which methods are most effective to get parents to vaccinate their children?
  • What are the pros and cons of clean needle programs?
  • How does stress affect the body?
  • Discuss the history of the conflict between Israel and the Palestinians.
  • What were the causes and effects of the Salem Witch Trials?
  • Who was responsible for the Iran-Contra situation?
  • How has New Orleans and the government's response to natural disasters changed since Hurricane Katrina?
  • What events led to the fall of the Roman Empire?
  • What were the impacts of British rule in India ?
  • Was the atomic bombing of Hiroshima and Nagasaki necessary?
  • What were the successes and failures of the women's suffrage movement in the United States?
  • What were the causes of the Civil War?
  • How did Abraham Lincoln's assassination impact the country and reconstruction after the Civil War?
  • Which factors contributed to the colonies winning the American Revolution?
  • What caused Hitler's rise to power?
  • Discuss how a specific invention impacted history.
  • What led to Cleopatra's fall as ruler of Egypt?
  • How has Japan changed and evolved over the centuries?
  • What were the causes of the Rwandan genocide ?

main_lincoln

  • Why did Martin Luther decide to split with the Catholic Church?
  • Analyze the history and impact of a well-known cult (Jonestown, Manson family, etc.)
  • How did the sexual abuse scandal impact how people view the Catholic Church?
  • How has the Catholic church's power changed over the past decades/centuries?
  • What are the causes behind the rise in atheism/ agnosticism in the United States?
  • What were the influences in Siddhartha's life resulted in him becoming the Buddha?
  • How has media portrayal of Islam/Muslims changed since September 11th?

Science/Environment

  • How has the earth's climate changed in the past few decades?
  • How has the use and elimination of DDT affected bird populations in the US?
  • Analyze how the number and severity of natural disasters have increased in the past few decades.
  • Analyze deforestation rates in a certain area or globally over a period of time.
  • How have past oil spills changed regulations and cleanup methods?
  • How has the Flint water crisis changed water regulation safety?
  • What are the pros and cons of fracking?
  • What impact has the Paris Climate Agreement had so far?
  • What have NASA's biggest successes and failures been?
  • How can we improve access to clean water around the world?
  • Does ecotourism actually have a positive impact on the environment?
  • Should the US rely on nuclear energy more?
  • What can be done to save amphibian species currently at risk of extinction?
  • What impact has climate change had on coral reefs?
  • How are black holes created?
  • Are teens who spend more time on social media more likely to suffer anxiety and/or depression?
  • How will the loss of net neutrality affect internet users?
  • Analyze the history and progress of self-driving vehicles.
  • How has the use of drones changed surveillance and warfare methods?
  • Has social media made people more or less connected?
  • What progress has currently been made with artificial intelligence ?
  • Do smartphones increase or decrease workplace productivity?
  • What are the most effective ways to use technology in the classroom?
  • How is Google search affecting our intelligence?
  • When is the best age for a child to begin owning a smartphone?
  • Has frequent texting reduced teen literacy rates?

body_iphone2

How to Write a Great Research Paper

Even great research paper topics won't give you a great research paper if you don't hone your topic before and during the writing process. Follow these three tips to turn good research paper topics into great papers.

#1: Figure Out Your Thesis Early

Before you start writing a single word of your paper, you first need to know what your thesis will be. Your thesis is a statement that explains what you intend to prove/show in your paper. Every sentence in your research paper will relate back to your thesis, so you don't want to start writing without it!

As some examples, if you're writing a research paper on if students learn better in same-sex classrooms, your thesis might be "Research has shown that elementary-age students in same-sex classrooms score higher on standardized tests and report feeling more comfortable in the classroom."

If you're writing a paper on the causes of the Civil War, your thesis might be "While the dispute between the North and South over slavery is the most well-known cause of the Civil War, other key causes include differences in the economies of the North and South, states' rights, and territorial expansion."

#2: Back Every Statement Up With Research

Remember, this is a research paper you're writing, so you'll need to use lots of research to make your points. Every statement you give must be backed up with research, properly cited the way your teacher requested. You're allowed to include opinions of your own, but they must also be supported by the research you give.

#3: Do Your Research Before You Begin Writing

You don't want to start writing your research paper and then learn that there isn't enough research to back up the points you're making, or, even worse, that the research contradicts the points you're trying to make!

Get most of your research on your good research topics done before you begin writing. Then use the research you've collected to create a rough outline of what your paper will cover and the key points you're going to make. This will help keep your paper clear and organized, and it'll ensure you have enough research to produce a strong paper.

What's Next?

Are you also learning about dynamic equilibrium in your science class? We break this sometimes tricky concept down so it's easy to understand in our complete guide to dynamic equilibrium .

Thinking about becoming a nurse practitioner? Nurse practitioners have one of the fastest growing careers in the country, and we have all the information you need to know about what to expect from nurse practitioner school .

Want to know the fastest and easiest ways to convert between Fahrenheit and Celsius? We've got you covered! Check out our guide to the best ways to convert Celsius to Fahrenheit (or vice versa).

These recommendations are based solely on our knowledge and experience. If you purchase an item through one of our links, PrepScholar may receive a commission.

author image

Christine graduated from Michigan State University with degrees in Environmental Biology and Geography and received her Master's from Duke University. In high school she scored in the 99th percentile on the SAT and was named a National Merit Finalist. She has taught English and biology in several countries.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

Follow us on Facebook (icon)

Get the latest articles and test prep tips!

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”
  • Privacy Policy

Research Method

Home » Research Summary – Structure, Examples and Writing Guide

Research Summary – Structure, Examples and Writing Guide

Table of Contents

Research Summary

Research Summary

Definition:

A research summary is a brief and concise overview of a research project or study that highlights its key findings, main points, and conclusions. It typically includes a description of the research problem, the research methods used, the results obtained, and the implications or significance of the findings. It is often used as a tool to quickly communicate the main findings of a study to other researchers, stakeholders, or decision-makers.

Structure of Research Summary

The Structure of a Research Summary typically include:

  • Introduction : This section provides a brief background of the research problem or question, explains the purpose of the study, and outlines the research objectives.
  • Methodology : This section explains the research design, methods, and procedures used to conduct the study. It describes the sample size, data collection methods, and data analysis techniques.
  • Results : This section presents the main findings of the study, including statistical analysis if applicable. It may include tables, charts, or graphs to visually represent the data.
  • Discussion : This section interprets the results and explains their implications. It discusses the significance of the findings, compares them to previous research, and identifies any limitations or future directions for research.
  • Conclusion : This section summarizes the main points of the research and provides a conclusion based on the findings. It may also suggest implications for future research or practical applications of the results.
  • References : This section lists the sources cited in the research summary, following the appropriate citation style.

How to Write Research Summary

Here are the steps you can follow to write a research summary:

  • Read the research article or study thoroughly: To write a summary, you must understand the research article or study you are summarizing. Therefore, read the article or study carefully to understand its purpose, research design, methodology, results, and conclusions.
  • Identify the main points : Once you have read the research article or study, identify the main points, key findings, and research question. You can highlight or take notes of the essential points and findings to use as a reference when writing your summary.
  • Write the introduction: Start your summary by introducing the research problem, research question, and purpose of the study. Briefly explain why the research is important and its significance.
  • Summarize the methodology : In this section, summarize the research design, methods, and procedures used to conduct the study. Explain the sample size, data collection methods, and data analysis techniques.
  • Present the results: Summarize the main findings of the study. Use tables, charts, or graphs to visually represent the data if necessary.
  • Interpret the results: In this section, interpret the results and explain their implications. Discuss the significance of the findings, compare them to previous research, and identify any limitations or future directions for research.
  • Conclude the summary : Summarize the main points of the research and provide a conclusion based on the findings. Suggest implications for future research or practical applications of the results.
  • Revise and edit : Once you have written the summary, revise and edit it to ensure that it is clear, concise, and free of errors. Make sure that your summary accurately represents the research article or study.
  • Add references: Include a list of references cited in the research summary, following the appropriate citation style.

Example of Research Summary

Here is an example of a research summary:

Title: The Effects of Yoga on Mental Health: A Meta-Analysis

Introduction: This meta-analysis examines the effects of yoga on mental health. The study aimed to investigate whether yoga practice can improve mental health outcomes such as anxiety, depression, stress, and quality of life.

Methodology : The study analyzed data from 14 randomized controlled trials that investigated the effects of yoga on mental health outcomes. The sample included a total of 862 participants. The yoga interventions varied in length and frequency, ranging from four to twelve weeks, with sessions lasting from 45 to 90 minutes.

Results : The meta-analysis found that yoga practice significantly improved mental health outcomes. Participants who practiced yoga showed a significant reduction in anxiety and depression symptoms, as well as stress levels. Quality of life also improved in those who practiced yoga.

Discussion : The findings of this study suggest that yoga can be an effective intervention for improving mental health outcomes. The study supports the growing body of evidence that suggests that yoga can have a positive impact on mental health. Limitations of the study include the variability of the yoga interventions, which may affect the generalizability of the findings.

Conclusion : Overall, the findings of this meta-analysis support the use of yoga as an effective intervention for improving mental health outcomes. Further research is needed to determine the optimal length and frequency of yoga interventions for different populations.

References :

  • Cramer, H., Lauche, R., Langhorst, J., Dobos, G., & Berger, B. (2013). Yoga for depression: a systematic review and meta-analysis. Depression and anxiety, 30(11), 1068-1083.
  • Khalsa, S. B. (2004). Yoga as a therapeutic intervention: a bibliometric analysis of published research studies. Indian journal of physiology and pharmacology, 48(3), 269-285.
  • Ross, A., & Thomas, S. (2010). The health benefits of yoga and exercise: a review of comparison studies. The Journal of Alternative and Complementary Medicine, 16(1), 3-12.

Purpose of Research Summary

The purpose of a research summary is to provide a brief overview of a research project or study, including its main points, findings, and conclusions. The summary allows readers to quickly understand the essential aspects of the research without having to read the entire article or study.

Research summaries serve several purposes, including:

  • Facilitating comprehension: A research summary allows readers to quickly understand the main points and findings of a research project or study without having to read the entire article or study. This makes it easier for readers to comprehend the research and its significance.
  • Communicating research findings: Research summaries are often used to communicate research findings to a wider audience, such as policymakers, practitioners, or the general public. The summary presents the essential aspects of the research in a clear and concise manner, making it easier for non-experts to understand.
  • Supporting decision-making: Research summaries can be used to support decision-making processes by providing a summary of the research evidence on a particular topic. This information can be used by policymakers or practitioners to make informed decisions about interventions, programs, or policies.
  • Saving time: Research summaries save time for researchers, practitioners, policymakers, and other stakeholders who need to review multiple research studies. Rather than having to read the entire article or study, they can quickly review the summary to determine whether the research is relevant to their needs.

Characteristics of Research Summary

The following are some of the key characteristics of a research summary:

  • Concise : A research summary should be brief and to the point, providing a clear and concise overview of the main points of the research.
  • Objective : A research summary should be written in an objective tone, presenting the research findings without bias or personal opinion.
  • Comprehensive : A research summary should cover all the essential aspects of the research, including the research question, methodology, results, and conclusions.
  • Accurate : A research summary should accurately reflect the key findings and conclusions of the research.
  • Clear and well-organized: A research summary should be easy to read and understand, with a clear structure and logical flow.
  • Relevant : A research summary should focus on the most important and relevant aspects of the research, highlighting the key findings and their implications.
  • Audience-specific: A research summary should be tailored to the intended audience, using language and terminology that is appropriate and accessible to the reader.
  • Citations : A research summary should include citations to the original research articles or studies, allowing readers to access the full text of the research if desired.

When to write Research Summary

Here are some situations when it may be appropriate to write a research summary:

  • Proposal stage: A research summary can be included in a research proposal to provide a brief overview of the research aims, objectives, methodology, and expected outcomes.
  • Conference presentation: A research summary can be prepared for a conference presentation to summarize the main findings of a study or research project.
  • Journal submission: Many academic journals require authors to submit a research summary along with their research article or study. The summary provides a brief overview of the study’s main points, findings, and conclusions and helps readers quickly understand the research.
  • Funding application: A research summary can be included in a funding application to provide a brief summary of the research aims, objectives, and expected outcomes.
  • Policy brief: A research summary can be prepared as a policy brief to communicate research findings to policymakers or stakeholders in a concise and accessible manner.

Advantages of Research Summary

Research summaries offer several advantages, including:

  • Time-saving: A research summary saves time for readers who need to understand the key findings and conclusions of a research project quickly. Rather than reading the entire research article or study, readers can quickly review the summary to determine whether the research is relevant to their needs.
  • Clarity and accessibility: A research summary provides a clear and accessible overview of the research project’s main points, making it easier for readers to understand the research without having to be experts in the field.
  • Improved comprehension: A research summary helps readers comprehend the research by providing a brief and focused overview of the key findings and conclusions, making it easier to understand the research and its significance.
  • Enhanced communication: Research summaries can be used to communicate research findings to a wider audience, such as policymakers, practitioners, or the general public, in a concise and accessible manner.
  • Facilitated decision-making: Research summaries can support decision-making processes by providing a summary of the research evidence on a particular topic. Policymakers or practitioners can use this information to make informed decisions about interventions, programs, or policies.
  • Increased dissemination: Research summaries can be easily shared and disseminated, allowing research findings to reach a wider audience.

Limitations of Research Summary

Limitations of the Research Summary are as follows:

  • Limited scope: Research summaries provide a brief overview of the research project’s main points, findings, and conclusions, which can be limiting. They may not include all the details, nuances, and complexities of the research that readers may need to fully understand the study’s implications.
  • Risk of oversimplification: Research summaries can be oversimplified, reducing the complexity of the research and potentially distorting the findings or conclusions.
  • Lack of context: Research summaries may not provide sufficient context to fully understand the research findings, such as the research background, methodology, or limitations. This may lead to misunderstandings or misinterpretations of the research.
  • Possible bias: Research summaries may be biased if they selectively emphasize certain findings or conclusions over others, potentially distorting the overall picture of the research.
  • Format limitations: Research summaries may be constrained by the format or length requirements, making it challenging to fully convey the research’s main points, findings, and conclusions.
  • Accessibility: Research summaries may not be accessible to all readers, particularly those with limited literacy skills, visual impairments, or language barriers.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

Pediaa.Com

Home » Education » What is the Difference Between Research and Project

What is the Difference Between Research and Project

The main difference between research and project is that research is the systematic investigation and study of materials and sources to establish facts and reach new conclusions, while a project is a specific and finite activity that gives a measurable and observable result under preset requirements.

Both research and projects use a systematic approach. We also sometimes use the term research project to refer to research studies.

Key Areas Covered

1.  What is Research       – Definition, Features 2. What is a Project      – Definition, Features 3.  Difference Between Research and Project      – Comparison of Key Differences

Research, Project

Difference Between Research and Project - Comparison Summary

What is Research

Research is a careful study a researcher conducts using a systematic approach and scientific methods. A research study typically involves several components: abstract, introduction ,  literature review ,  research design, and method , results and analysis, conclusion, bibliography. Researchers usually begin a formal research study with a hypothesis; then, they test this hypothesis rigorously. They also explore and analyze the literature already available on their research subject. This allows them to study the research subject from multiple perspectives, acknowledging different problems that need to be solved.

 Research vs Project

There are different types of research, the main two categories being quantitative research and qualitative research. Depending on their research method and design, we can also categorize research as descriptive research, exploratory research, longitudinal research, cross-sectional research, etc.

Furthermore, research should always be objective or unbiased. Moreover, if the research involves participants, for example, in surveys or interviews, the researcher should always make sure to obtain their written consent first.

What is a Project

A project is a collaborative or individual enterprise that is carefully planned to achieve a particular aim. We can also describe it as a specific and finite activity that gives a measurable and observable result under preset requirements. This result can be tangible or intangible; for example, product, service, competitive advantage, etc. A project generally involves a series of connected tasks planned for execution over a fixed period of time and within certain limitations like quality and cost. The Project Management Body of Knowledge (PMBOK) defines a project as a “temporary endeavor with a beginning and an end, and it must be used to create a unique product, service or result.”

 Compare Research and Project - What's the difference?

Difference Between Research and Project

Research is a careful study conducted using a systematic approach and scientific methods, whereas a project is a collaborative or individual enterprise that is carefully planned to achieve a particular aim.

Research studies are mainly carried out in academia, while projects can be seen in a variety of contexts, including businesses.

The main aim of the research is to seek or revise facts, theories, or principles, while the main aim of a project is to achieve a tangible or intangible result; for example, product, service, competitive advantage, etc.

The main difference between research and project is that research is the systematic investigation and study of materials and sources to establish facts and reach new conclusions, while the project is a specific and finite activity that gives a measurable and observable result under preset requirements.

1. “ What Is a Project? – Definition, Lifecycle and Key Characteristics .” Your Guide to Project Management Best Practices .

Image Courtesy:

1. “ Research ” by Nick Youngson (CC BY-SA 3.0) via The Blue Diamond Gallery 2. “ Project-group-team-feedback ” (CC0) via Pixabay

' src=

About the Author: Hasa

Hasanthi is a seasoned content writer and editor with over 8 years of experience. Armed with a BA degree in English and a knack for digital marketing, she explores her passions for literature, history, culture, and food through her engaging and informative writing.

​You May Also Like These

Leave a reply cancel reply.

An aerial view of the VCU Student Commons Plaza with people walking across it. In the middle of the plaza is a circle made of yellow and black bricks. The yellow bricks spell out the letters \"VCU.\"

May 15, 2024

10 innovative research projects earn latest funding from VCU’s Arts, Humanities and Social Sciences Fund

Faculty are exploring an expansive collection of topics that delve into social and cultural identity as well as practical applications., share this story.

  • Share on Twitter
  • Share on Facebook
  • Share on LinkedIn

By Emily Komornik Office of the Vice President for Research and Innovation

Faculty-led projects that touch on a range of topics – from sculpture and swimwear to pediatric medical care and theater – are among the 2024 grant recipients from Virginia Commonwealth University’s Arts, Humanities and Social Sciences Fund.

Now in its third year, the AHSS Fund has invested more than $300,000 to support and expand arts and humanities research on campus. In 2022, the  Office of the Provost  and the  Office of the Vice President for Research and Innovation  partnered to create the fund, which supports projects that expand imagination, innovation, self-reflection, and understanding of social and cultural identity.

AHSS grants are awarded through a peer-review process, and projects at any stage of development, presentation, performance and publication are eligible. Recommendations from the panel are presented to the Provost and OVPRI for final decisions.

“All of these projects in the fields of arts, humanities and social sciences have the potential to broadly impact VCU and the communities we serve,” said  P. Srirama Rao , Ph.D., vice president for research and innovation. “This collaboration between the OVPRI and the Office of the Provost gives these teams the foundation to jump-start their research in areas that are frequently overlooked. This award perfectly encapsulates the goals of the One VCU Research Strategic Priorities Plan and the overall campuswide research and innovation enterprise by advancing both scholarship and overall improvement of the human condition. I’m so excited to see what the 2024 recipients will accomplish.”

“When we say that ‘ Every Ram’s a Researcher ,’ we mean it,” said  Fotis Sotiropoulos , Ph.D., provost and senior vice president for academic affairs. “In supporting creative and innovative research in arts, humanities and social sciences, we reaffirm our commitment to advancing scholarship across VCU’s entire academic enterprise. The projects chosen for these awards show exciting promise to promote hands-on learning for our students, foster creativity and collaboration, and enhance creative thinking and problem-solving skills. And along the way, they may just help us gain perspective on who we are as a people.”

To qualify for funding, projects must align with the  One VCU Research Strategic Priorities Plan  as a pillar of the institutional strategic plan,  Quest 2028: One VCU Together We Transform . Eligible projects are categorized into at least one of the four key initiatives of the research strategy plan: enriching the human experience, achieving a just and equitable society, optimizing health, and supporting sustainable energy and environments.

Here are the 2024 grant recipients/principal investigators from the VCU Arts, Humanities and Social Sciences Fund and the titles of their research projects:

  • Daniel Cannone , D.O., (PI) assistant professor, pediatrics, School of Medicine;  Jenny Fox , M.D., (co-PI) associate professor, pediatrics, School of Medicine;  Aaron Anderson , Ph.D., (co-PI) professor, theatre, School of the Arts

             Advancing a Clinical Communication Training Pilot Collaborative between Undergraduate Theatre Program and Pediatric Critical Care Medicine Trainees

  • Caitlin Cherry , (PI) assistant professor, painting and printmaking, School of the Arts

             Accommodations Platform for Working with Neurodivergent Artists

  • Jeannine Diego , (PI) assistant professor, fashion design and merchandising, School of the Arts

             “A Wardrobe, An Island”

  • Rebecca Gibson , Ph.D., (PI) assistant professor, School of World Studies, College of Humanities and Sciences

             Well Heeled: A Bioarchaeology of the Shoe

  • Richard Hammack , Ph.D., (PI) professor, mathematical sciences, College of Humanities and Sciences

             Pop-Up Book of the Hypercube

  • Renee Lamb , (PI) assistant professor, fashion design and merchandising, School of the Arts;  Jacqueline Mullins  (co-PI) academic advisor, fashion design and merchandising;  Jennie Cook  (co-PI) assistant professor, fashion design and merchandising

             Swim Motifs: An Exploration of Swimwear Design Practices and Implications for Future Applications for Swimmer Confidence and Performance

  • Massa Lemu , Ph.D., (PI) associate professor, sculpture, School of the Arts

             Chewanese Cinema as Metonym of Disenclosure

  • Michael Jones McKean , associate professor, sculpture, School of the Arts

             “Twelve Earths”

  • Ernesto Rodriguez Cruz , (PI) assistant professor, communication arts, School of the Arts

             Constructing a Portable Light Stage for High-Resolution Scanning of Mesoscopic Facial Structures for Computer-Generated Digital Doubles

  • Kamden Strunk , Ph.D., (PI) associate professor, SOE Foundations Department, School of Education

             Examining Measures of Racism in Social Sciences Using Meta-Analytic Confirmatory Factor Analysis

To learn more about the VCU Arts, Humanities and Social Sciences Fund as well as additional internal funding opportunities under the One VCU Research Strategic Priorities Plan, visit the  plan website .

To find external funding supporting knowledge creation in and across all disciplines, visit the  OVPRI funding page .

Subscribe to VCU News

Subscribe to VCU News at newsletter.vcu.edu and receive a selection of stories, videos, photos, news clips and event listings in your inbox.

Most popular

A photo of a crowd of students wearing graduation caps and gowns standing up under a bunch of falling balloons. The balloons are black and yellow.

Graduation Scenes

A photo of a woman wearing a graduation cap and gown holding a pompom and cheering.She is seated around many other graduating students who are blurry.

May 11, 2024

‘The world needs your music,’ Gov. Glenn Youngkin tells VCU’s Class of 2024

A photo of a crowd of people walking past a sign that says \"VCU\" in giant yellow letters.

May 10, 2024

VCU Board of Visitors sets 2024-25 tuition and fees

A photo of a man from the waist up standing in front of a building and staircase. His arms are crossed against his chest.

May 3, 2024

Class of 2024: Inspired by his own journey, VCU nursing student Aaron Wimer aims to make an impact in mental health care

Latest headlines

A photo of a man and woman in lab coats standing outside in front of some bushes and trees.

May 17, 2024

VCU Internship Funding Program propels students to career success

A photo of a man wearing dental scrubs standing in a room full of dentists.

May 16, 2024

Class of 2024: Mo Ghazal finds a second home – and a second degree – in VCU’s International Dentist Program

A woman standing in front of a projector that is projecting an image of a 3D fish in an abstract environment.

Class of 2024: Master of Fine Arts student explores the intersection of voice and gender identity

Cornell Chronicle

  • Architecture & Design
  • Arts & Humanities
  • Business, Economics & Entrepreneurship
  • Computing & Information Sciences
  • Energy, Environment & Sustainability
  • Food & Agriculture
  • Global Reach
  • Health, Nutrition & Medicine
  • Law, Government & Public Policy
  • Life Sciences & Veterinary Medicine
  • Physical Sciences & Engineering
  • Social & Behavioral Sciences
  • Coronavirus
  • News & Events
  • Public Engagement
  • New York City
  • Photos of the Week
  • Big Red Sports
  • Freedom of Expression
  • Student Life
  • University Statements
  • Around Cornell
  • All Stories
  • In the News
  • Expert Quotes
  • Cornellians

New research initiative tackles pressing global development issues

By alison fromme cornell sc johnson college of business.

Fundamental challenges in food insecurity, poverty, agriculture, health, education and markets form the focus of Collaboration for International Development Economics Research (CIDER) , a new initiative launched by the Office of the Provost, the SC Johnson College of Business, the College of Agriculture and Life Sciences, the College of Arts and Sciences and the Cornell Jeb E. Brooks School of Policy.

“CIDER builds on a long history of Cornell research and engagement in the economies of nations, particularly developing and emerging economies challenged by global economic forces,” said Provost Michael I. Kotlikoff. “This initiative expands the interdisciplinary focus of these efforts, bringing economists, social scientists, policy experts and agricultural experts together to pursue solutions to some of our most difficult global challenges.”

Hosted by the SC Johnson College, CIDER unites 24 faculty across campus and the world, along with students, staff, researchers and external partners, to create and share knowledge. CIDER’s activities will encompass research, workshops, seminars, internships, career mentoring and continuing-education coursework.

“We’re delighted to embark on this new collaborative effort in development economics,” said Andrew Karolyi, the Charles Field Knight Dean of the Cornell SC Johnson College of Business. “CIDER taps into existing expertise and a grand legacy of intellectual leadership at Cornell going back decades. I can’t wait to see the tangible impact CIDER makes on campus and around the world.”

CIDER’s inaugural faculty director is Chris Barrett , the Stephen B. and Janice G. Ashley Professor of Applied Economics and Management in the Charles H. Dyson School of Applied Economics and Management and professor in the Brooks School.

“We expect CIDER will further reinforce Cornell's already formidable reputation in this space,” Barrett said. The university’s impact in development economics was established over many decades and reinforced when standard measures of poverty and food insecurity were developed here in the 1980s. Now, CIDER provides a forum to collaborate on large-scale projects, advance policy-relevant research and train early career scholars and practitioners.

Through a workshop hosted by CIDER on May 10, the center is already encouraging new collaborations in East African dryland drought research, risk management and policy.

The World Bank, the African Development Bank, private organizations and multiple East African national governments are currently investing nearly $1 billion in the region to address drought, Barrett said.

“The efficacy and the impact of these massive investments can be directly influenced by research findings,” he said. “Indeed, research by Cornell and partners going back to the late 2000s underpins the initiative. We’re now working to produce timely policy-relevant, clearly communicated and rigorous research that can inform that effort.”

Among other presentations at the workshop, Karlijn Morsink , Utrecht University economist and CIDER-affiliated adjunct associate professor at the Dyson School, discussed her work leading the evaluation of World Bank programs in the region and share opportunities for Cornell faculty and student involvement.

“This workshop and the collaborations it represents offer just one example,” Barrett said. “We look to scale this type of effort across a range of different domains.”

CIDER will also support early career mentoring through two formal programs. Structural Transformation of Agriculture and Rural Spaces (STARS) , an existing Cornell program, previously paired early career researchers who earned degrees in Africa with mentors at Cornell and affiliated institutions. Now under CIDER’s umbrella, STARS is open to scholars across all low- and lower-middle-income countries.

Additionally, a predoctoral program for scholars who have not yet earned advanced degrees will provide one to three years of research experience and professional development training with core faculty. One predoctoral fellow already began work in January, and three more arrive this summer.

Building professional networks, increasing research capacity, disseminating best practices in the field and shaping early career researchers for the next generation are at the heart of CIDER’s mission, Barrett said. “This is a really exciting venture.”

Alison Fromme is a writer for the Cornell SC Johnson College of Business.

Media Contact

Lindsey knewstub.

Get Cornell news delivered right to your inbox.

You might also like

article on research project

Gallery Heading

Undergraduate research conference highlights student achievement with universitywide participation

  • Virginia Tech News

15 May 2024

  • Share on Facebook
  • Share on Twitter
  • Copy address link to clipboard

Caila Serrano '24 discusses her research at the Dennis Dean Undergraduate Research and Creative Scholarship Conference. Photo by Javeria Zulfqar for Virginia Tech.

More than 400 students and faculty gathered in April for the annual Dennis Dean Undergraduate Research and Creative Scholarship Conference to present their work and discuss topics from every college at the university. 

“It’s significant to the students because it allows them to shine as experts in their own right,” said Keri Swaby, director of the Office of Undergraduate Research . “To communicate and to learn from each other, but also to see the other amazing research that's happening around campus, because it's easy to not know what's outside of your college or even your major.”

During the April 26 event, students presented posters on 246 projects that addressed wide-ranging real-world problems such as wildlife preservation, cancer treatments, autonomous vehicle algorithms, and world hunger. The event was the largest since 2015.

Organized by the Office of Undergraduate Research, the conference relies on the collective efforts of staff, student ambassadors, volunteers, and the 59 faculty members and graduate students who served as judges. Experiences like these are also part of Virginia Tech Advantage , a university commitment to offer career preparation and transformational learning experiences to undergraduate students from Virginia.

The event is named for Dennis Dean , founding director of the Fralin Life Sciences Institute and a University Distinguished Professor, and a long-time supporter of undergraduate research whose endowment funds several conference awards and scholarships.

“It really gives you an opportunity to learn what's going on in your field and see what's interesting to you,” said Maddie Ferguson, who received the Undergraduate Research Excellence award. “Research gives yourself room to grow as a person and as a professional and it's a great way to figure out if you like something before you make an entire career choice off of it.” 

The Undergraduate Research Excellence Award recognizes students who conduct comprehensive research and effectively communicate it to a broad audience. Ferguson, a senior in biochemistry, presented her research on how ancient organisms make an important compound for cell function, revealing insights into early life on Earth. Using recombinant technology in bacteria, she's exploring a potentially new assembly system for iron-sulfur compounds.

As an aspiring professor, Ferguson said her involvement as a student ambassador at the Office of Undergraduate Research has been invaluable, allowing her to mentor peers and gain hands-on experience in academia.

“Getting that opportunity to work with students has been great because I want to be a professor in the future,” she said. “Working with other students trying to get into research has been great for practicing my mentoring abilities.”

This summer, Ferguson is going to build on her experience as a peer mentor with the Office of Undergraduate Research by running a summer professional development series for research fellowship programs on the Blacksburg campus.  

 “From a university perspective,” said Swaby. “The conference is also a moment to see a snapshot of all this amazing stuff that's happening around campus that you don't see every day.”

As part of the conference, presenters have several opportunities to gain recognition for their presentation skills and excellence in research and creative scholarship through several awards offered by campus colleges, institutes, faculty, and offices. 

Conference Award Winners

Undergraduate research excellence award.

First Place: Maddie Ferguson, biochemistry, "Iron-Sulfur Cluster Assembling Thioredoxin of Methanocaldococcus jannaschii" 

Runner-up: Brandon Bickley, biochemistry, "Validation of the Insect Type-B Muscarinic Acetylcholine Receptor (mAChR-B) as a Novel Insecticide Target"

Stefan Duma Award (two-way tie)

Sara Do, biological sciences, "Role of Perm1 in Systemic Muscle Dysfunction of Heart Failure" 

Tyler Moore, biochemistry, "Histotripsy: Using Focused Ultrasound to Diagnose, Target, and Treat Pancreatic Cancer"

Karen Roberto Award

Grace Lawrence, psychology, "A Comparison of Treatment Duration, Outcome, and Working Alliance Between Clients with Post Traumatic Stress Disorder (PTSD) and without PTSD in a Community Mental Health Clinic"

Ben Knapp Award

Sydney Haney, wildlife conservation, "Virginia's Endangered, Threatened, and Endemic Species"

Natural Resources and Environmental Research Award

First Place: Truman Collins, wildlife conservation, "Factors Influencing Occupancy and Detection of Margays (Leopardus wiedii) in Tropical Broadleaf Forest versus a Unique Tropical Pine Forest in Belize" 

Second Place: Rachel Morse, wildlife conservation, "Won’t You Be My Neighbor? Estimating Ocelot Space-Use Via Camera Traps in Belize"

Third Place (three-way tie):

Baxter Beamer, wildlife conservation, "Using Arboreal Camera Traps to Assess the Role of Appalachian Animals in the Seed Dispersal of a High Elevation Berry"

Brady Gates, wildlife conservation, "Climate Change’s Effect on the Availability of Medicinal Plant Species in the Southern Appalachian Mountains"

James Logan, biological sciences, Emma Lucier, biological sciences, Peyton Penland, environmental science, Alejandra Flota, water resources policy and management, and Jialin Huo, biological sciences, "Differences in Water Quality Above and Below a Retention Pond: Implications for Ecosystem Health and Predicted Effects of Dredging"

 ICTAS Adaptive Brain and Behavior Award    

First Place: Nafisa Anjum, psychology, "The Microsystem and Language Development: A Longitudinal Assessment"

Second Place: Bridgett Burgos, clinical neuroscience, "Role of Medication Status in the Social and Academic Profiles of College Students with ADHD"

Third Place: Georgia Katsapis, biological sciences, "Lifestyle Factors and Physical Biomarkers that Predict Cognitive Outcomes in Later Life"

ICTAS Critical Technologies Award

First Place: Jacqueline Hou, biochemistry, "Super Low-Dose Endotoxin Reprograms Neutrophils for Targeted Cancer Treatment in Vitro"

Second Place: Pujita Jethwani, dairy science, "Improving the Methodology for Estimating Ruminal Fiber Digestibility"

Third Place: Vasundhara Gatne, computer science, "Predicting Exoplanet Occurrence Using Association Analysis"

ICTAS High School Award

First Place: Sage Lahmers, Blacksburg High School, "Relationship Between Below Ground Biomass and Soil Organic Matter: A Case Study in Mt Tabor, Blacksburg"

Second Place: Alexander Li, Blacksburg High School, "Enhancing Driving Safety via Real-Time Suppression of Vehicle Radar Interference". Mentored by Dr. Thomas Hou

Third Place (tie): Xavier Gitre, Blacksburg High School, "The Impact of Environmental Methylmercury Exposure on the Feeding Rates of Invertivorous Passerines"

Daniel Zhang, Blacksburg High School, "Machine Learning and Morphology Based In-Ovo Sexing of Chickens"

Service Learning and Research Award

Charlotte Cullen, cognitive and behavioral neuroscience, Bella O’Brien-Gonzalez, human nutrition foods and exercise, Keara Sosa-Ton, international relations, "Climate Action Living Laboratory Framework at Virginia Tech: Community-Engaged Service Learning in Practice" 

+Policy Undergraduate Research Award

First place (three-way tie):  Lily Casteen, wildlife conservation, "Angler Attitudes Toward Longnose Gar in Virginia's Recreational Fisheries: Ecological Outcomes and Management Implications" 

Maximo de Leon, mathematics, "Examining U.S. Treasury Yield Volatility Dynamics: A DCC-MIDAS Approach"

Alexander Zaslavsky, biomedical engineering, Emily Murray, chemical engineering, Jamin Ni biomedical engineering, Grace Martinez, public health, Nikitha Shankar, biological systems engineering, Chris Bujorneau, smart and sustainable cities, Hanna Howell, public health, "TEAM-Malawi Hydroponics Implementation Plan"

Second Place: Persephone Blackwell, biological sciences, Arianna Porter, biological sciences, Anna D'Alessandris, biological sciences, Kathryn Ouimet, biological sciences, Alison Montgomery, ecological restoration, Tessa G Thibodeau, biological sciences, Sam C. Purvis, biological sciences, Julia Shelton, biological sciences, Julia Cheng, biological sciences, Tim Anikis, biological sciences, Piyali Roy, biological sciences, Gracie Gonzalez, biological sciences, "Are Commercial Microplastics An Adequate Comparison To Environmentally Realistic Microplastics?" 

— Written by Javeria Zulfqar ’24 from the College of Liberal Arts and Human Sciences

Dave Guerin

540-231-0871

  • Executive Vice President and Provost
  • Fish and Wildlife Conservation
  • Fralin Life Sciences Institute
  • Undergraduate Academic Affairs
  • Undergraduate Research
  • Virginia Tech Advantage

Related Content

Cancer researcher

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • 07 May 2024

Argentina’s pioneering nuclear research threatened by huge budget cuts

  • Martín De Ambrosio &
  • Fermín Koop

You can also search for this author in PubMed   Google Scholar

You have full access to this article via your institution.

A drone view shows the Argentine Modular Elements Power Plant (CAREM), which is the small modular reactor (SMR) project at the most advanced stage of construction worldwide in Argentina, in 2023.

Construction of the small modular reactor CAREM, shown here in 2023 on the outskirts of Buenos Aires, in Argentina, has been paused owing to funding constraints. Credit: CNEA/Reuters

Owing to massive budget cuts and lay-offs of government employees, Argentina’s nuclear sector — which includes power plants and research facilities — is at risk, scientists say. The country was the first in Latin America to adopt nuclear energy, has three operating plants that provide about 5–10% of the nation’s electrical energy and runs numerous reactors used for research.

article on research project

‘Despair’: Argentinian researchers protest as president begins dismantling science

But because Argentina’s current administration, led by far-right President Javier Milei, has held the federal budget flat compared with that in 2023 , the sector is facing a financial crisis. Inflation reached more than 200% last year — meaning that, in real terms, a stagnant budget is equivalent to a funding drop of at least 50%. Milei, who took office in December after pledging to diminish the role of government in Argentina and bring the country’s debts under control , has also laid off 15,000 federal employees in the past five months.

With its current budget, the National Atomic Energy Commission (CNEA) will be able to carry out its activities only “until May or June” , according to a statement published in March and signed by the agency’s leaders. The CNEA has been operating since 1950; it sets the country’s nuclear policy and carries out research to improve “the quality of life for society” , among other responsibilities.

“All these [activities] could be in danger,” Adriana Serquis, former head of the CNEA, tells Nature . On Friday, the Milei administration at last accepted Serquis’s resignation, which she had submitted before the president took office in December.

Portrait of Adriana Serquis at her desk, taking notes in front of a computer.

Adriana Serquis was replaced as head of Argentina’s National Atomic Energy Commission last week. Credit: Karl Mancini

“We cannot operate with this budget,” she says. The agency has taken out loans with private firms in the past few months to keep working, she adds. CNEA authorities stressed to the Milei administration that the agency would need a 2024 budget of US$270 million to operate at a minimal level. The government guaranteed the CNEA only $100 million.

Milei has made moves towards at least partially privatizing Argentina’s nuclear sector. Yesterday, he appointed Germán Guido Lavalle, founder of candoit, an engineering and technology consulting firm based in Buenos Aires, to lead the CNEA — a move that aligns with that push.

The agency has had to pause construction on two projects that could have brought even more renown to Argentina’s nuclear sector: one is a ‘small modular reactor’ prototype that is among the first in the world to be built for electricity generation, and the other is a research reactor that might have produced enough of the radioisotope molybdenum-99, commonly used in medical diagnostic imaging, to meet 20% of global demand.

If this continues, Serquis says, “Argentina will lose its place in the ‘nuclear club’” — referring to the country’s prowess in nuclear research, a global status it has maintained among wealthy nations.

Projects stagnate

One of the stalled nuclear projects is the small modular reactor CAREM, intended to supply low-carbon electricity to rural areas where large power plants can’t be built. Nuclear scientists have been working for decades to create this type of reactor, and countries, including Argentina, have been in a race to get theirs fired up quickly. CAREM, a prototype, would use uranium fission to supply around 30 megawatts of electrical power. If successful, it could be scaled up to larger, commercial versions supplying 300 megawatts of electric power. More than $600 million has been invested into CAREM since construction began in 2014, but another $200 million to $300 million is needed to finish it.

article on research project

Argentina election: front runner vows to slash science funding

“It has less electrical production capacity than a nuclear power plant, but it’s also cheaper and safer,” says Tomás Avallone, a chemist and nuclear-reactors operator at the CNEA. It could be installed anywhere, be used for high-energy-consumption activities such as water desalinization and bring power to 300,000 people, he says.

Another stagnating project is RA-10, a 30-megawatt reactor that would use neutron beams to produce medical radioisotopes. Scientists could also use RA-10 to conduct materials research. “It is a multipurpose reactor,” says Rodolfo Kempf, nuclear-waste manager at the CNEA. The main construction on RA-10 has been completed, Kempf says, but its instruments haven’t been installed.

Argentina has so far invested more than $400 million in building the reactor, and another $80 million is needed. The commercial sale of the reactor design should provide a significant return on investment, say researchers who spoke to Nature .

Privatization push

The Milei administration has been advocating for the privatization of science and education in Argentina. In April, it sent a bill to Congress that includes a list of state companies to be fully or partially privatized. Nucleoeléctrica Argentina, a state-run firm based in Buenos Aires that oversees the country’s three nuclear plants, is on the list to be partially privatized. If this comes to pass, the government would maintain the majority of Nucleoeléctrica shares, and its vote would be needed for actions including expanding the capacity of a power plant, building a new one or adding shareholders to the company.

article on research project

‘Extremely worrying’: Argentinian researchers reel after election of anti-science president

Alfredo Caro, a nuclear physicist and former director of the CNEA’s Bariloche Atomic Centre, estimates that a 30% stake in Nucleoeléctrica would be worth between $700 million and $1 billion. If that stake were sold, it might allow the government to finalize the construction of CAREM and RA-10, as well as to complete a planned upgrade of the Atucha I power plant, located about 120 kilometres northwest of Buenos Aires, to extend its lifetime, he says. “A partial privatization could help the sector carry on,” Caro says, “but only if the funds that are raised remain in the sector and are not spent on other areas of the state” — a big ‘if’, given the financial crisis in Argentina. The country’s gross domestic product is expected to drop 3.3% this year, according to the Organization for Economic Co-operation and Development.

Officials at Argentina’s Secretariat of Energy and Nucleoeléctrica didn’t respond to questions from Nature about their plans for the nuclear sector. Meanwhile, the bill to privatize state companies has been approved by the lower chamber of Argentina’s Congress, and will now be considered by the Senate.

Nature 629 , 512-513 (2024)

doi: https://doi.org/10.1038/d41586-024-01283-2

Reprints and permissions

Related Articles

article on research project

Allen J. Bard obituary: electrochemist whose techniques underpin clinical diagnostics, materials discovery and more

Obituary 01 MAY 24

It’s time to talk about the hidden human cost of the green transition

Correspondence 16 APR 24

A better way to charge a quantum battery

A better way to charge a quantum battery

Research Highlight 08 MAR 24

US halts funding to controversial virus-hunting group: what researchers think

US halts funding to controversial virus-hunting group: what researchers think

News 16 MAY 24

A DARPA-like agency could boost EU innovation — but cannot come at the expense of existing schemes

A DARPA-like agency could boost EU innovation — but cannot come at the expense of existing schemes

Editorial 14 MAY 24

How I fled bombed Aleppo to continue my career in science

How I fled bombed Aleppo to continue my career in science

Career Feature 08 MAY 24

Dozens of Brazilian universities hit by strikes over academic wages

Dozens of Brazilian universities hit by strikes over academic wages

News 08 MAY 24

How to meet Africa’s grand challenges with African know-how

How to meet Africa’s grand challenges with African know-how

World View 01 MAY 24

Postdoc in CRISPR Meta-Analytics and AI for Therapeutic Target Discovery and Priotisation (OT Grant)

APPLICATION CLOSING DATE: 14/06/2024 Human Technopole (HT) is a new interdisciplinary life science research institute created and supported by the...

Human Technopole

article on research project

Research Associate - Metabolism

Houston, Texas (US)

Baylor College of Medicine (BCM)

article on research project

Postdoc Fellowships

Train with world-renowned cancer researchers at NIH? Consider joining the Center for Cancer Research (CCR) at the National Cancer Institute

Bethesda, Maryland

NIH National Cancer Institute (NCI)

Faculty Recruitment, Westlake University School of Medicine

Faculty positions are open at four distinct ranks: Assistant Professor, Associate Professor, Full Professor, and Chair Professor.

Hangzhou, Zhejiang, China

Westlake University

article on research project

PhD/master's Candidate

PhD/master's Candidate    Graduate School of Frontier Science Initiative, Kanazawa University is seeking candidates for PhD and master's students i...

Kanazawa University

article on research project

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

article on research project

AgBioResearch

New msu research to explore influenza outbreak in cattle.

Cameron Rudolph <[email protected]> - May 14, 2024

share this on facebook

Support for the project will be provided through capacity funding from USDA NIFA and the Michigan Alliance for Animal Agriculture.

Dairy cow.JPG

Support for the new project has been provided through two sources, each covering half of the $168,000 total:

  • Annual capacity funding through MSU AgBioResearch from the U.S. Department of Agriculture’s (USDA) National Institute of Food and Agriculture.
  • Capacity funding through the Michigan Alliance for Animal Agriculture , a partnership among MSU, Michigan animal agriculture industries and the Michigan Department of Agriculture and Rural Development (MDARD).

The project is co-led by Catalina Picasso , Zelmar Rodriguez and Annette O’Connor , faculty members in the College of Veterinary Medicine’s Department of Large Animal Clinical Sciences (LCS). Picasso is a veterinarian and epidemiologist, specializing in transboundary infectious diseases in both livestock and wildlife animal populations. Rodriguez is a dairy health epidemiologist and dairy extension faculty member. O’Connor is a world-renowned veterinarian and expert in the application of quantitative epidemiology to improve policy on food safety, animal health and welfare, and veterinary practices.

According to the USDA, as of mid-May, H5N1 infections have been detected in dozens of dairy herds across Colorado, Idaho, Kansas, Michigan, New Mexico, North Carolina, Ohio, South Dakota, and Texas. The virus, which was first detected in domestic birds in the U.S. in 2022 but not until recently in cattle, has been identified in unpasteurized milk, as well as swabs and tissue samples from sick cattle.

Symptoms may include reduced milk production, decreased appetite, and changes in milk color and consistency.

“Immediately upon the onset of the H5N1 outbreak in Michigan dairy cattle, MSU AgBioResearch, the College of Veterinary Medicine and MDARD began conversations about research questions that when answered could inform policy and management strategies to help prevent transmission within and across dairy herds,” said James Averill , assistant director of MSU AgBioResearch and leader of the organization’s animal agriculture initiatives. “This research will enable the dairy industry to better understand H5N1 and the impacts on dairy herds over time.”

The research team will seek to answer several key questions, such as:

  • Impact: What are the short- and long-term effects of the disease on reproduction and milk production?
  • At the herd level: What factors influence the likelihood of herds becoming infected?
  • At the cow level: What increases or decreases the likelihood of cows becoming infected?
  • Transmission: How is the virus spreading within and between herds?

“There’s still an enormous amount of information we don’t know,” O’Connor said. “This outbreak underscored the critical need to understand the dynamics, impact and prevention of H5N1 among the cattle population. We are fortunate to be able to ground this research in on-farm studies, working closely with MDARD to access farms that have had herds test positive for the virus.”

The team plans to conduct five studies on farms with H5N1-positive animals. They will study lactating cows, dry cows and calves, collecting blood, nasal swabs and milk samples to be tested. All H5N1 testing is being performed by the MSU Veterinary Diagnostic Laboratory , the only laboratory in Michigan approved by the USDA to test for highly pathogenic avian influenza in any species.

Additionally, researchers will examine milking equipment for H5N1 presence and compare testing accuracy between pooled and individual samples.

Data from Michigan farms will be combined with findings from other universities nationwide for a comprehensive analysis.

“We’re trying to understand how long animals are shedding the virus and how long the virus stays active,” O’Connor said. “For example, if we were to find that cattle are often positive on nasal swabs, we might conclude that nose-to-nose contact is a common route of transmission. Likewise, we may see that some samples come back negative quite often and show that those routes are much less likely. The overall goal is to equip our producers with the information needed to make informed decisions on how to best protect their cattle, and by extension, animal safety more broadly.”

Michigan State University AgBioResearch scientists discover dynamic solutions for food systems and the environment. More than 300 MSU faculty conduct leading-edge research on a variety of topics, from health and climate to agriculture and natural resources. Originally formed in 1888 as the Michigan Agricultural Experiment Station, MSU AgBioResearch oversees numerous on-campus research facilities, as well as 15 outlying centers throughout Michigan. To learn more, visit  agbioresearch.msu.edu .

Did you find this article useful?

Haul manure? Check out the Michigan Manure Hauler Certification Program!

Check out the MSU Dairy Management Program!

new - method size: 3 - Random key: 2, method: personalized - key: 2

You Might Also Be Interested In

article on research project

MSU researcher awarded five-year, $2.5 million grant to develop risk assessment training program

Published on October 13, 2020

article on research project

MSU Product Center helps Michigan food entrepreneurs survive and thrive throughout pandemic

Published on August 31, 2021

article on research project

Protecting Michigan’s environment and wildlife through the Conservation Reserve Enhancement Program

Published on September 1, 2021

article on research project

MSU Extension to undertake three-year, $7 million vaccination education effort

Published on August 17, 2021

article on research project

MSU to study precision livestock farming adoption trends in U.S. swine industry

Published on March 15, 2021

article on research project

MSU research team receives USDA grant to evaluate effectiveness, cost of new blueberry pest management strategies

Published on February 19, 2021

  • agbioresearch
  • animal agricullture
  • avian influenza
  • dairy health
  • dairy management
  • dairy nutrition
  • dairy reproduction
  • featured news
  • highly pathogenic avian influenza
  • michigan alliance for animal agriculture
  • agbioresearch,
  • animal agricullture,
  • avian influenza,
  • dairy health,
  • dairy management,
  • dairy nutrition,
  • dairy reproduction,
  • featured news,
  • highly pathogenic avian influenza,
  • michigan alliance for animal agriculture,
  • Project GREEEN
  • Michigan Alliance for Animal Agriculture
  • Partnership for Ecosystem Research and Management
  • Institute of Water Research

Researcher Resources

  • Commodity Group RFPs
  • Research Projects - REEport Forms
  • Commodity Groups Granted Waiver of Indirect Costs
  • Policies, Procedures and Guidelines
  • Animal Agriculture Priorities
  • Plant Agriculture Priorities

Office of Research Support

  • Funding Opportunities

News & Publications

  • MSU AgBioResearch & MSU Extension Legislative Report

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

Professor Emeritus David Lanning, nuclear engineer and key contributor to the MIT Reactor, dies at 96

Black and white 1950s-era portrait of David Lanning wearing a suit and tie against a curtained background

Previous image Next image

David Lanning, MIT professor emeritus of nuclear science and engineering and a key contributor to the MIT Reactor project, passed away on April 26 at the Lahey Clinic in Burlington, Massachusetts, at the age of 96.

Born in Baker, Oregon, on March 30, 1928, Lanning graduated in 1951 from the University of Oregon with a BS in physics. While taking night classes in nuclear engineering, in lieu of an available degree program at the time, he started his career path working for General Electric in Richland, Washington. There he conducted critical-mass studies for handling and designing safe plutonium-bearing systems in separation plants at the Hanford Atomic Products Operation, making him a pioneer in nuclear fuel cycle management.

Lanning was then involved in the design, construction, and startup of the Physical Constants Testing Reactor (PCTR). As one of the few people qualified to operate the experimental reactor, he trained others to safely assess and handle its highly radioactive components.

Lanning supervised experiments at the PCTR to find the critical conditions of various lattices in a safe manner and conduct reactivity measurements to determine relative flux distributions. This primed him to be an indispensable asset to the MIT Reactor (MITR), which was being constructed on the opposite side of the country.

An early authority in nuclear engineering comes to MIT

Lanning came to MIT in 1957 to join what was being called the “MIT Reactor Project” after being recruited by the MITR’s designer and first director, Theos “Tommy” J. Thompson, to serve as one of the MITR’s first operating supervisors. With only a handful of people on the operations team at the time, Lanning also completed the emergency plan and startup procedures for the MITR, which achieved criticality on July 21, 1958.

In addition to becoming a faculty member in the Department of Nuclear Engineering in 1962, Lanning’s roles at the MITR went from reactor operations superintendent in the 1950s and early 1960s, to assistant director in 1962, and then acting director in 1963, when Thompson went on sabbatical.

In his faculty position, Lanning took responsibility for supervising lab subjects and research projects at the MITR, including the Heavy Water Lattice Project. This project supported the thesis work of more than 30 students doing experimental studies of sub-critical uranium fuel rods — including Lanning’s own thesis. He received his PhD in nuclear engineering from MIT in fall 1963.

Lanning decided to leave MIT in July 1965 and return to Hanford as the manager of their Reactor Neutronics Section. Despite not having plans to return to work for MIT, Lanning agreed when Thompson requested that he renew his MITR operator’s license shortly after leaving.

“Because of his thorough familiarity with our facility, it is anticipated that Dr. Lanning may be asked to return to MIT for temporary tours of duty at our reactor. It is always possible that there may be changes in the key personnel presently operating the MIT Reactor and the possible availability of Dr. Lanning to fill in, even temporarily, could be a very important factor in maintaining a high level of competence at the reactor during its continued operation,” Theos J. Thompson wrote in a letter to the Atomic Energy Commission on Sept. 21, 1965

One modification, many changes

This was an invaluable decision to continue the MITR’s success as a nuclear research facility. In 1969 Thompson accepted a two-year term appointment as a U.S. atomic energy commissioner and requested Lanning to return to MIT to take his place during his temporary absence. Thompson initiated feasibility studies for a new MITR core design and believed Lanning was the most capable person to continue the task of seeing the MITR redesign to fruition.

Lanning returned to MIT in July 1969 with a faculty appointment to take over the subjects Thompson was teaching, in addition to being co-director of the MITR with Lincoln Clark Jr. during the redesign. Tragically, Thompson was killed in a plane accident in November 1970, just one week after Lanning and his team submitted the application for the redesign’s construction permit.

Thompson’s death meant his responsibilities were now Lanning’s on a permanent basis. Lanning continued to completion the redesign of the MITR, known today as the MITR-II. The redesign increased the neutron flux level by a factor of three without changing its operating power — expanding the reactor’s research capabilities and refreshing its status as a premier research facility.

Construction and startup tests for the MITR-II were completed in 1975 and the MITR-II went critical on Aug. 14, 1975. Management of the MITR-II was transferred the following year from the Nuclear Engineering Department to its own interdepartmental research center, the Nuclear Reactor Laboratory , where Lanning continued to use the MITR-II for research.

Beyond the redesign

In 1970, Lanning combined two reactor design courses he inherited and introduced a new course in which he had students apply their knowledge and critique the design and economic considerations of a reactor presented by a student in a prior term. He taught these courses through the late 1990s, in addition to leading new courses with other faculty for industry professionals on reactor safety.

Co-author of over 70 papers , many on the forefront of nuclear engineering, Lanning’s research included studies to improve the efficiency, cycle management, and design of nuclear fuel, as well as making reactors safer and more economical to operate.

Lanning was part of an ongoing research project team that introduced and demonstrated digital control and automation in nuclear reactor control mechanisms before any of the sort were found in reactors in the United States. Their research improved the regulatory barriers preventing commercial plants from replacing aging analog reactor control components with digital ones. The project also demonstrated that reactor operations would be more reliable, safe, and economical by introducing automation in certain reactor control systems. This led to the MITR being one of the first reactors in the United States licensed to operate using digital technology to control reactor power.

Lanning became professor emeritus in May 1989 and retired in 1994, but continued his passion for teaching through the late 1990s as a thesis advisor and reader. His legacy lives on in the still-operational MITR-II, with his former students following in his footsteps by working on fuel studies for the next version of the MITR core. 

Lanning is predeceased by his wife of 60 years, Gloria Lanning, and is survived by his two children, a brother, and his many grandchildren .

Share this news article on:

Related links.

  • MIT Nuclear Reactor Laboratory
  • Department of Nuclear Science and Engineering

Related Topics

  • Nuclear science and engineering
  • Nuclear power and reactors

Related Articles

Portrait photo of Professor Emeritus Sow-Hsin Chen, dressed in a suit and tie and standing in front of a blackboard.

Professor Emeritus Sow-Hsin Chen, global expert in neutron science and devoted mentor, dies at 86

Photo of the late Michael Driscoll at a podium

Professor Emeritus Michael Driscoll, leader in nuclear engineering and beloved mentor, dies at 86

Sara Hauptman stands in the control room of MIT's Nuclear Reactor Lab.

Sara Hauptman: Learning to operate a nuclear reactor

Retirement dinner honors 155 community members.

Previous item Next item

More MIT News

Janabel Xia dancing in front of a blackboard. Her back is arched, head thrown back, hair flying, and arms in the air as she looks at the camera and smiles.

Janabel Xia: Algorithms, dance rhythms, and the drive to succeed

Read full story →

Headshot of Jonathan Byrnes outdoors

Jonathan Byrnes, MIT Center for Transportation and Logistics senior lecturer and visionary in supply chain management, dies at 75

Colorful rendering shows a lattice of black and grey balls making a honeycomb-shaped molecule, the MOF. Snaking around it is the polymer, represented as a translucent string of teal balls. Brown molecules, representing toxic gas, also float around.

Researchers develop a detector for continuously monitoring toxic gases

Portrait photo of Hanjun Lee

The beauty of biology

Three people sit on a stage, one of them speaking. Red and white panels with the MIT AgeLab logo are behind them.

Navigating longevity with industry leaders at MIT AgeLab PLAN Forum

Jeong Min Park poses leaning on an outdoor sculpture in Killian Court.

Jeong Min Park earns 2024 Schmidt Science Fellowship

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.15(2); 2023 Feb
  • PMC10023071

Logo of cureus

Clinical Trials and Clinical Research: A Comprehensive Review

Venkataramana kandi.

1 Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND

Sabitha Vadakedath

2 Biochemistry, Prathima Institute of Medical Sciences, Karimnagar, IND

Clinical research is an alternative terminology used to describe medical research. Clinical research involves people, and it is generally carried out to evaluate the efficacy of a therapeutic drug, a medical/surgical procedure, or a device as a part of treatment and patient management. Moreover, any research that evaluates the aspects of a disease like the symptoms, risk factors, and pathophysiology, among others may be termed clinical research. However, clinical trials are those studies that assess the potential of a therapeutic drug/device in the management, control, and prevention of disease. In view of the increasing incidences of both communicable and non-communicable diseases, and especially after the effects that Coronavirus Disease-19 (COVID-19) had on public health worldwide, the emphasis on clinical research assumes extremely essential. The knowledge of clinical research will facilitate the discovery of drugs, devices, and vaccines, thereby improving preparedness during public health emergencies. Therefore, in this review, we comprehensively describe the critical elements of clinical research that include clinical trial phases, types, and designs of clinical trials, operations of trial, audit, and management, and ethical concerns.

Introduction and background

A clinical trial is a systematic process that is intended to find out the safety and efficacy of a drug/device in treating/preventing/diagnosing a disease or a medical condition [ 1 , 2 ]. Clinical trial includes various phases that include phase 0 (micro-dosing studies), phase 1, phase 2, phase 3, and phase 4 [ 3 ]. Phase 0 and phase 2 are called exploratory trial phases, phase 1 is termed the non-therapeutic phase, phase 3 is known as the therapeutic confirmatory phase, and phase 4 is called the post-approval or the post-marketing surveillance phase. Phase 0, also called the micro-dosing phase, was previously done in animals but now it is carried out in human volunteers to understand the dose tolerability (pharmacokinetics) before being administered as a part of the phase 1 trial among healthy individuals. The details of the clinical trial phases are shown in Table ​ Table1 1 .

This table has been created by the authors.

MTD: maximum tolerated dose; SAD: single ascending dose; MAD: multiple ascending doses; NDA: new drug application; FDA: food and drug administration

Clinical research design has two major types that include non-interventional/observational and interventional/experimental studies. The non-interventional studies may have a comparator group (analytical studies like case-control and cohort studies), or without it (descriptive study). The experimental studies may be either randomized or non-randomized. Clinical trial designs are of several types that include parallel design, crossover design, factorial design, randomized withdrawal approach, adaptive design, superiority design, and non-inferiority design. The advantages and disadvantages of clinical trial designs are depicted in Table ​ Table2 2 .

There are different types of clinical trials that include those which are conducted for treatment, prevention, early detection/screening, and diagnosis. These studies address the activities of an investigational drug on a disease and its outcomes [ 4 ]. They assess whether the drug is able to prevent the disease/condition, the ability of a device to detect/screen the disease, and the efficacy of a medical test to diagnose the disease/condition. The pictorial representation of a disease diagnosis, treatment, and prevention is depicted in Figure ​ Figure1 1 .

An external file that holds a picture, illustration, etc.
Object name is cureus-0015-00000035077-i01.jpg

This figure has been created by the authors.

The clinical trial designs could be improvised to make sure that the study's validity is maintained/retained. The adaptive designs facilitate researchers to improvise during the clinical trial without interfering with the integrity and validity of the results. Moreover, it allows flexibility during the conduction of trials and the collection of data. Despite these advantages, adaptive designs have not been universally accepted among clinical researchers. This could be attributed to the low familiarity of such designs in the research community. The adaptive designs have been applied during various phases of clinical trials and for different clinical conditions [ 5 , 6 ]. The adaptive designs applied during different phases are depicted in Figure ​ Figure2 2 .

An external file that holds a picture, illustration, etc.
Object name is cureus-0015-00000035077-i02.jpg

The Bayesian adaptive trial design has gained popularity, especially during the Coronavirus Disease-19 (COVID-19) pandemic. Such designs could operate under a single master protocol. It operates as a platform trial wherein multiple treatments can be tested on different patient groups suffering from disease [ 7 ].

In this review, we comprehensively discuss the essential elements of clinical research that include the principles of clinical research, planning clinical trials, practical aspects of clinical trial operations, essentials of clinical trial applications, monitoring, and audit, clinical trial data analysis, regulatory audits, and project management, clinical trial operations at the investigation site, the essentials of clinical trial experiments involving epidemiological, and genetic studies, and ethical considerations in clinical research/trials.

A clinical trial involves the study of the effect of an investigational drug/any other intervention in a defined population/participant. The clinical research includes a treatment group and a placebo wherein each group is evaluated for the efficacy of the intervention (improved/not improved) [ 8 ].

Clinical trials are broadly classified into controlled and uncontrolled trials. The uncontrolled trials are potentially biased, and the results of such research are not considered as equally as the controlled studies. Randomized controlled trials (RCTs) are considered the most effective clinical trials wherein the bias is minimized, and the results are considered reliable. There are different types of randomizations and each one has clearly defined functions as elaborated in Table ​ Table3 3 .

Principles of clinical trial/research

Clinical trials or clinical research are conducted to improve the understanding of the unknown, test a hypothesis, and perform public health-related research [ 2 , 3 ]. This is majorly carried out by collecting the data and analyzing it to derive conclusions. There are various types of clinical trials that are majorly grouped as analytical, observational, and experimental research. Clinical research can also be classified into non-directed data capture, directed data capture, and drug trials. Clinical research could be prospective or retrospective. It may also be a case-control study or a cohort study. Clinical trials may be initiated to find treatment, prevent, observe, and diagnose a disease or a medical condition.

Among the various types of clinical research, observational research using a cross-sectional study design is the most frequently performed clinical research. This type of research is undertaken to analyze the presence or absence of a disease/condition, potential risk factors, and prevalence and incidence rates in a defined population. Clinical trials may be therapeutic or non-therapeutic type depending on the type of intervention. The therapeutic type of clinical trial uses a drug that may be beneficial to the patient. Whereas in a non-therapeutic clinical trial, the participant does not benefit from the drug. The non-therapeutic trials provide additional knowledge of the drug for future improvements. Different terminologies of clinical trials are delineated in Table ​ Table4 4 .

In view of the increased cost of the drug discovery process, developing, and low-income countries depend on the production of generic drugs. The generic drugs are similar in composition to the patented/branded drug. Once the patent period is expired generic drugs can be manufactured which have a similar quality, strength, and safety as the patented drug [ 9 ]. The regulatory requirements and the drug production process are almost the same for the branded and the generic drug according to the Food and Drug Administration (FDA), United States of America (USA).

The bioequivalence (BE) studies review the absorption, distribution, metabolism, and excretion (ADME) of the generic drug. These studies compare the concentration of the drug at the desired location in the human body, called the peak concentration of the drug (Cmax). The extent of absorption of the drug is measured using the area under the receiver operating characteristic curve (AUC), wherein the generic drug is supposed to demonstrate similar ADME activities as the branded drug. The BE studies may be undertaken in vitro (fasting, non-fasting, sprinkled fasting) or in vivo studies (clinical, bioanalytical, and statistical) [ 9 ].

Planning clinical trial/research

The clinical trial process involves protocol development, designing a case record/report form (CRF), and functioning of institutional review boards (IRBs). It also includes data management and the monitoring of clinical trial site activities. The CRF is the most significant document in a clinical study. It contains the information collected by the investigator about each subject participating in a clinical study/trial. According to the International Council for Harmonisation (ICH), the CRF can be printed, optical, or an electronic document that is used to record the safety and efficacy of the pharmaceutical drug/product in the test subjects. This information is intended for the sponsor who initiates the clinical study [ 10 ].

The CRF is designed as per the protocol and later it is thoroughly reviewed for its correctness (appropriate and structured questions) and finalized. The CRF then proceeds toward the print taking the language of the participating subjects into consideration. Once the CRF is printed, it is distributed to the investigation sites where it is filled with the details of the participating subjects by the investigator/nurse/subject/guardian of the subject/technician/consultant/monitors/pharmacist/pharmacokinetics/contract house staff. The filled CRFs are checked for their completeness and transported to the sponsor [ 11 ].

Effective planning and implementation of a clinical study/trial will influence its success. The clinical study majorly includes the collection and distribution of the trial data, which is done by the clinical data management section. The project manager is crucial to effectively plan, organize, and use the best processes to control and monitor the clinical study [ 10 , 11 ].

The clinical study is conducted by a sponsor or a clinical research organization (CRO). A perfect protocol, time limits, and regulatory requirements assume significance while planning a clinical trial. What, when, how, and who are clearly planned before the initiation of a study trial. Regular review of the project using the bar and Gantt charts, and maintaining the timelines assume increased significance for success with the product (study report, statistical report, database) [ 10 , 11 ].

The steps critical to planning a clinical trial include the idea, review of the available literature, identifying a problem, formulating the hypothesis, writing a synopsis, identifying the investigators, writing a protocol, finding a source of funding, designing a patient consent form, forming ethics boards, identifying an organization, preparing manuals for procedures, quality assurance, investigator training and initiation of the trial by recruiting the participants [ 10 ].

The two most important points to consider before the initiation of the clinical trial include whether there is a need for a clinical trial, if there is a need, then one must make sure that the study design and methodology are strong for the results to be reliable to the people [ 11 ].

For clinical research to envisage high-quality results, the study design, implementation of the study, quality assurance in data collection, and alleviation of bias and confounding factors must be robust [ 12 ]. Another important aspect of conducting a clinical trial is improved management of various elements of clinical research that include human and financial resources. The role of a trial manager to make a successful clinical trial was previously reported. The trial manager could play a key role in planning, coordinating, and successfully executing the trial. Some qualities of a trial manager include better communication and motivation, leadership, and strategic, tactical, and operational skills [ 13 ].

Practical aspects of a clinical trial operations

There are different types of clinical research. Research in the development of a novel drug could be initiated by nationally funded research, industry-sponsored research, and clinical research initiated by individuals/investigators. According to the documents 21 code of federal regulations (CFR) 312.3 and ICH E-6 Good Clinical Practice (GCP) 1.54, an investigator is an individual who initiates and conducts clinical research [ 14 ]. The investigator plan, design, conduct, monitor, manage data, compile reports, and supervise research-related regulatory and ethical issues. To manage a successful clinical trial project, it is essential for an investigator to give the letter of intent, write a proposal, set a timeline, develop a protocol and related documents like the case record forms, define the budget, and identify the funding sources.

Other major steps of clinical research include the approval of IRBs, conduction and supervision of the research, data review, and analysis. Successful clinical research includes various essential elements like a letter of intent which is the evidence that supports the interest of the researcher to conduct drug research, timeline, funding source, supplier, and participant characters.

Quality assurance, according to the ICH and GCP guidelines, is necessary to be implemented during clinical research to generate quality and accurate data. Each element of the clinical research must have been carried out according to the standard operating procedure (SOP), which is written/determined before the initiation of the study and during the preparation of the protocol [ 15 ].

The audit team (quality assurance group) is instrumental in determining the authenticity of the clinical research. The audit, according to the ICH and GCP, is an independent and external team that examines the process (recording the CRF, analysis of data, and interpretation of data) of clinical research. The quality assurance personnel are adequately trained, become trainers if needed, should be good communicators, and must handle any kind of situation. The audits can be at the investigator sites evaluating the CRF data, the protocol, and the personnel involved in clinical research (source data verification, monitors) [ 16 ].

Clinical trial operations are governed by legal and regulatory requirements, based on GCPs, and the application of science, technology, and interpersonal skills [ 17 ]. Clinical trial operations are complex, time and resource-specific that requires extensive planning and coordination, especially for the research which is conducted at multiple trial centers [ 18 ].

Recruiting the clinical trial participants/subjects is the most significant aspect of clinical trial operations. Previous research had noted that most clinical trials do not meet the participant numbers as decided in the protocol. Therefore, it is important to identify the potential barriers to patient recruitment [ 19 ].

Most clinical trials demand huge costs, increased timelines, and resources. Randomized clinical trial studies from Switzerland were analyzed for their costs which revealed approximately 72000 USD for a clinical trial to be completed. This study emphasized the need for increased transparency with respect to the costs associated with the clinical trial and improved collaboration between collaborators and stakeholders [ 20 ].

Clinical trial applications, monitoring, and audit

Among the most significant aspects of a clinical trial is the audit. An audit is a systematic process of evaluating the clinical trial operations at the site. The audit ensures that the clinical trial process is conducted according to the protocol, and predefined quality system procedures, following GCP guidelines, and according to the requirements of regulatory authorities [ 21 ].

The auditors are supposed to be independent and work without the involvement of the sponsors, CROs, or personnel at the trial site. The auditors ensure that the trial is conducted by designated professionally qualified, adequately trained personnel, with predefined responsibilities. The auditors also ensure the validity of the investigational drug, and the composition, and functioning of institutional review/ethics committees. The availability and correctness of the documents like the investigational broacher, informed consent forms, CRFs, approval letters of the regulatory authorities, and accreditation of the trial labs/sites [ 21 ].

The data management systems, the data collection software, data backup, recovery, and contingency plans, alternative data recording methods, security of the data, personnel training in data entry, and the statistical methods used to analyze the results of the trial are other important responsibilities of the auditor [ 21 , 22 ].

According to the ICH-GCP Sec 1.29 guidelines the inspection may be described as an act by the regulatory authorities to conduct an official review of the clinical trial-related documents, personnel (sponsor, investigator), and the trial site [ 21 , 22 ]. The summary report of the observations of the inspectors is performed using various forms as listed in Table ​ Table5 5 .

FDA: Food and Drug Administration; IND: investigational new drug; NDA: new drug application; IRB: institutional review board; CFR: code of federal regulations

Because protecting data integrity, the rights, safety, and well-being of the study participants are more significant while conducting a clinical trial, regular monitoring and audit of the process appear crucial. Also, the quality of the clinical trial greatly depends on the approach of the trial personnel which includes the sponsors and investigators [ 21 ].

The responsibility of monitoring lies in different hands, and it depends on the clinical trial site. When the trial is initiated by a pharmaceutical industry, the responsibility of trial monitoring depends on the company or the sponsor, and when the trial is conducted by an academic organization, the responsibility lies with the principal investigator [ 21 ].

An audit is a process conducted by an independent body to ensure the quality of the study. Basically, an audit is a quality assurance process that determines if a study is carried out by following the SPOs, in compliance with the GCPs recommended by regulatory bodies like the ICH, FDA, and other local bodies [ 21 ].

An audit is performed to review all the available documents related to the IRB approval, investigational drug, and the documents related to the patient care/case record forms. Other documents that are audited include the protocol (date, sign, treatment, compliance), informed consent form, treatment response/outcome, toxic response/adverse event recording, and the accuracy of data entry [ 22 ].

Clinical trial data analysis, regulatory audits, and project management

The essential elements of clinical trial management systems (CDMS) include the management of the study, the site, staff, subject, contracts, data, and document management, patient diary integration, medical coding, monitoring, adverse event reporting, supplier management, lab data, external interfaces, and randomization. The CDMS involves setting a defined start and finishing time, defining study objectives, setting enrolment and termination criteria, commenting, and managing the study design [ 23 ].

Among the various key application areas of clinical trial systems, the data analysis assumes increased significance. The clinical trial data collected at the site in the form of case record form is stored in the CDMS ensuring the errors with respect to the double data entry are minimized.

Clinical trial data management uses medical coding, which uses terminologies with respect to the medications and adverse events/serious adverse events that need to be entered into the CDMS. The project undertaken to conduct the clinical trial must be predetermined with timelines and milestones. Timelines are usually set for the preparation of protocol, designing the CRF, planning the project, identifying the first subject, and timelines for recording the patient’s data for the first visit.

The timelines also are set for the last subject to be recruited in the study, the CRF of the last subject, and the locked period after the last subject entry. The planning of the project also includes the modes of collection of the data, the methods of the transport of the CRFs, patient diaries, and records of severe adverse events, to the central data management sites (fax, scan, courier, etc.) [ 24 ].

The preparation of SOPs and the type and timing of the quality control (QC) procedures are also included in the project planning before the start of a clinical study. Review (budget, resources, quality of process, assessment), measure (turnaround times, training issues), and control (CRF collection and delivery, incentives, revising the process) are the three important aspects of the implementation of a clinical research project.

In view of the increasing complexity related to the conduct of clinical trials, it is important to perform a clinical quality assurance (CQA) audit. The CQA audit process consists of a detailed plan for conducting audits, points of improvement, generating meaningful audit results, verifying SOP, and regulatory compliance, and promoting improvement in clinical trial research [ 25 ]. All the components of a CQA audit are delineated in Table ​ Table6 6 .

CRF: case report form; CSR: clinical study report; IC: informed consent; PV: pharmacovigilance; SAE: serious adverse event

Clinical trial operations at the investigator's site

The selection of an investigation site is important before starting a clinical trial. It is essential that the individuals recruited for the study meet the inclusion criteria of the trial, and the investigator's and patient's willingness to accept the protocol design and the timelines set by the regulatory authorities including the IRBs.

Before conducting clinical research, it is important for an investigator to agree to the terms and conditions of the agreement and maintain the confidentiality of the protocol. Evaluation of the protocol for the feasibility of its practices with respect to the resources, infrastructure, qualified and trained personnel available, availability of the study subjects, and benefit to the institution and the investigator is done by the sponsor during the site selection visit.

The standards of a clinical research trial are ensured by the Council for International Organizations of Medical Sciences (CIOMS), National Bioethics Advisory Commission (NBAC), United Nations Programme on Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) (UNAIDS), and World Medical Association (WMA) [ 26 ].

Recommendations for conducting clinical research based on the WMA support the slogan that says, “The health of my patient will be my first consideration.” According to the International Code of Medical Ethics (ICME), no human should be physically or mentally harmed during the clinical trial, and the study should be conducted in the best interest of the person [ 26 ].

Basic principles recommended by the Helsinki declaration include the conduction of clinical research only after the prior proof of the safety of the drug in animal and lab experiments. The clinical trials must be performed by scientifically, and medically qualified and well-trained personnel. Also, it is important to analyze the benefit of research over harm to the participants before initiating the drug trials.

The doctors may prescribe a drug to alleviate the suffering of the patient, save the patient from death, and gain additional knowledge of the drug only after obtaining informed consent. Under the equipoise principle, the investigators must be able to justify the treatment provided as a part of the clinical trial, wherein the patient in the placebo arm may be harmed due to the unavailability of the therapeutic/trial drug.

Clinical trial operations greatly depend on the environmental conditions and geographical attributes of the trial site. It may influence the costs and targets defined by the project before the initiation. It was noted that one-fourth of the clinical trial project proposals/applications submit critical data on the investigational drug from outside the country. Also, it was noted that almost 35% of delays in clinical trials owing to patient recruitment with one-third of studies enrolling only 5% of the participants [ 27 ].

It was suggested that clinical trial feasibility assessment in a defined geographical region may be undertaken for improved chances of success. Points to be considered under the feasibility assessment program include if the disease under the study is related to the population of the geographical region, appropriateness of the study design, patient, and comparator group, visit intervals, potential regulatory and ethical challenges, and commitments of the study partners, CROs in respective countries (multi-centric studies) [ 27 ].

Feasibility assessments may be undertaken at the program level (ethics, regulatory, and medical preparedness), study level (clinical, regulatory, technical, and operational aspects), and at the investigation site (investigational drug, competency of personnel, participant recruitment, and retention, quality systems, and infrastructural aspects) [ 27 ].

Clinical trials: true experiments

In accordance with the revised schedule "Y" of the Drugs and Cosmetics Act (DCA) (2005), a drug trial may be defined as a systematic study of a novel drug component. The clinical trials aim to evaluate the pharmacodynamic, and pharmacokinetic properties including ADME, efficacy, and safety of new drugs.

According to the drug and cosmetic rules (DCR), 1945, a new chemical entity (NCE) may be defined as a novel drug approved for a disease/condition, in a specified route, and at a particular dosage. It also may be a new drug combination, of previously approved drugs.

A clinical trial may be performed in three types; one that is done to find the efficacy of an NCE, a comparison study of two drugs against a medical condition, and the clinical research of approved drugs on a disease/condition. Also, studies of the bioavailability and BE studies of the generic drugs, and the drugs already approved in other countries are done to establish the efficacy of new drugs [ 28 ].

Apart from the discovery of a novel drug, clinical trials are also conducted to approve novel medical devices for public use. A medical device is defined as any instrument, apparatus, appliance, software, and any other material used for diagnostic/therapeutic purposes. The medical devices may be divided into three classes wherein class I uses general controls; class II uses general and special controls, and class III uses general, special controls, and premarket approvals [ 28 ].

The premarket approval applications ensure the safety and effectiveness, and confirmation of the activities from bench to animal to human clinical studies. The FDA approval for investigational device exemption (IDE) for a device not approved for a new indication/disease/condition. There are two types of IDE studies that include the feasibility study (basic safety and potential effectiveness) and the pivotal study (trial endpoints, randomization, monitoring, and statistical analysis plan) [ 28 ].

As evidenced by the available literature, there are two types of research that include observational and experimental research. Experimental research is alternatively known as the true type of research wherein the research is conducted by the intervention of a new drug/device/method (educational research). Most true experiments use randomized control trials that remove bias and neutralize the confounding variables that may interfere with the results of research [ 28 ].

The variables that may interfere with the study results are independent variables also called prediction variables (the intervention), dependent variables (the outcome), and extraneous variables (other confounding factors that could influence the outside). True experiments have three basic elements that include manipulation (that influence independent variables), control (over extraneous influencers), and randomization (unbiased grouping) [ 29 ].

Experiments can also be grouped as true, quasi-experimental, and non-experimental studies depending on the presence of specific characteristic features. True experiments have all three elements of study design (manipulation, control, randomization), and prospective, and have great scientific validity. Quasi-experiments generally have two elements of design (manipulation and control), are prospective, and have moderate scientific validity. The non-experimental studies lack manipulation, control, and randomization, are generally retrospective, and have low scientific validity [ 29 ].

Clinical trials: epidemiological and human genetics study

Epidemiological studies are intended to control health issues by understanding the distribution, determinants, incidence, prevalence, and impact on health among a defined population. Such studies are attempted to perceive the status of infectious diseases as well as non-communicable diseases [ 30 ].

Experimental studies are of two types that include observational (cross-sectional studies (surveys), case-control studies, and cohort studies) and experimental studies (randomized control studies) [ 3 , 31 ]. Such research may pose challenges related to ethics in relation to the social and cultural milieu.

Biomedical research related to human genetics and transplantation research poses an increased threat to ethical concerns, especially after the success of the human genome project (HGP) in the year 2000. The benefits of human genetic studies are innumerable that include the identification of genetic diseases, in vitro fertilization, and regeneration therapy. Research related to human genetics poses ethical, legal, and social issues (ELSI) that need to be appropriately addressed. Most importantly, these genetic research studies use advanced technologies which should be equally available to both economically well-placed and financially deprived people [ 32 ].

Gene therapy and genetic manipulations may potentially precipitate conflict of interest among the family members. The research on genetics may be of various types that include pedigree studies (identifying abnormal gene carriers), genetic screening (for diseases that may be heritable by the children), gene therapeutics (gene replacement therapy, gene construct administration), HGP (sequencing the whole human genome/deoxyribonucleic acid (DNA) fingerprinting), and DNA, cell-line banking/repository [ 33 ]. The biobanks are established to collect and store human tissue samples like umbilical tissue, cord blood, and others [ 34 ].

Epidemiological studies on genetics are attempts to understand the prevalence of diseases that may be transmitted among families. The classical epidemiological studies may include single case observations (one individual), case series (< 10 individuals), ecological studies (population/large group of people), cross-sectional studies (defined number of individuals), case-control studies (defined number of individuals), cohort (defined number of individuals), and interventional studies (defined number of individuals) [ 35 ].

Genetic studies are of different types that include familial aggregation (case-parent, case-parent-grandparent), heritability (study of twins), segregation (pedigree study), linkage study (case-control), association, linkage, disequilibrium, cohort case-only studies (related case-control, unrelated case-control, exposure, non-exposure group, case group), cross-sectional studies, association cohort (related case-control, familial cohort), and experimental retrospective cohort (clinical trial, exposure, and non-exposure group) [ 35 ].

Ethics and concerns in clinical trial/research

Because clinical research involves animals and human participants, adhering to ethics and ethical practices assumes increased significance [ 36 ]. In view of the unethical research conducted on war soldiers after the Second World War, the Nuremberg code was introduced in 1947, which promulgated rules for permissible medical experiments on humans. The Nuremberg code suggests that informed consent is mandatory for all the participants in a clinical trial, and the study subjects must be made aware of the nature, duration, and purpose of the study, and potential health hazards (foreseen and unforeseen). The study subjects should have the liberty to withdraw at any time during the trial and to choose a physician upon medical emergency. The other essential principles of clinical research involving human subjects as suggested by the Nuremberg code included benefit to the society, justification of study as noted by the results of the drug experiments on animals, avoiding even minimal suffering to the study participants, and making sure that the participants don’t have life risk, humanity first, improved medical facilities for participants, and suitably qualified investigators [ 37 ].

During the 18th world medical assembly meeting in the year 1964, in Helsinki, Finland, ethical principles for doctors practicing research were proposed. Declaration of Helsinki, as it is known made sure that the interests and concerns of the human participants will always prevail over the interests of the society. Later in 1974, the National Research Act was proposed which made sure that the research proposals are thoroughly screened by the Institutional ethics/Review Board. In 1979, the April 18th Belmont report was proposed by the national commission for the protection of human rights during biomedical and behavioral research. The Belmont report proposed three core principles during research involving human participants that include respect for persons, beneficence, and justice. The ICH laid down GCP guidelines [ 38 ]. These guidelines are universally followed throughout the world during the conduction of clinical research involving human participants.

ICH was first founded in 1991, in Brussels, under the umbrella of the USA, Japan, and European countries. The ICH conference is conducted once every two years with the participation from the member countries, observers from the regulatory agencies, like the World Health Organization (WHO), European Free Trade Association (EFTA), and the Canadian Health Protection Branch, and other interested stakeholders from the academia and the industry. The expert working groups of the ICH ensure the quality, efficacy, and safety of the medicinal product (drug/device). Despite the availability of the Nuremberg code, the Belmont Report, and the ICH-GCP guidelines, in the year 1982, International Ethical Guidelines for Biomedical Research Involving Human Subjects was proposed by the CIOMS in association with WHO [ 39 ]. The CIOMS protects the rights of the vulnerable population, and ensures ethical practices during clinical research, especially in underdeveloped countries [ 40 ]. In India, the ethical principles for biomedical research involving human subjects were introduced by the Indian Council of Medical Research (ICMR) in the year 2000 and were later amended in the year 2006 [ 41 ]. Clinical trial approvals can only be done by the IRB approved by the Drug Controller General of India (DGCI) as proposed in the year 2013 [ 42 ].

Current perspectives and future implications

A recent study attempted to evaluate the efficacy of adaptive clinical trials in predicting the success of a clinical trial drug that entered phase 3 and minimizing the time and cost of drug development. This study highlighted the drawbacks of such clinical trial designs that include the possibility of type 1 (false positive) and type 2 (false negative) errors [ 43 ].

The usefulness of animal studies during the preclinical phases of a clinical trial was evaluated in a previous study which concluded that animal studies may not completely guarantee the safety of the investigational drug. This is noted by the fact that many drugs which passed toxicity tests in animals produced adverse reactions in humans [ 44 ].

The significance of BE studies to compare branded and generic drugs was reported previously. The pharmacokinetic BE studies of Amoxycillin comparing branded and generic drugs were carried out among a group of healthy participants. The study results have demonstrated that the generic drug had lower Cmax as compared to the branded drug [ 45 ].

To establish the BE of the generic drugs, randomized crossover trials are carried out to assess the Cmax and the AUC. The ratio of each pharmacokinetic characteristic must match the ratio of AUC and/or Cmax, 1:1=1 for a generic drug to be considered as a bioequivalent to a branded drug [ 46 ].

Although the generic drug development is comparatively more beneficial than the branded drugs, synthesis of extended-release formulations of the generic drug appears to be complex. Since the extended-release formulations remain for longer periods in the stomach, they may be influenced by gastric acidity and interact with the food. A recent study suggested the use of bio-relevant dissolution tests to increase the successful production of generic extended-release drug formulations [ 47 ].

Although RCTs are considered the best designs, which rule out bias and the data/results obtained from such clinical research are the most reliable, RCTs may be plagued by miscalculation of the treatment outcomes/bias, problems of cointerventions, and contaminations [ 48 ].

The perception of healthcare providers regarding branded drugs and their view about the generic equivalents was recently analyzed and reported. It was noted that such a perception may be attributed to the flexible regulatory requirements for the approval of a generic drug as compared to a branded drug. Also, could be because a switch from a branded drug to a generic drug in patients may precipitate adverse events as evidenced by previous reports [ 49 ].

Because the vulnerable population like drug/alcohol addicts, mentally challenged people, children, geriatric age people, military persons, ethnic minorities, people suffering from incurable diseases, students, employees, and pregnant women cannot make decisions with respect to participating in a clinical trial, ethical concerns, and legal issues may prop up, that may be appropriately addressed before drug trials which include such groups [ 50 ].

Conclusions

Clinical research and clinical trials are important from the public health perspective. Clinical research facilitates scientists, public health administrations, and people to increase their understanding and improve preparedness with reference to the diseases prevalent in different geographical regions of the world. Moreover, clinical research helps in mitigating health-related problems as evidenced by the current Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic and other emerging and re-emerging microbial infections. Clinical trials are crucial to the development of drugs, devices, and vaccines. Therefore, scientists are required to be up to date with the process and procedures of clinical research and trials as discussed comprehensively in this review.

The content published in Cureus is the result of clinical experience and/or research by independent individuals or organizations. Cureus is not responsible for the scientific accuracy or reliability of data or conclusions published herein. All content published within Cureus is intended only for educational, research and reference purposes. Additionally, articles published within Cureus should not be deemed a suitable substitute for the advice of a qualified health care professional. Do not disregard or avoid professional medical advice due to content published within Cureus.

The authors have declared that no competing interests exist.

The University of Edinburgh home

  • Schools & departments

Edinburgh Infectious Diseases

Research projects on rabies and sleeping sickness win 2024 Ker Memorial Prize

The 2024 Ker Memorial Prize in Infectious Diseases has been jointly awarded to Dr Andy Gibson (Royal (Dick) School of Veterinary Studies) and Dr Guy Oldrieve (School of Biological Sciences).

Image of Andy Gibson and Guy Oldrieve

The Ker Memorial Prize is award each year for the best PhD thesis submitted at the University of Edinburgh in memory of two eminent Edinburgh physicians, Dr Claude and Frank Ker.

Ker family support for infectious disease research in Edinburgh

As always the nominees for the Ker Memorial Prize were outstanding.  On this occasion the judges felt that although of very different types, the quality of research carried out by the both Andy and Guy, merited the co-award of this year's prize.

In addition, the judges awarded a Commendation of Merit to Ruby White, from Amy Buck's  lab (School of Biological Sciences), for her work on Modulation of host intestinal epithelium by gastrointestinal nematode secreted extracellular vesicles.

As part of their prize both Guy and Andy will present their work at the Edinburgh Infectious Diseases annual symposium on Wednesday 19 June 2024.

13th Edinburgh Infectious Diseases Annual Symposium

About the prize winners

Dr andy gibson:  development and evaluation of methods to controlrabies in goa state, india.

Supervisors:  Richard Mellanby, Stella Mazeri, Ian Handel, Mark Bronsvoort; Royal (Dick) School of Veterinary Studies

About the work:  Rabies is unique in the world of infectious diseases for the degree of suffering it inflicts, both to the individuals infected and their families who bear witness to inevitable death once signs appear.

In his thesis, Andy used data-driven approaches to support the development of effective methods for rabies control in Goa State, India over a ten-year period through a collaboration between the Government of Goa and WVS. Andy led the creation of a mobile phone app which enabled project managers to coordinate the movement of vaccination teams and efficiently gather operational data about dogs vaccinated, children educated, and suspect rabid dogs investigated. His analysis of these data informed the iterative refinement of dog vaccination methods which resulted in the elimination of rabies across most regions by 2019. Goa was India’s first state to pass legislation to become a ‘Rabies Controlled Area’ in 2021.

Cost-effectiveness analysis supported the widespread adoption of this One Health approach, however operational constraints to scaling the vaccination method drove the exploration of novel approaches involving oral rabies vaccines (ORVs). His analysis of two pilot studies identified the potential for ORVs to advance rabies control at a national scale.

About Andy: Andy now leads the research and technology strategy at Worldwide Veterinary Service (WVS), a UK-based international veterinary charity working to drive change in animal welfare and One Health.

He graduated in veterinary medicine from the Royal Veterinary College (RVC) in London. After a time working in clinical practice Andy completed the RVC Small Animal Internship before volunteering on the 2013 launch of the Mission Rabies project in India. He went on to work in Goa and other project sites, supporting the development of dog rabies surveillance and vaccination methods and became the project lead for developing a smartphone app to monitor and direct field activities.

Andy began his part-time PhD at the University of Edinburgh in 2016 alongside his role at WVS, focusing on understanding the methods of rabies control in Goa, India, where he was deeply involved in project management and strategy.

Dr Guy Oldrieve:  Developmental incompetence in selected and naturally occurring Trypanosoma isolates

Ker memorial lecture.

We are also delighted that Dr Iruka Okeke from the Univeristy of Ibadan, Nigeria will present the Ker Memorial Lecture at this year's Edinburgh Infectious Diseases symposium.

Dr Okeke will talk about Insights from the genomes of enteric bacteria isolated in Nigeria .

About Iruka

Related links

Mission Rabies

Royal (Dick) School of Veterinary Studies

Matthews Lab

School of Biological Sciences

IMAGES

  1. (PDF) Writing a journal article from your thesis or research project

    article on research project

  2. (PDF) How to write a Research article

    article on research project

  3. (PDF) Research Article Summary

    article on research project

  4. 7+ Research Report Templates

    article on research project

  5. How to Write a Research Article

    article on research project

  6. (PDF) HOW TO PUBLISH A RESEARCH ARTICLE

    article on research project

VIDEO

  1. Proposal 101: What Is A Research Topic?

  2. An article on Recent Research and Advancement in Civil Engg

  3. Your research can change the world

  4. Unlocking the Secrets of Writing a Stellar Research & Review Article

  5. How to differentiate Research vs Project vs Research Project

  6. How To Write A Research Project Fast

COMMENTS

  1. The critical steps for successful research: The research proposal and scientific writing: (A report on the pre-conference workshop held in conjunction with the 64th annual conference of the Indian Pharmaceutical Congress-2012)

    Completing any research project requires meticulous planning, experimental design and execution, and compilation and publication of findings in the form of a research paper. All of these are often unfamiliar to naïve researchers; thus, the purpose of this workshop was to teach participants to master the critical steps involved in the ...

  2. Planning Qualitative Research: Design and Decision Making for New

    While many books and articles guide various qualitative research methods and analyses, there is currently no concise resource that explains and differentiates among the most common qualitative approaches. We believe novice qualitative researchers, students planning the design of a qualitative study or taking an introductory qualitative research course, and faculty teaching such courses can ...

  3. How to Write a Research Proposal

    Research questions give your project a clear focus. They should be specific and feasible, but complex enough to merit a detailed answer. 2610. How to Write a Literature Review | Guide, Examples, & Templates A literature review is a survey of scholarly knowledge on a topic. Our guide with examples, video, and templates can help you write yours.

  4. A Beginner's Guide to Starting the Research Process

    Step 4: Create a research design. The research design is a practical framework for answering your research questions. It involves making decisions about the type of data you need, the methods you'll use to collect and analyze it, and the location and timescale of your research. There are often many possible paths you can take to answering ...

  5. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  6. Behind every great research project is great data management

    Research data management (RDM) is the cornerstone of a successful research project, and yet it often remains an underappreciated art that gets overlooked in the hustle and bustle of everyday project management even when required by funding bodies. If researchers are to strive for reproducible science that adheres to the principles of FAIR, then they need to manage the data associated with ...

  7. How to wrap up research projects gracefully

    A project can end for various reasons, including getting scooped by competitors or when funding runs out. In Argentina, we often face limited research funding compared with other regions of the ...

  8. How to do a research project for your academic study

    Methodology - the methods you will use for your primary research. Findings and results - presenting the data from your primary research. Discussion - summarising and analysing your research and what you have found out. Conclusion - how the project went (successes and failures), areas for future study.

  9. Seventy-Five Scientific Research Projects You Can Contribute to Online

    Science | June 15, 2020. Seventy-Five Scientific Research Projects You Can Contribute to Online. From astrophysicists to entomologists, many researchers need the help of citizen scientists to sift ...

  10. The What: Defining a research project » Abstract

    According to a Rutgers University resource titled, Definition of a research project and specifications for fulfilling the requirement, "A research project is a scientific endeavor to answer a research question.". Specifically, projects may take the form of "case series, case control study, cohort study, randomized, controlled trial ...

  11. How to Get Started With a Research Project: 12 Steps

    Just be careful that you don't end up stuck with an idea you want to do, but are afraid to do because you know someone else did it before. 4. Think from all angles. If you have at least a little direction based on the project guidelines, take that basic direction and start turning it over and over in your mind.

  12. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  13. 113 Great Research Paper Topics

    113 Great Research Paper Topics. Posted by Christine Sarikas. General Education. One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and ...

  14. Research Summary

    Research Summary. Definition: A research summary is a brief and concise overview of a research project or study that highlights its key findings, main points, and conclusions. It typically includes a description of the research problem, the research methods used, the results obtained, and the implications or significance of the findings.

  15. What is the Difference Between Research and Project

    The main difference between research and project is that research is the systematic investigation and study of materials and sources to establish facts and reach new conclusions, while a project is a specific and finite activity that gives a measurable and observable result under preset requirements. Both research and projects use a systematic ...

  16. 10 innovative research projects earn latest funding from VCU's Arts

    By Emily Komornik Office of the Vice President for Research and Innovation Faculty-led projects that touch on a range of topics - from sculpture and swimwear to pediatric medical care and theater - are among the 2024 grant recipients from Virginia Commonwealth University's Arts, Humanities and Social Sciences Fund.

  17. New research initiative tackles pressing global development issues

    Now, CIDER provides a forum to collaborate on large-scale projects, advance policy-relevant research and train early career scholars and practitioners. Through a workshop hosted by CIDER on May 10, the center is already encouraging new collaborations in East African dryland drought research, risk management and policy.

  18. Undergraduate research conference highlights student achievement with

    During the April 26 event, students presented posters on 246 projects that addressed wide-ranging real-world problems such as wildlife preservation, cancer treatments, autonomous vehicle algorithms, and world hunger. ... Caila Serrano '24 discusses her research at the Dennis Dean Undergraduate Research and Creative Scholarship Conference. Photo ...

  19. Argentina's pioneering nuclear research threatened by huge ...

    Owing to massive budget cuts and lay-offs of government employees, Argentina's nuclear sector — which includes power plants and research facilities — is at risk, scientists say. The country ...

  20. New MSU research to explore influenza outbreak in cattle

    Support for the project will be provided through capacity funding from USDA NIFA and the Michigan Alliance for Animal Agriculture. ... — New research from Michigan State University will study the effects of a recent highly pathogenic avian influenza A virus (H5N1) outbreak on dairy cattle reproduction and milk production, as well as ...

  21. What is a research project?

    What is a research project? A research project is an academic, scientific, or professional undertaking to answer a research question.Research projects can take many forms, such as qualitative or quantitative, descriptive, longitudinal, experimental, or correlational.What kind of research approach you choose will depend on your topic.

  22. Professor Emeritus David Lanning, nuclear engineer and key contributor

    In his faculty position, Lanning took responsibility for supervising lab subjects and research projects at the MITR, including the Heavy Water Lattice Project. This project supported the thesis work of more than 30 students doing experimental studies of sub-critical uranium fuel rods — including Lanning's own thesis. He received his PhD in ...

  23. Clinical Trials and Clinical Research: A Comprehensive Review

    Clinical research is an alternative terminology used to describe medical research. ... are the three important aspects of the implementation of a clinical research project. In view of the increasing complexity related to the conduct of clinical trials, it is important to perform a clinical quality assurance (CQA) audit. ... articles published ...

  24. Research projects on rabies and sleeping sickness win 2024 Ker Memorial

    16/05/24 Research projects on rabies and sleeping sickness win 2024 Ker Memorial Prize; Contact us. ... Andy led the creation of a mobile phone app which enabled project managers to coordinate the movement of vaccination teams and efficiently gather operational data about dogs vaccinated, children educated, and suspect rabid dogs investigated. ...

  25. CNBC

    CNBC

  26. 10 Research Question Examples to Guide your Research Project

    Cite this Scribbr article. If you want to cite this source, you can copy and paste the citation or click the "Cite this Scribbr article" button to automatically add the citation to our free Citation Generator. McCombes, S. (2023, October 19). 10 Research Question Examples to Guide your Research Project. Scribbr.