• Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

181 Mathematics Research Topics From PhD Experts

math research topics

If you are reading this blog post, it means you are looking for some exceptional math research topics. You want them to be original, unique even. If you manage to find topics like this, you can be sure your professor will give you a top grade (if you write a decent paper, that is). The good news is that you have arrived at just the right place – at the right time. We have just finished updating our list of topics, so you will find plenty of original ideas right on this page. All our topics are 100 percent free to use as you see fit. You can reword them and you don’t need to give us any credit.

And remember: if you need assistance from a professional, don’t hesitate to reach out to us. We are not just the best place for math research topics for high school students; we are also the number one choice for students looking for top-notch research paper writing services.

Our Newest Research Topics in Math

We know you probably want the best and most recent research topics in math. You want your paper to stand out from all the rest. After all, this is the best way to get some bonus points from your professor. On top of this, finding some great topics for your next paper makes it easier for you to write the essay. As long as you know at least something about the topic, you’ll find that writing a great paper or buy phd thesis isn’t as difficult as you previously thought.

So, without further ado, here are the 181 brand new topics for your next math research paper:

Cool Math Topics to Research

Are you looking for some cool math topics to research? We have a list of original topics for your right here. Pick the one you like and start writing now:

  • Roll two dice and calculate a probability
  • Discuss ancient Greek mathematics
  • Is math really important in school?
  • Discuss the binomial theorem
  • The math behind encryption
  • Game theory and its real-life applications
  • Analyze the Bernoulli scheme
  • What are holomorphic functions and how do they work?
  • Describe big numbers
  • Solving the Tower of Hanoi problem

Undergraduate Math Research Topics

If you are an undergraduate looking for some research topics for your next math paper, you will surely appreciate our list of interesting undergraduate math research topics:

  • Methods to count discrete objects
  • The origins of Greek symbols in mathematics
  • Methods to solve simultaneous equations
  • Real-world applications of the theorem of Pythagoras
  • Discuss the limits of diffusion
  • Use math to analyze the abortion data in the UK over the last 100 years
  • Discuss the Knot theory
  • Analyze predictive models (take meteorology as an example)
  • In-depth analysis of the Monte Carlo methods for inverse problems
  • Squares vs. rectangles (compare and contrast)

Number Theory Topics to Research

Interested in writing about number theory? It is not an easy subject to discuss, we know. However, we are sure you will appreciate these number theory topics:

  • Discuss the greatest common divisor
  • Explain the extended Euclidean algorithm
  • What are RSA numbers?
  • Discuss Bézout’s lemma
  • In-depth analysis of the square-free polynomial
  • Discuss the Stern-Brocot tree
  • Analyze Fermat’s little theorem
  • What is a discrete logarithm?
  • Gauss’s lemma in number theory
  • Analyze the Pentagonal number theorem

Math Research Topics for High School

High school students shouldn’t be too worried about their math papers because we have some unique, and quite interesting, math research topics for high school right here:

  • Discuss Brun’s constant
  • An in-depth look at the Brahmagupta–Fibonacci identity
  • What is derivative algebra?
  • Describe the Symmetric Boolean function
  • Discuss orders of approximation in limits
  • Solving Regiomontanus’ angle maximization problem
  • What is a Quadratic integral?
  • Define and describe complementary angles
  • Analyze the incircle and excircles of a triangle
  • Analyze the Bolyai–Gerwien theorem in geometry
  • Math in our everyday life

Complex Math Topics

If you want to give some complex math topics a try, we have the best examples below. Remember, these topics should only be attempted by students who are proficient in mathematics:

  • Mathematics and its appliance in Artificial Intelligence
  • Try to solve an unsolved problem in math
  • Discuss Kolmogorov’s zero-one law
  • What is a discrete random variable?
  • Analyze the Hewitt–Savage zero-one law
  • What is a transferable belief model?
  • Discuss 3 major mathematical theorems
  • Describe and analyze the Dempster-Shafer theory
  • An in-depth analysis of a continuous stochastic process
  • Identify and analyze Gauss-Markov processes

Easy Math Research Paper Topics

Perhaps you don’t want to spend too much time working on your next research paper. Who can blame you? Check out these easy math research paper topics:

  • Define the hyperbola
  • Do we need to use a calculator during math class?
  • The binomial theorem and its real-world applications
  • What is a parabola in geometry?
  • How do you calculate the slope of a curve?
  • Define the Jacobian matrix
  • Solving matrix problems effectively
  • Why do we need differential equations?
  • Should math be mandatory in all schools?
  • What is a Hessian matrix?

Logic Topics to Research

We have some interesting logical topics for research papers. These are perfect for students interested in writing about math logic. Pick one right now:

  • Discuss the reductio ad absurdum approach
  • Discuss Boolean algebra
  • What is consistency proof?
  • Analyze Trakhtenbrot’s theorem (the finite model theory)
  • Discuss the Gödel completeness theorem
  • An in-depth analysis of Morley’s categoricity theorem
  • How does the Back-and-forth method work?
  • Discuss the Ehrenfeucht–Fraïssé game technique
  • Discuss Aleph numbers (Aleph-null and Aleph-one)
  • Solving the Suslin problem

Algebra Topics for a Research Paper

Would you like to write about an algebra topic? No problem, our seasoned writers have compiled a list of the best algebra topics for a research paper:

  • Discuss the differential equation
  • Analyze the Jacobson density theorem
  • The 4 properties of a binary operation in algebra
  • Analyze the unary operator in depth
  • Analyze the Abel–Ruffini theorem
  • Epimorphisms vs. monomorphisms: compare and contrast
  • Discuss the Morita duality in algebraic structures
  • Idempotent vs. nilpotent in Ring theory
  • Discuss the Artin-Wedderburn theorem
  • What is a commutative ring in algebra?
  • Analyze and describe the Noetherian ring

Math Education Research Topics

There is nothing wrong with writing about math education, especially if your professor did not give you writing prompts. Here are some very nice math education research topics:

  • What are the goals a mathematics professor should have?
  • What is math anxiety in the classroom?
  • Teaching math in UK schools: the difficulties
  • Computer programming or math in high school?
  • Is math education in Europe at a high enough level?
  • Common Core Standards and their effects on math education
  • Culture and math education in Africa
  • What is dyscalculia and how does it manifest itself?
  • When was algebra first thought in schools?
  • Math education in the United States versus the United Kingdom

Computability Theory Topics to Research

Writing about computability theory can be a very interesting adventure. Give it a try! Here are some of our most interesting computability theory topics to research:

  • What is a multiplication table?
  • Analyze the Scholz conjecture
  • Explain exponentiating by squaring
  • Analyze the Myhill-Nerode theorem
  • What is a tree automaton?
  • Compare and contrast the Pushdown automaton and the Büchi automaton
  • Discuss the Markov algorithm
  • What is a Turing machine?
  • Analyze the post correspondence problem
  • Discuss the linear speedup theorem
  • Discuss the Boolean satisfiability problem

Interesting Math Research Topics

We know you want topics that are interesting and relatively easy to write about. This is why we have a separate list of our most interesting math research topics:

  • What is two-element Boolean algebra?
  • The life of Gauss
  • The life of Isaac Newton
  • What is an orthodiagonal quadrilateral?
  • Tessellation in Euclidean plane geometry
  • Describe a hyperboloid in 3D geometry
  • What is a sphericon?
  • Discuss the peculiarities of Borel’s paradox
  • Analyze the De Finetti theorem in statistics
  • What are Martingales?
  • The basics of stochastic calculus

Applied Math Research Topics

Interested in writing about applied mathematics? Our team managed to create a list of awesome applied math research topics from scratch for you:

  • Discuss Newton’s laws of motion
  • Analyze the perpendicular axes rule
  • How is a Galilean transformation done?
  • The conservation of energy and its applications
  • Discuss Liouville’s theorem in Hamiltonian mechanics
  • Analyze the quantum field theory
  • Discuss the main components of the Lorentz symmetry
  • An in-depth look at the uncertainty principle

Geometry Topics for a Research Paper

Geometry can be a very captivating subject, especially when you know plenty about it. Check out our list of geometry topics for a research paper and pick the best one today:

  • Most useful trigonometry functions in math
  • The life of Archimedes and his achievements
  • Trigonometry in computer graphics
  • Using Vincenty’s formulae in geodesy
  • Define and describe the Heronian tetrahedron
  • The math behind the parabolic microphone
  • Discuss the Japanese theorem for concyclic polygons
  • Analyze Euler’s theorem in geometry

Math Research Topics for Middle School

Yes, even middle school children can write about mathematics. We have some original math research topics for middle school right here:

  • Finding critical points in a graph
  • The basics of calculus
  • What makes a graph ultrahomogeneous?
  • How do you calculate the area of different shapes?
  • What contributions did Euclid have to the field of mathematics?
  • What is Diophantine geometry?
  • What makes a graph regular?
  • Analyze a full binary tree

Math Research Topics for College Students

As you’ve probably already figured out, college students should pick topics that are a bit more complex. We have some of the best math research topics for college students right here:

  • What are extremal problems and how do you solve them?
  • Discuss an unsolvable math problem
  • How can supercomputers solve complex mathematical problems?
  • An in-depth analysis of fractals
  • Discuss the Boruvka’s algorithm (related to the minimum spanning tree)
  • Discuss the Lorentz–FitzGerald contraction hypothesis in relativity
  • An in-depth look at Einstein’s field equation
  • The math behind computer vision and object recognition

Calculus Topics for a Research Paper

Let’s face it: calculus is not a very difficult field. So, why don’t you pick one of our excellent calculus topics for a research paper and start writing your essay right away:

  • When do we need to apply the L’Hôpital rule?
  • Discuss the Leibniz integral rule
  • Calculus in ancient Egypt
  • Discuss and analyze linear approximations
  • The applications of calculus in real life
  • The many uses of Stokes’ theorem
  • Discuss the Borel regular measure
  • An in-depth analysis of Lebesgue’s monotone convergence theorem

Simple Math Research Paper Topics for High School

This is the place where you can find some pretty simple topics if you are a high school student. Check out our simple math research paper topics for high school:

  • The life and work of the famous Pierre de Fermat
  • What are limits and why are they useful in calculus?
  • Explain the concept of congruency
  • The life and work of the famous Jakob Bernoulli
  • Analyze the rhombicosidodecahedron and its applications
  • Calculus and the Egyptian pyramids
  • The life and work of the famous Jean d’Alembert
  • Discuss the hyperplane arrangement in combinatorial computational geometry
  • The smallest enclosing sphere method in combinatorics

Business Math Topics

If you want to surprise your professor, why don’t you write about business math? We have some exceptional topics that nobody has thought about right here:

  • Is paying a loan with another loan a good approach?
  • Discuss the major causes of a stock market crash
  • Best debt amortization methods in the US
  • How do bank loans work in the UK?
  • Calculating interest rates the easy way
  • Discuss the pros and cons of annuities
  • Basic business math skills everyone should possess
  • Business math in United States schools
  • Analyze the discount factor

Probability and Statistics Topics for Research

Probability and statistics are not easy fields. However, you can impress your professor with one of our unique probability and statistics topics for research:

  • What is the autoregressive conditional duration?
  • Applying the ANOVA method to ranks
  • Discuss the practical applications of the Bates distribution
  • Explain the principle of maximum entropy
  • Discuss Skorokhod’s representation theorem in random variables
  • What is the Factorial moment in the Theory of Probability?
  • Compare and contrast Cochran’s C test and his Q test
  • Analyze the De Moivre-Laplace theorem
  • What is a negative probability?

Need Help With Research Paper?

We offer the absolute best high school and college research paper writing service on the Internet. When you need any kind of research paper help, our experienced ENL writers and professional editors are here to help. With years of experience under their belts, our experts can get your research paper done in as little as 3 hours.

Getting cheap online help with research papers has never been easier. College students should just get in touch with us and tell us what they need. We will assign them our most affordable and experienced math writer in minutes, even during the night. We are the best-rated online writing company on the Internet because we always deliver high-quality academic content at the most competitive prices. Give us a try today!

Leave a Reply Cancel reply

logo

210 Brilliant Math Research Topics and Ideas for Students

Table of Contents

Do you have to submit a math research paper? Are you looking for the best math research topics? Well, in this blog post, we have shared a list of 150+ interesting math research topics to consider for assignments and academic projects. If you are a student who is pursuing a degree in mathematics, then you can very well use the topic ideas suggested here. Also, you can check this blog post and get to know the important steps for writing a brilliant math research paper.

Math Research Topics

What is Mathematics?

Mathematics is a broad academic discipline that focuses on numbers, structures, spaces, and shapes. This subject contains many analysis and calculation methods. Especially in the real world, math is considered an effective problem-solving tool. By using math, you can find solutions for both simple and complex problems.

Basically, mathematics is an integrated language that is widely used in several fields such as engineering, physics, medicine, finance, computer, business, and biology. Apart from the complex scientific fields, even math plays a vital role in the basic cost and time calculation in our everyday life.

Different Branches of Mathematics

Listed below are some popular branches of mathematics.

Arithmetic: It is a basic branch of math that focuses on numbers and their associated operations such as addition, subtraction, multiplication, and division.

Algebra: When the numbers are unknown, algebra steps in. Generally, along with numbers, algebra uses the letters such as A, B, X, and Y to represent unknown quantities. Mainly, businesses depend on algebra concepts to predict their sales.

Geometry: It is a popular branch of mathematics that deals with shapes, sizes, and figures. The concept commonly revolves around lines, points, solids, angles, and surfaces.

Apart from all these common branches, mathematics also includes more advanced types such as calculus, trigonometry, statistics, topology, probability, etc.

How to Write a Math Research Paper?

In general, a math research paper is an academic paper that is prepared to explain a mathematical concept with proper results. For writing a math research paper, first, you must have a good research topic from any branch of mathematics. As math is a vast discipline, you can easily search and find plenty of research topics from it. But when you have many topics, then it will be more tedious to identify one perfect topic out of them all.

Right now, are you searching for a perfect math research topic? Well, then this is what you should do during the topic selection process to spot the right topic.

Topic Selection

Whenever you are asked to come up with a research paper topic on your own, initially, restrict yourself to the research area that you have strong knowledge of and are passionate about. Next, in that research area, explore and identify one great topic that has a broad scope to evaluate and express your ideas.

Remember, the topic you select should be comfortable for you to perform research and write about. Never pick a topic with less or no research scope. The topic should support the research method of your choice. Most importantly, give preference to the topic that has wide research information, references, and evidence. Also, before finalizing the topic, check whether your topic satisfies your instructor’s guidelines.

Research Paper Writing

After you have found a good math research topic, you can proceed to write the research paper. The research paper you write should follow a proper format and structure. So, in the math research paper, make sure to include the following essential sections.

Introduction

Implications.

In the introduction section, you should first give brief background information about your topic to familiarize your readers. Here, mainly you should explain the primary concepts along with the history of its terms. Also, you should state the basic research problem and discuss the symbols and principles that you are going to use in the essay.

The body of your research paper should elaborate on all your findings. Particularly, in the body paragraphs, you should talk about the formulas, theories, and mathematical analysis methods you have used to find solutions for the research problem.

The implication is the last or closing part of your research paper. Here, you should share your research insights with the readers. Also, you should include a brief summary of all the important points that you have discussed in the entire essay.

List of the Best Math Research Topics

Are you struggling to come up with a good math research paper topic for your assignment? No worries! Here we have shared a list of top-rated math research topic ideas on various branches of mathematics.

Math Research Topics

Explore them all and find a topic that suits you perfectly.

Simple and Easy Math Topics

  • Explain the working of Partial fractions.
  • Discuss the application of Mathematics in daily life.
  • What is the basis of Cramer’s rule?
  • How to solve Heesch’s problem?
  • Explain the history of calculus .
  • What is Euler’s formula?
  • Explain the working of Logarithms.
  • What are the different types of sequences?
  • Explain the different types of Transformations.
  • Define Brun’s constant.
  • What are the methods of factoring quadratics?
  • Examine Archimedean solids.
  • Explain Gaussian elimination.
  • Write about encryption and prime numbers.
  • How does Hypercube work?
  • Analyze Pygaoethores Theorem
  • Describe the logicist definitions of mathematics
  • Describe the purpose of homological algebra
  • Compare and contrast Concave and Convex in geometry
  • The study and contributions of Blaise Pascal to Probability
  • Explain the Fibonacci series briefly
  • How the Ancient Greek architecture influenced by mathematics?
  • Discuss the ancient Egyptian mathematical applications and accomplishments
  • Discuss the easiest ways to memorize algebraic expressions
  • Algebra is an exposition on the invariants of matrices – Explain

Basic Math Topics for Middle School Students

  • Define the Artin-Wedderburn theorem.
  • How to calculate net worth?
  • How to identify critical points in graphs?
  • What is the role of statistics in business?
  • Describe the principles of the Pythagoras theorem.
  • What are the applications of finance in math?
  • What do limits in math mean?
  • Explain the ratio and root test.
  • Define Jacobson’s density theorem.
  • What are the principles of calculus?

Interesting Math Topics for High School Students

  • What are the different number types? Explain with examples.
  • Explain the need for imaginary numbers.
  • How to calculate the interest rate?
  • How to solve a matrix?
  • How to prepare a chart of a company’s financial analysis?
  • When to use a calculator in class?
  • Explain the importance of the Binomial theorem.
  • Write about Egyptian mathematics.
  • Describe the applications of math in the workplace.
  • How to solve linear equations?
  • Describe the usage of hyperbola in math.
  • Why do so many students hate math?
  • What is the difference between algebra and arithmetic?
  • How to calculate the mean value?
  • What is the numerical data?

Math Research Paper Topics for Undergraduate Students

  • Explain the different theories of mathematical logic.
  • Discuss the origins of Greek symbols in mathematics.
  • Explain the significance of circles.
  • Analyze predictive models.
  • Explain the emergence of patterns in chaos theory.
  • Define abstract algebra.
  • What is a continuous stochastic process?
  • Write about the history of algebra.
  • Analyze Monte Carlo methods for inverse problems.
  • What are the goals of standardized testing?
  • Define the Pentagonal number theorem.
  • Discuss the Lorentz–FitzGerald contraction hypothesis in relativity.
  • How to solve simultaneous equations.
  • How do supercomputers solve complex mathematical problems?
  • What is a parabola in geometry?

Math Research Topics

Math Research Topics for College Students

  • Explain the Fibonacci sequence.
  • What are the core problems of computational geometry?
  • Discuss the practical applications of game theory.
  • What is the Traveling Salesman Problem?
  • Describe the Influence of math in biology.
  • Analyze the meaning of fractals.
  • Discuss the origin and evolution of mathematics.
  • What is quantum computing?
  • Explain Einstein’s field equation theory.
  • What is the influence of math on chemistry?
  • How to solve a Rubik’s cube mathematically?
  • How to do complex numbers division?
  • Explain the use of Boolean functions.
  • Analyze the degrees in polynomial functions.
  • How to solve Sudoku using mathematics?
  • Explain the use of set theory.
  • Explain the math behind the Koch snowflake.
  • Explore the varieties of the Tower of Hanoi solutions.
  • What is the difference between a discrete and a continuous probability distribution?
  • How does encryption work?

Applied Math Research Topics

  • What is the role of algorithms in probabilistic modeling?
  • Explain the significance of step-stress modeling.
  • Describe Newton’s laws of motion.
  • What dimensions are used to examine fingerprints?
  • Analyze statistical signal processing.
  • How to do Galilean transformation?
  • What is the role of mathematicians in crime data analysis and prevention?
  • Explain the uncertainty principle.
  • Discuss Liouville’s theorem in Hamiltonian mechanics.
  • Analyze the perpendicular axes rule.

Business Math Research Topics

  • What is the difference between a loan and a mortgage?
  • How to calculate sales tax?
  • Explore the math behind debt amortization.
  • How do businesses use statistics?
  • What is the economic lot scheduling problem?
  • Explain how loans work.
  • Discuss the significance of business math in real life.
  • Define discount factor.
  • What are the major causes of a stock market crash?
  • Compare the uses of different types of charts.
  • Describe the notions of markups and markdowns.
  • How does critical path analysis work?
  • What are the pros and cons of annuities?
  • When to use multi-period models?
  • Compare business and consumer math.

Advanced Math Research Paper Topics

  • What is an oblivious transfer?
  • Compare the Riemann and the Ruelle zeta functions.
  • What are the different types of knapsack problems?
  • Define an abelian group.
  • What are the algorithms used for machine learning?
  • Define various cases of algebraic cycles.
  • When a trigonometric series is called a Fourier series?
  • What is the minimum overlap problem?
  • What are the basic properties of holomorphic functions?
  • Describe the Bernoulli scheme.

Complex Math Research Topics

  • Write about Napier’s bones.
  • What makes a number big?
  • Examine the notion of operator spaces.
  • How do barcodes function?
  • Define Fisher’s fundamental theorem of natural selection.
  • What are the peculiarities of Borel’s paradox?
  • How to design a train schedule for a whole country?
  • Describe a hyperboloid in 3D geometry.
  • What is an orthodiagonal quadrilateral?
  • Explain how the Iwasawa theory relates to modular forms.

Math Research Ideas on Probability and Statistics

  • Roll two dice and calculate a probability.
  • Write about the Factorial moment in the Theory of Probability.
  • Explain the principle of maximum entropy.
  • Compare and contrast Cochran’s C test and his Q test.
  • Discuss Skorokhod’s representation theorem in random variables
  • How to apply the ANOVA method to rank.
  • Analyze the De Moivre-Laplace theorem.
  • What is the autoregressive conditional duration?
  • Explain a negative probability.
  • Discuss the practical applications of the Bates distribution.

Algebra Research Topics

  • Explain Descartes’ Rule of Signs.
  • How to factor quadratics?
  • What is the use of F-algebras?
  • Discuss the differential equation.
  • What is the difference between eigenvectors and eigenvalues?
  • What are the properties of a binary operation in algebra?
  • What is a commutative ring in algebra?
  • Discuss the origin of the distance formula.
  • Explain the quadratic formula.
  • Analyze the unary operator.
  • Define range and domain in algebra.
  • Describe the Noetherian ring.
  • Discuss the Morita duality in algebraic structures.
  • Define the Abel–Ruffini theorem.
  • What is the use of determinants?

Math Research Paper Topics on Geometry

  • Research the real-life uses of a rhombicosidodecahedron.
  • Find out the solutions to Buffon’s needle problem.
  • What is unique about right triangles?
  • What is the Klein bottle?
  • What are the Archimedean solids?
  • What does congruency mean?
  • Discuss the role of trigonometry in computer graphics.
  • What is the need for n-dimensional vectors?
  • Explain the Japanese theorem for concyclic polygons.
  • Prove the angle bisector theorem.
  • Identify the applications for the golden ratio.
  • Explain the Heronian tetrahedron.
  • Describe the notion of Dirac manifolds.
  • What is the use of geometry in Picasso’s paintings?
  • How do CT scans relate to geometry?

Calculus Research Topics

  • How to calculate the Taylor series of a function?
  • What is the role of calculus in real life?
  • Discuss the Leibniz integral rule
  • Discuss and analyze linear approximations.
  • What is the use of predicate calculus?
  • What is the foundation of calculus?
  • How to calculate the area between curves?
  • Describe the standard formulas needed for derivatives.
  • Explain the working of multivariate calculus.
  • Define the fundamental theorem of calculus.

Outstanding Math Research Topics

  • What is a sphericon?
  • What is the role of Mathematics in Artificial Intelligence?
  • Define De Finetti’s theorem in probability and statistics.
  • How to calculate the slope of a curve?
  • Discuss the Stern-Brocot tree.
  • Explain Pascal’s Triangle.
  • Analyze the Georg Cantor set theory.
  • How to measure infinity?
  • Explain the Scholz conjecture.
  • How is geometry used in contemporary architectural designs?
  • How to solve the Suslin problem?
  • What is a tree automaton?
  • Explain the working of the Back-and-forth method.
  • What is a Turing machine?
  • Discuss the linear speedup theorem.
  • Discuss the benefits of using truth tables to present the logical validity of a propositional expression
  • Critical analysis of the major concepts in ancient Egyptian mathematics
  • Discuss the similarities and differences between a continuous and a discrete probability distribution
  • Analysis of the problem with the wholeness axiom and Kunen’s inconsistency theorem
  • Develop a study focusing on the Seven Bridges of Königsberg and relate the problem to the city or state of your choice

Latest Math Research Topics

  • What does point zero reflect on a graph where the vertical and horizontal lines meet?
  • How to recognize adjacent angles easily without any trouble?
  • Compare the differential vs. analytic geometry by citing relevant examples.
  • Explain how to use a graphics system for solving various types of equations.
  • How to divide the feasible and non-feasible regions in linear programming?
  • What are confidence intervals and how it helps in statistical math?
  • How to differentiate the effect of a magnetic field on a given point of the circle by using appropriate differential formula?
  • What are the different types of identities that are used in trigonometric functions?
  • Why polynomials are difficult to solve as compared to monomials? Give examples.
  • Explain radical expressions and their significance with examples.

Final Words

We hope you have identified an ideal topic from the list of math research topics and ideas recommended above. If you haven’t found a unique research topic or need assistance to complete your math research paper, then contact us.

In our team, we have PhD-certified academic writers to offer you math assignment help online . Based on the specifications you send us, our math assignment help experts will guide you with academic paper topic selection, writing, and editing. Note that, the solutions that our math tutors provide would be accurate and simple to understand. Moreover, by utilizing the math research paper help service from our scholars, you can complete your tasks ahead of the deadline and get top scores.

Just place your order and earn the necessary academic benefits.

math topics to research

Related Post

Religious Research Paper Topics

220 Amazing Religious Research Paper Topics and Ideas

Research Proposal

Read and Understand How to Write a Research Proposal

Controversial Research Topics

100+ Controversial Research Topics and Ideas to Focus On

About author.

' src=

Jacob Smith

I am an Academic Writer and have affection to share my knowledge through posts’. I do not feel tiredness while research and analyzing the things. Sometime, I write down hundred of research topics as per the students requirements. I want to share solution oriented content to the students.

Comments are closed.

  • Featured Posts

140 Unique Geology Research Topics to Focus On

200+ outstanding world history topics and ideas 2023, 190 excellent ap research topics and ideas, 150+ trending group discussion topics and ideas, 170 funny speech topics to blow the minds of audience, who invented exams learn the history of examination, how to focus on reading 15 effective tips for better concentration, what is a rhetorical analysis essay and how to write it, primary school teacher in australia- eligibility, job role, career options, and salary, 4 steps to build a flawless business letter format, get help instantly.

Raise Your Grades with Assignment Help Pro

Advertisement

Advertisement

Future themes of mathematics education research: an international survey before and during the pandemic

  • Open access
  • Published: 06 April 2021
  • Volume 107 , pages 1–24, ( 2021 )

Cite this article

You have full access to this open access article

  • Arthur Bakker   ORCID: orcid.org/0000-0002-9604-3448 1 ,
  • Jinfa Cai   ORCID: orcid.org/0000-0002-0501-3826 2 &
  • Linda Zenger 1  

29k Accesses

79 Citations

17 Altmetric

Explore all metrics

Before the pandemic (2019), we asked: On what themes should research in mathematics education focus in the coming decade? The 229 responses from 44 countries led to eight themes plus considerations about mathematics education research itself. The themes can be summarized as teaching approaches, goals, relations to practices outside mathematics education, teacher professional development, technology, affect, equity, and assessment. During the pandemic (November 2020), we asked respondents: Has the pandemic changed your view on the themes of mathematics education research for the coming decade? If so, how? Many of the 108 respondents saw the importance of their original themes reinforced (45), specified their initial responses (43), and/or added themes (35) (these categories were not mutually exclusive). Overall, they seemed to agree that the pandemic functions as a magnifying glass on issues that were already known, and several respondents pointed to the need to think ahead on how to organize education when it does not need to be online anymore. We end with a list of research challenges that are informed by the themes and respondents’ reflections on mathematics education research.

Similar content being viewed by others

math topics to research

Learning from Research, Advancing the Field

math topics to research

The Narcissism of Mathematics Education

math topics to research

Educational Research on Learning and Teaching Mathematics

Avoid common mistakes on your manuscript.

1 An international survey in two rounds

Around the time when Educational Studies in Mathematics (ESM) and the Journal for Research in Mathematics Education (JRME) were celebrating their 50th anniversaries, Arthur Bakker (editor of ESM) and Jinfa Cai (editor of JRME) saw a need to raise the following future-oriented question for the field of mathematics education research:

Q2019: On what themes should research in mathematics education focus in the coming decade?

To that end, we administered a survey with just this one question between June 17 and October 16, 2019.

When we were almost ready with the analysis, the COVID-19 pandemic broke out, and we were not able to present the results at the conferences we had planned to attend (NCTM and ICME in 2020). Moreover, with the world shaken up by the crisis, we wondered if colleagues in our field might think differently about the themes formulated for the future due to the pandemic. Hence, on November 26, 2020, we asked a follow-up question to those respondents who in 2019 had given us permission to approach them for elaboration by email:

Q2020: Has the pandemic changed your view on the themes of mathematics education research for the coming decade? If so, how?

In this paper, we summarize the responses to these two questions. Similar to Sfard’s ( 2005 ) approach, we start by synthesizing the voices of the respondents before formulating our own views. Some colleagues put forward the idea of formulating a list of key themes or questions, similar to the 23 unsolved mathematical problems that David Hilbert published around 1900 (cf. Schoenfeld, 1999 ). However, mathematics and mathematics education are very different disciplines, and very few people share Hilbert’s formalist view on mathematics; hence, we do not want to suggest that we could capture the key themes of mathematics education in a similar way. Rather, our overview of themes drawn from the survey responses is intended to summarize what is valued in our global community at the time of the surveys. Reasoning from these themes, we end with a list of research challenges that we see worth addressing in the future (cf. Stephan et al., 2015 ).

2 Methodological approach

2.1 themes for the coming decade (2019).

We administered the 1-question survey through email lists that we were aware of (e.g., Becker, ICME, PME) and asked mathematics education researchers to spread it in their national networks. By October 16, 2019, we had received 229 responses from 44 countries across 6 continents (Table 1 ). Although we were happy with the larger response than Sfard ( 2005 ) received (74, with 28 from Europe), we do not know how well we have reached particular regions, and if potential respondents might have faced language or other barriers. We did offer a few Chinese respondents the option to write in Chinese because the second author offered to translate their emails into English. We also received responses in Spanish, which were translated for us.

Ethical approval was given by the Ethical Review Board of the Faculties of Science and Geo-science of Utrecht University (Bèta L-19247). We asked respondents to indicate if they were willing to be quoted by name and if we were allowed to approach them for subsequent information. If they preferred to be named, we mention their name and country; otherwise, we write “anonymous.” In our selection of quotes, we have focused on content, not on where the response came from. On March 2, 2021, we approached all respondents who were quoted to double-check if they agreed to be quoted and named. One colleague preferred the quote and name to be deleted; three suggested small changes in wording; the others approved.

On September 20, 2019, the three authors met physically at Utrecht University to analyze the responses. After each individual proposal, we settled on a joint list of seven main themes (the first seven in Table 2 ), which were neither mutually exclusive nor exhaustive. The third author (Zenger, then still a student in educational science) next color coded all parts of responses belonging to a category. These formed the basis for the frequencies and percentages presented in the tables and text. The first author (Bakker) then read all responses categorized by a particular code to identify and synthesize the main topics addressed within each code. The second author (Cai) read all of the survey responses and the response categories, and commented. After the initial round of analysis, we realized it was useful to add an eighth theme: assessment (including evaluation).

Moreover, given that a large number of respondents made comments about mathematics education research itself, we decided to summarize these separately. For analyzing this category of research, we used the following four labels to distinguish types of comments on our discipline of mathematics education research: theory, methodology, self-reflection (including ethical considerations), interdisciplinarity, and transdisciplinarity. We then summarized the responses per type of comment.

It has been a daunting and humbling experience to study the huge coverage and diversity of topics that our colleagues care about. Any categorization felt like a reduction of the wealth of ideas, and we are aware of the risks of “sorting things out” (Bowker & Star, 2000 ), which come with foregrounding particular challenges rather than others (Stephan et al., 2015 ). Yet the best way to summarize the bigger picture seemed by means of clustering themes and pointing to their relationships. As we identified these eight themes of mathematics education research for the future, a recurring question during the analysis was how to represent them. A list such as Table 2 does not do justice to the interrelations between the themes. Some relationships are very clear, for example, educational approaches (theme 2) working toward educational or societal goals (theme 1). Some themes are pervasive; for example, equity and (positive) affect are both things that educators want to achieve but also phenomena that are at stake during every single moment of learning and teaching. Diagrams we considered to represent such interrelationships were either too specific (limiting the many relevant options, e.g., a star with eight vertices that only link pairs of themes) or not specific enough (e.g., a Venn diagram with eight leaves such as the iPhone symbol for photos). In the end, we decided to use an image and collaborated with Elisabeth Angerer (student assistant in an educational sciences program), who eventually made the drawing in Fig. 1 to capture themes in their relationships.

figure 1

Artistic impression of the future themes

2.2 Has the pandemic changed your view? (2020)

On November 26, 2020, we sent an email to the colleagues who responded to the initial question and who gave permission to be approached by email. We cited their initial response and asked: “Has the pandemic changed your view on the themes of mathematics education research for the coming decade? If so, how?” We received 108 responses by January 12, 2021. The countries from which the responses came included China, Italy, and other places that were hit early by the COVID-19 virus. The length of responses varied from a single word response (“no”) to elaborate texts of up to 2215 words. Some people attached relevant publications. The median length of the responses was 87 words, with a mean length of 148 words and SD = 242. Zenger and Bakker classified them as “no changes” (9 responses) or “clearly different views” (8); the rest of the responses saw the importance of their initial themes reinforced (45), specified their initial responses (43), or added new questions or themes (35). These last categories were not mutually exclusive, because respondents could first state that they thought the initial themes were even more relevant than before and provide additional, more specified themes. We then used the same themes that had been identified in the first round and identified what was stressed or added in the 2020 responses.

3 The themes

The most frequently mentioned theme was what we labeled approaches to teaching (64% of the respondents, see Table 2 ). Next was the theme of goals of mathematics education on which research should shed more light in the coming decade (54%). These goals ranged from specific educational goals to very broad societal ones. Many colleagues referred to mathematics education’s relationships with other practices (communities, institutions…) such as home, continuing education, and work. Teacher professional development is a key area for research in which the other themes return (what should students learn, how, how to assess that, how to use technology and ensure that students are interested?). Technology constitutes its own theme but also plays a key role in many other themes, just like affect. Another theme permeating other ones is what can be summarized as equity, diversity, and inclusion (also social justice, anti-racism, democratic values, and several other values were mentioned). These values are not just societal and educational goals but also drivers for redesigning teaching approaches, using technology, working on more just assessment, and helping learners gain access, become confident, develop interest, or even love for mathematics. To evaluate if approaches are successful and if goals have been achieved, assessment (including evaluation) is also mentioned as a key topic of research.

In the 2020 responses, many wise and general remarks were made. The general gist is that the pandemic (like earlier crises such as the economic crisis around 2008–2010) functioned as a magnifying glass on themes that were already considered important. Due to the pandemic, however, systemic societal and educational problems were said to have become better visible to a wider community, and urge us to think about the potential of a “new normal.”

3.1 Approaches to teaching

We distinguish specific teaching strategies from broader curricular topics.

3.1.1 Teaching strategies

There is a widely recognized need to further design and evaluate various teaching approaches. Among the teaching strategies and types of learning to be promoted that were mentioned in the survey responses are collaborative learning, critical mathematics education, dialogic teaching, modeling, personalized learning, problem-based learning, cross-curricular themes addressing the bigger themes in the world, embodied design, visualization, and interleaved learning. Note, however, that students can also enhance their mathematical knowledge independently from teachers or parents through web tutorials and YouTube videos.

Many respondents emphasized that teaching approaches should do more than promote cognitive development. How can teaching be entertaining or engaging? How can it contribute to the broader educational goals of developing students’ identity, contribute to their empowerment, and help them see the value of mathematics in their everyday life and work? We return to affect in Section 3.7 .

In the 2020 responses, we saw more emphasis on approaches that address modeling, critical thinking, and mathematical or statistical literacy. Moreover, respondents stressed the importance of promoting interaction, collaboration, and higher order thinking, which are generally considered to be more challenging in distance education. One approach worth highlighting is challenge-based education (cf. Johnson et al. 2009 ), because it takes big societal challenges as mentioned in the previous section as its motivation and orientation.

3.1.2 Curriculum

Approaches by which mathematics education can contribute to the aforementioned goals can be distinguished at various levels. Several respondents mentioned challenges around developing a coherent mathematics curriculum, smoothing transitions to higher school levels, and balancing topics, and also the typical overload of topics, the influence of assessment on what is taught, and what teachers can teach. For example, it was mentioned that mathematics teachers are often not prepared to teach statistics. There seems to be little research that helps curriculum authors tackle some of these hard questions as well as how to monitor reform (cf. Shimizu & Vithal, 2019 ). Textbook analysis is mentioned as a necessary research endeavor. But even if curricula within one educational system are reasonably coherent, how can continuity between educational systems be ensured (cf. Jansen et al., 2012 )?

In the 2020 responses, some respondents called for free high-quality curriculum resources. In several countries where Internet access is a problem in rural areas, a shift can be observed from online resources to other types of media such as radio and TV.

3.2 Goals of mathematics education

The theme of approaches is closely linked to that of the theme of goals. For example, as Fulvia Furinghetti (Italy) wrote: “It is widely recognized that critical thinking is a fundamental goal in math teaching. Nevertheless it is still not clear how it is pursued in practice.” We distinguish broad societal and more specific educational goals. These are often related, as Jane Watson (Australia) wrote: “If Education is to solve the social, cultural, economic, and environmental problems of today’s data-driven world, attention must be given to preparing students to interpret the data that are presented to them in these fields.”

3.2.1 Societal goals

Respondents alluded to the need for students to learn to function in the economy and in society more broadly. Apart from instrumental goals of mathematics education, some emphasized goals related to developing as a human being, for instance learning to see the mathematics in the world and develop a relation with the world. Mathematics education in these views should empower students to combat anti-expertise and post-fact tendencies. Several respondents mentioned even larger societal goals such as avoiding extinction as a human species and toxic nationalism, resolving climate change, and building a sustainable future.

In the second round of responses (2020), we saw much more emphasis on these bigger societal issues. The urgency to orient mathematics education (and its research) toward resolving these seemed to be felt more than before. In short, it was stressed that our planet needs to be saved. The big question is what role mathematics education can play in meeting these challenges.

3.2.2 Educational goals

Several respondents expressed a concern that the current goals of mathematics education do not reflect humanity’s and societies’ needs and interests well. Educational goals to be stressed more were mathematical literacy, numeracy, critical, and creative thinking—often with reference to the changing world and the planet being at risk. In particular, the impact of technology was frequently stressed, as this may have an impact on what people need to learn (cf. Gravemeijer et al., 2017 ). If computers can do particular things much better than people, what is it that students need to learn?

Among the most frequently mentioned educational goals for mathematics education were statistical literacy, computational and algorithmic thinking, artificial intelligence, modeling, and data science. More generally, respondents expressed that mathematics education should help learners deploy evidence, reasoning, argumentation, and proof. For example, Michelle Stephan (USA) asked:

What mathematics content should be taught today to prepare students for jobs of the future, especially given growth of the digital world and its impact on a global economy? All of the mathematics content in K-12 can be accomplished by computers, so what mathematical procedures become less important and what domains need to be explored more fully (e.g., statistics and big data, spatial geometry, functional reasoning, etc.)?

One challenge for research is that there is no clear methodology to arrive at relevant and feasible learning goals. Yet there is a need to choose and formulate such goals on the basis of research (cf. Van den Heuvel-Panhuizen, 2005 ).

Several of the 2020 responses mentioned the sometimes problematic way in which numbers, data, and graphs are used in the public sphere (e.g., Ernest, 2020 ; Kwon et al., 2021 ; Yoon et al., 2021 ). Many respondents saw their emphasis on relevant educational goals reinforced, for example, statistical and data literacy, modeling, critical thinking, and public communication. A few pandemic-specific topics were mentioned, such as exponential growth.

3.3 Relation of mathematics education to other practices

Many responses can be characterized as highlighting boundary crossing (Akkerman & Bakker, 2011 ) with disciplines or communities outside mathematics education, such as in science, technology, engineering, art, and mathematics education (STEM or STEAM); parents or families; the workplace; and leisure (e.g., drama, music, sports). An interesting example was the educational potential of mathematical memes—“humorous digital objects created by web users copying an existing image and overlaying a personal caption” (Bini et al., 2020 , p. 2). These boundary crossing-related responses thus emphasize the movements and connections between mathematics education and other practices.

In the 2020 responses, we saw that during the pandemic, the relationship between school and home has become much more important, because most students were (and perhaps still are) learning at home. Earlier research on parental involvement and homework (Civil & Bernier, 2006 ; de Abreu et al., 2006 ; Jackson, 2011 ) proves relevant in the current situation where many countries are still or again in lockdown. Respondents pointed to the need to monitor students and their work and to promote self-regulation. They also put more stress on the political, economic, and financial contexts in which mathematics education functions (or malfunctions, in many respondents’ views).

3.4 Teacher professional development

Respondents explicitly mentioned teacher professional development as an important domain of mathematics education research (including teacher educators’ development). For example, Loide Kapenda (Namibia) wrote, “I am supporting UNESCO whose idea is to focus on how we prepare teachers for the future we want.” (e.g., UNESCO, 2015 ) And, Francisco Rojas (Chile) wrote:

Although the field of mathematics education is broad and each time faced with new challenges (socio-political demands, new intercultural contexts, digital environments, etc.), all of them will be handled at school by the mathematics teacher, both in primary as well as in secondary education. Therefore, from my point of view, pre-service teacher education is one of the most relevant fields of research for the next decade, especially in developing countries.

It is evident from the responses that teaching mathematics is done by a large variety of people, not only by people who are trained as primary school teachers, secondary school mathematics teachers, or mathematicians but also parents, out-of-field teachers, and scientists whose primary discipline is not mathematics but who do use mathematics or statistics. How teachers of mathematics are trained varies accordingly. Respondents frequently pointed to the importance of subject-matter knowledge and particularly noted that many teachers seem ill-prepared to teach statistics (e.g., Lonneke Boels, the Netherlands).

Key questions were raised by several colleagues: “How to train mathematics teachers with a solid foundation in mathematics, positive attitudes towards mathematics teaching and learning, and wide knowledge base linking to STEM?” (anonymous); “What professional development, particularly at the post-secondary level, motivates changes in teaching practices in order to provide students the opportunities to engage with mathematics and be successful?” (Laura Watkins, USA); “How can mathematics educators equip students for sustainable, equitable citizenship? And how can mathematics education equip teachers to support students in this?” (David Wagner, Canada)

In the 2020 responses, it was clear that teachers are incredibly important, especially in the pandemic era. The sudden change to online teaching means that

higher requirements are put forward for teachers’ educational and teaching ability, especially the ability to carry out education and teaching by using information technology should be strengthened. Secondly, teachers’ ability to communicate and cooperate has been injected with new connotation. (Guangming Wang, China)

It is broadly assumed that education will stay partly online, though more so in higher levels of education than in primary education. This has implications for teachers, for instance, they will have to think through how they intend to coordinate teaching on location and online. Hence, one important focus for professional development is the use of technology.

3.5 Technology

Technology deserves to be called a theme in itself, but we want to emphasize that it ran through most of the other themes. First of all, some respondents argued that, due to technological advances in society, the societal and educational goals of mathematics education need to be changed (e.g., computational thinking to ensure employability in a technological society). Second, responses indicated that the changed goals have implications for the approaches in mathematics education. Consider the required curriculum reform and the digital tools to be used in it. Students do not only need to learn to use technology; the technology can also be used to learn mathematics (e.g., visualization, embodied design, statistical thinking). New technologies such as 3D printing, photo math, and augmented and virtual reality offer new opportunities for learning. Society has changed very fast in this respect. Third, technology is suggested to assist in establishing connections with other practices , such as between school and home, or vocational education and work, even though there is a great disparity in how successful these connections are.

In the 2020 responses, there was great concern about the current digital divide (cf. Hodgen et al., 2020 ). The COVID-19 pandemic has thus given cause for mathematics education research to understand better how connections across educational and other practices can be improved with the help of technology. Given the unequal distribution of help by parents or guardians, it becomes all the more important to think through how teachers can use videos and quizzes, how they can monitor their students, how they can assess them (while respecting privacy), and how one can compensate for the lack of social, gestural, and embodied interaction that is possible when being together physically.

Where mobile technology was considered very innovative before 2010, smartphones have become central devices in mathematics education in the pandemic with its reliance on distance learning. Our direct experience showed that phone applications such as WhatsApp and WeChat have become key tools in teaching and learning mathematics in many rural areas in various continents where few people have computers (for a report on podcasts distributed through WhatsApp, community loudspeakers, and local radio stations in Colombia, see Saenz et al., 2020 ).

3.6 Equity, diversity, and inclusion

Another cross-cutting theme can be labeled “equity, diversity, and inclusion.” We use this triplet to cover any topic that highlights these and related human values such as equality, social and racial justice, social emancipation, and democracy that were also mentioned by respondents (cf. Dobie & Sherin, 2021 ). In terms of educational goals , many respondents stressed that mathematics education should be for all students, including those who have special needs, who live in poverty, who are learning the instruction language, who have a migration background, who consider themselves LGBTQ+, have a traumatic or violent history, or are in whatever way marginalized. There is broad consensus that everyone should have access to high-quality mathematics education. However, as Niral Shah (USA) notes, less attention has been paid to “how phenomena related to social markers (e.g., race, class, gender) interact with phenomena related to the teaching and learning of mathematical content.”

In terms of teaching approaches , mathematics education is characterized by some respondents from particular countries as predominantly a white space where some groups feel or are excluded (cf. Battey, 2013 ). There is a general concern that current practices of teaching mathematics may perpetuate inequality, in particular in the current pandemic. In terms of assessment , mathematics is too often used or experienced as a gatekeeper rather than as a powerful resource (cf. Martin et al., 2010 ). Steve Lerman (UK) “indicates that understanding how educational opportunities are distributed inequitably, and in particular how that manifests in each end every classroom, is a prerequisite to making changes that can make some impact on redistribution.” A key research aim therefore is to understand what excludes students from learning mathematics and what would make mathematics education more inclusive (cf. Roos, 2019 ). And, what does professional development of teachers that promotes equity look like?

In 2020, many respondents saw their emphasis on equity and related values reinforced in the current pandemic with its risks of a digital divide, unequal access to high-quality mathematics education, and unfair distribution of resources. A related future research theme is how the so-called widening achievement gaps can be remedied (cf. Bawa, 2020 ). However, warnings were also formulated that thinking in such deficit terms can perpetuate inequality (cf. Svensson et al., 2014 ). A question raised by Dor Abrahamson (USA) is, “What roles could digital technology play, and in what forms, in restoring justice and celebrating diversity?”

Though entangled with many other themes, affect is also worth highlighting as a theme in itself. We use the term affect in a very broad sense to point to psychological-social phenomena such as emotion, love, belief, attitudes, interest, curiosity, fun, engagement, joy, involvement, motivation, self-esteem, identity, anxiety, alienation, and feeling of safety (cf. Cobb et al., 2009 ; Darragh, 2016 ; Hannula, 2019 ; Schukajlow et al., 2017 ). Many respondents emphasized the importance of studying these constructs in relation to (and not separate from) what is characterized as cognition. Some respondents pointed out that affect is not just an individual but also a social phenomenon, just like learning (cf. Chronaki, 2019 ; de Freitas et al., 2019 ; Schindler & Bakker, 2020 ).

Among the educational goals of mathematics education, several participants mentioned the need to generate and foster interest in mathematics. In terms of approaches , much emphasis was put on the need to avoid anxiety and alienation and to engage students in mathematical activity.

In the 2020 responses, more emphasis was put on the concern about alienation, which seems to be of special concern when students are socially distanced from peers and teachers as to when teaching takes place only through technology . What was reiterated in the 2020 responses was the importance of students’ sense of belonging in a mathematics classroom (cf. Horn, 2017 )—a topic closely related to the theme of equity, diversity, and inclusion discussed before.

3.8 Assessment

Assessment and evaluation were not often mentioned explicitly, but they do not seem less important than the other related themes. A key challenge is to assess what we value rather than valuing what we assess. In previous research, the assessment of individual students has received much attention, but what seems to be neglected is the evaluation of curricula. As Chongyang Wang (China) wrote, “How to evaluate the curriculum reforms. When we pay much energy in reforming our education and curriculum, do we imagine how to ensure it will work and there will be pieces of evidence found after the new curricula are carried out? How to prove the reforms work and matter?” (cf. Shimizu & Vithal, 2019 )

In the 2020 responses, there was an emphasis on assessment at a distance. Distance education generally is faced with the challenge of evaluating student work, both formatively and summatively. We predict that so-called e-assessment, along with its privacy challenges, will generate much research interest in the near future (cf. Bickerton & Sangwin, 2020 ).

4 Mathematics education research itself

Although we only asked for future themes, many respondents made interesting comments about research in mathematics education and its connections with other disciplines and practices (such as educational practice, policy, home settings). We have grouped these considerations under the subheadings of theory, methodology, reflection on our discipline, and interdisciplinarity and transdisciplinarity. As with the previous categorization into themes, we stress that these four types are not mutually exclusive as theoretical and methodological considerations can be intricately intertwined (Radford, 2008 ).

Several respondents expressed their concern about the fragmentation and diversity of theories used in mathematics education research (cf. Bikner-Ahsbahs & Prediger, 2014 ). The question was raised how mathematics educators can “work together to obtain valid, reliable, replicable, and useful findings in our field” and “How, as a discipline, can we encourage sustained research on core questions using commensurable perspectives and methods?” (Keith Weber, USA). One wish was “comparing theoretical perspectives for explanatory power” (K. Subramaniam, India). At the same time, it was stressed that “we cannot continue to pretend that there is just one culture in the field of mathematics education, that all the theoretical framework may be applied in whichever culture and that results are universal” (Mariolina Bartolini Bussi, Italy). In addition, the wish was expressed to deepen theoretical notions such as numeracy, equity, and justice as they play out in mathematics education.

4.2 Methodology

Many methodological approaches were mentioned as potentially useful in mathematics education research: randomized studies, experimental studies, replication, case studies, and so forth. Particular attention was paid to “complementary methodologies that bridge the ‘gap’ between mathematics education research and research on mathematical cognition” (Christian Bokhove, UK), as, for example, done in Gilmore et al. ( 2018 ). Also, approaches were mentioned that intend to bridge the so-called gap between educational practice and research, such as lesson study and design research. For example, Kay Owens (Australia) pointed to the challenge of studying cultural context and identity: “Such research requires a multi-faceted research methodology that may need to be further teased out from our current qualitative (e.g., ethnographic) and quantitative approaches (‘paper and pencil’ (including computing) testing). Design research may provide further possibilities.”

Francisco Rojas (Chile) highlighted the need for more longitudinal and cross-sectional research, in particular in the context of teacher professional development:

It is not enough to investigate what happens in pre-service teacher education but understand what effects this training has in the first years of the professional career of the new teachers of mathematics, both in primary and secondary education. Therefore, increasingly more longitudinal and cross-sectional studies will be required to understand the complexity of the practice of mathematics teachers, how the professional knowledge that articulates the practice evolves, and what effects have the practice of teachers on the students’ learning of mathematics.

4.3 Reflection on our discipline

Calls were made for critical reflection on our discipline. One anonymous appeal was for more self-criticism and scientific modesty: Is research delivering, or is it drawing away good teachers from teaching? Do we do research primarily to help improve mathematics education or to better understand phenomena? (cf. Proulx & Maheux, 2019 ) The general gist of the responses was a sincere wish to be of value to the world and mathematics education more specifically and not only do “research for the sake of research” (Zahra Gooya, Iran). David Bowers (USA) expressed several reflection-inviting views about the nature of our discipline, for example:

We must normalize (and expect) the full taking up the philosophical and theoretical underpinnings of all of our work (even work that is not considered “philosophical”). Not doing so leads to uncritical analysis and implications.

We must develop norms wherein it is considered embarrassing to do “uncritical” research.

There is no such thing as “neutral.” Amongst other things, this means that we should be cultivating norms that recognize the inherent political nature of all work, and norms that acknowledge how superficially “neutral” work tends to empower the oppressor.

We must recognize the existence of but not cater to the fragility of privilege.

In terms of what is studied, some respondents felt that the mathematics education research “literature has been moving away from the original goals of mathematics education. We seem to have been investigating everything but the actual learning of important mathematics topics.” (Lyn English, Australia) In terms of the nature of our discipline, Taro Fujita (UK) argued that our discipline can be characterized as a design science, with designing mathematical learning environments as the core of research activities (cf. Wittmann, 1995 ).

A tension that we observe in different views is the following: On the one hand, mathematics education research has its origin in helping teachers teach particular content better. The need for such so-called didactical, topic-specific research is not less important today but perhaps less fashionable for funding schemes that promote innovative, ground-breaking research. On the other hand, over time it has become clear that mathematics education is a multi-faceted socio-cultural and political endeavor under the influence of many local and global powers. It is therefore not surprising that the field of mathematics education research has expanded so as to include an increasingly wide scope of themes that are at stake, such as the marginalization of particular groups. We therefore highlight Niral Shah’s (USA) response that “historically, these domains of research [content-specific vs socio-political] have been decoupled. The field would get closer to understanding the experiences of minoritized students if we could connect these lines of inquiry.”

Another interesting reflective theme was raised by Nouzha El Yacoubi (Morocco): To what extent can we transpose “research questions from developed to developing countries”? As members of the plenary panel at PME 2019 (e.g., Kazima, 2019 ; Kim, 2019 ; Li, 2019 ) conveyed well, adopting interventions that were successful in one place in another place is far from trivial (cf. Gorard, 2020 ).

Juan L. Piñeiro (Spain in 2019, Chile in 2020) highlighted that “mathematical concepts and processes have different natures. Therefore, can it be characterized using the same theoretical and methodological tools?” More generally, one may ask if our theories and methodologies—often borrowed from other disciplines—are well suited to the ontology of our own discipline. A discussion started by Niss ( 2019 ) on the nature of our discipline, responded to by Bakker ( 2019 ) and Cai and Hwang ( 2019 ), seems worth continuing.

An important question raised in several comments is how close research should be to existing curricula. One respondent (Benjamin Rott, Germany) noted that research on problem posing often does “not fit into school curricula.” This makes the application of research ideas and findings problematic. However, one could argue that research need not always be tied to existing (local) educational contexts. It can also be inspirational, seeking principles of what is possible (and how) with a longer-term view on how curricula may change in the future. One option is, as Simon Zell (Germany) suggests, to test designs that cover a longer timeframe than typically done. Another way to bridge these two extremes is “collaboration between teachers and researchers in designing and publishing research” (K. Subramaniam, India) as is promoted by facilitating teachers to do PhD research (Bakx et al., 2016 ).

One of the responding teacher-researchers (Lonneke Boels, the Netherlands) expressed the wish that research would become available “in a more accessible form.” This wish raises the more general questions of whose responsibility it is to do such translation work and how to communicate with non-researchers. Do we need a particular type of communication research within mathematics education to learn how to convey particular key ideas or solid findings? (cf. Bosch et al., 2017 )

4.4 Interdisciplinarity and transdisciplinarity

Many respondents mentioned disciplines which mathematics education research can learn from or should collaborate with (cf. Suazo-Flores et al., 2021 ). Examples are history, mathematics, philosophy, psychology, psychometry, pedagogy, educational science, value education (social, emotional), race theory, urban education, neuroscience/brain research, cognitive science, and computer science didactics. “A big challenge here is how to make diverse experts approach and talk to one another in a productive way.” (David Gómez, Chile)

One of the most frequently mentioned disciplines in relation to our field is history. It is a common complaint in, for instance, the history of medicine that historians accuse medical experts of not knowing historical research and that medical experts accuse historians of not understanding the medical discipline well enough (Beckers & Beckers, 2019 ). This tension raises the question who does and should do research into the history of mathematics or of mathematics education and to what broader purpose.

Some responses go beyond interdisciplinarity, because resolving the bigger issues such as climate change and a more equitable society require collaboration with non-researchers (transdisciplinarity). A typical example is the involvement of educational practice and policy when improving mathematics education (e.g., Potari et al., 2019 ).

Let us end this section with a word of hope, from an anonymous respondent: “I still believe (or hope?) that the pandemic, with this making-inequities-explicit, would help mathematics educators to look at persistent and systemic inequalities more consistently in the coming years.” Having learned so much in the past year could indeed provide an opportunity to establish a more equitable “new normal,” rather than a reversion to the old normal, which one reviewer worried about.

5 The themes in their coherence: an artistic impression

As described above, we identified eight themes of mathematics education research for the future, which we discussed one by one. The disadvantage of this list-wise discussion is that the entanglement of the themes is backgrounded. To compensate for that drawback, we here render a brief interpretation of the drawing of Fig. 1 . While doing so, we invite readers to use their own creative imagination and perhaps use the drawing for other purposes (e.g., ask researchers, students, or teachers: Where would you like to be in this landscape? What mathematical ideas do you spot?). The drawing mainly focuses on the themes that emerged from the first round of responses but also hints at experiences from the time of the pandemic, for instance distance education. In Appendix 1 , we specify more of the details in the drawing and we provide a link to an annotated image (available at https://www.fisme.science.uu.nl/toepassingen/28937/ ).

The boat on the river aims to represent teaching approaches. The hand drawing of the boat hints at the importance of educational design: A particular approach is being worked out. On the boat, a teacher and students work together toward educational and societal goals, further down the river. The graduation bridge is an intermediate educational goal to pass, after which there are many paths leading to other goals such as higher education, citizenship, and work in society. Relations to practices outside mathematics education are also shown. In the left bottom corner, the house and parents working and playing with children represent the link of education with the home situation and leisure activity.

The teacher, represented by the captain in the foreground of the ship, is engaged in professional development, consulting a book, but also learning by doing (cf. Bakkenes et al., 2010 , on experimenting, using resources, etc.). Apart from graduation, there are other types of goals for teachers and students alike, such as equity, positive affect, and fluent use of technology. During their journey (and partially at home, shown in the left bottom corner), students learn to orient themselves in the world mathematically (e.g., fractal tree, elliptical lake, a parabolic mountain, and various platonic solids). On their way toward various goals, both teacher and students use particular technology (e.g., compass, binoculars, tablet, laptop). The magnifying glass (representing research) zooms in on a laptop screen that portrays distance education, hinting at the consensus that the pandemic magnifies some issues that education was already facing (e.g., the digital divide).

Equity, diversity, and inclusion are represented with the rainbow, overarching everything. On the boat, students are treated equally and the sailing practice is inclusive in the sense that all perform at their own level—getting the support they need while contributing meaningfully to the shared activity. This is at least what we read into the image. Affect is visible in various ways. First of all, the weather represents moods in general (rainy and dark side on the left; sunny bright side on the right). Second, the individual students (e.g., in the crow’s nest) are interested in, anxious about, and attentive to the things coming up during their journey. They are motivated to engage in all kinds of tasks (handling the sails, playing a game of chance with a die, standing guard in the crow’s nest, etc.). On the bridge, the graduates’ pride and happiness hints at positive affect as an educational goal but also represents the exam part of the assessment. The assessment also happens in terms of checks and feedback on the boat. The two people next to the house (one with a camera, one measuring) can be seen as assessors or researchers observing and evaluating the progress on the ship or the ship’s progress.

More generally, the three types of boats in the drawing represent three different spaces, which Hannah Arendt ( 1958 ) would characterize as private (paper-folded boat near the boy and a small toy boat next to the girl with her father at home), public/political (ships at the horizon), and the in-between space of education (the boat with the teacher and students). The students and teacher on the boat illustrate school as a special pedagogic form. Masschelein and Simons ( 2019 ) argue that the ancient Greek idea behind school (σχολή, scholè , free time) is that students should all be treated as equal and should all get equal opportunities. At school, their descent does not matter. At school, there is time to study, to make mistakes, without having to work for a living. At school, they learn to collaborate with others from diverse backgrounds, in preparation for future life in the public space. One challenge of the lockdown situation as a consequence of the pandemic is how to organize this in-between space in a way that upholds its special pedagogic form.

6 Research challenges

Based on the eight themes and considerations about mathematics education research itself, we formulate a set of research challenges that strike us as deserving further discussion (cf. Stephan et al., 2015 ). We do not intend to suggest these are more important than others or that some other themes are less worthy of investigation, nor do we suggest that they entail a research agenda (cf. English, 2008 ).

6.1 Aligning new goals, curricula, and teaching approaches

There seems to be relatively little attention within mathematics education research for curricular issues, including topics such as learning goals, curriculum standards, syllabi, learning progressions, textbook analysis, curricular coherence, and alignment with other curricula. Yet we feel that we as mathematics education researchers should care about these topics as they may not necessarily be covered by other disciplines. For example, judging from Deng’s ( 2018 ) complaint about the trends in the discipline of curriculum studies, we cannot assume scholars in that field to address issues specific to the mathematics-focused curriculum (e.g., the Journal of Curriculum Studies and Curriculum Inquiry have published only a limited number of studies on mathematics curricula).

Learning goals form an important element of curricula or standards. It is relatively easy to formulate important goals in general terms (e.g., critical thinking or problem solving). As a specific example, consider mathematical problem posing (Cai & Leikin, 2020 ), which curriculum standards have specifically pointed out as an important educational goal—developing students’ problem-posing skills. Students should be provided opportunities to formulate their own problems based on situations. However, there are few problem-posing activities in current mathematics textbooks and classroom instruction (Cai & Jiang, 2017 ). A similar observation can be made about problem solving in Dutch primary textbooks (Kolovou et al., 2009 ). Hence, there is a need for researchers and educators to align problem posing in curriculum standards, textbooks, classroom instruction, and students’ learning.

The challenge we see for mathematics education researchers is to collaborate with scholars from other disciplines (interdisciplinarity) and with non-researchers (transdisciplinarity) in figuring out how the desired societal and educational goals can be shaped in mathematics education. Our discipline has developed several methodological approaches that may help in formulating learning goals and accompanying teaching approaches (cf. Van den Heuvel-Panhuizen, 2005 ), including epistemological analyses (Sierpinska, 1990 ), historical and didactical phenomenology (Bakker & Gravemeijer, 2006 ; Freudenthal, 1986 ), and workplace studies (Bessot & Ridgway, 2000 ; Hoyles et al., 2001 ). However, how should the outcomes of such research approaches be weighed against each other and combined to formulate learning goals for a balanced, coherent curriculum? What is the role of mathematics education researchers in relation to teachers, policymakers, and other stakeholders (Potari et al., 2019 )? In our discipline, we seem to lack a research-informed way of arriving at the formulation of suitable educational goals without overloading the curricula.

6.2 Researching mathematics education across contexts

Though methodologically and theoretically challenging, it is of great importance to study learning and teaching mathematics across contexts. After all, students do not just learn at school; they can also participate in informal settings (Nemirovsky et al., 2017 ), online forums, or affinity networks (Ito et al., 2018 ) where they may share for instance mathematical memes (Bini et al., 2020 ). Moreover, teachers are not the only ones teaching mathematics: Private tutors, friends, parents, siblings, or other relatives can also be involved in helping children with their mathematics. Mathematics learning could also be situated on streets or in museums, homes, and other informal settings. This was already acknowledged before 2020, but the pandemic has scattered learners and teachers away from the typical central school locations and thus shifted the distribution of labor.

In particular, physical and virtual spaces of learning have been reconfigured due to the pandemic. Issues of timing also work differently online, for example, if students can watch online lectures or videos whenever they like (asynchronously). Such reconfigurations of space and time also have an effect on the rhythm of education and hence on people’s energy levels (cf. Lefebvre, 2004 ). More specifically, the reconfiguration of the situation has affected many students’ levels of motivation and concentration (e.g., Meeter et al., 2020 ). As Engelbrecht et al. ( 2020 ) acknowledged, the pandemic has drastically changed the teaching and learning model as we knew it. It is quite possible that some existing theories about teaching and learning no longer apply in the same way. An interesting question is whether and how existing theoretical frameworks can be adjusted or whether new theoretical orientations need to be developed to better understand and promote productive ways of blended or online teaching, across contexts.

6.3 Focusing teacher professional development

Professional development of teachers and teacher educators stands out from the survey as being in need of serious investment. How can teachers be prepared for the unpredictable, both in terms of beliefs and actions? During the pandemic, teachers have been under enormous pressure to make quick decisions in redesigning their courses, to learn to use new technological tools, to invent creative ways of assessment, and to do what was within their capacity to provide opportunities to their students for learning mathematics—even if technological tools were limited (e.g., if students had little or no computer or internet access at home). The pressure required both emotional adaption and instructional adjustment. Teachers quickly needed to find useful information, which raises questions about the accessibility of research insights. Given the new situation, limited resources, and the uncertain unfolding of education after lockdowns, focusing teacher professional development on necessary and useful topics will need much attention. In particular, there is a need for longitudinal studies to investigate how teachers’ learning actually affects teachers’ classroom instruction and students’ learning.

In the surveys, respondents mainly referred to teachers as K-12 school mathematics teachers, but some also stressed the importance of mathematics teacher educators (MTEs). In addition to conducting research in mathematics education, MTEs are acting in both the role of teacher educators and of mathematics teachers. There has been increased research on MTEs as requiring professional development (Goos & Beswick, 2021 ). Within the field of mathematics education, there is an emerging need and interest in how mathematics teacher educators themselves learn and develop. In fact, the changing situation also provides an opportunity to scrutinize our habitual ways of thinking and become aware of what Jullien ( 2018 ) calls the “un-thought”: What is it that we as educators and researchers have not seen or thought about so much about that the sudden reconfiguration of education forces us to reflect upon?

6.4 Using low-tech resources

Particular strands of research focus on innovative tools and their applications in education, even if they are at the time too expensive (even too labor intensive) to use at large scale. Such future-oriented studies can be very interesting given the rapid advances in technology and attractive to funding bodies focusing on innovation. Digital technology has become ubiquitous, both in schools and in everyday life, and there is already a significant body of work capitalizing on aspects of technology for research and practice in mathematics education.

However, as Cai et al. ( 2020 ) indicated, technology advances so quickly that addressing research problems may not depend so much on developing a new technological capability as on helping researchers and practitioners learn about new technologies and imagine effective ways to use them. Moreover, given the millions of students in rural areas who during the pandemic have only had access to low-tech resources such as podcasts, radio, TV, and perhaps WhatsApp through their parents’ phones, we would like to see more research on what learning, teaching, and assessing mathematics through limited tools such as Whatsapp or WeChat look like and how they can be improved. In fact, in China, a series of WeChat-based mini-lessons has been developed and delivered through the WeChat video function during the pandemic. Even when the pandemic is under control, mini-lessons are still developed and circulated through WeChat. We therefore think it is important to study the use and influence of low-tech resources in mathematics education.

6.5 Staying in touch online

With the majority of students learning at home, a major ongoing challenge for everyone has been how to stay in touch with each other and with mathematics. With less social interaction, without joint attention in the same physical space and at the same time, and with the collective only mediated by technology, becoming and staying motivated to learn has been a widely felt challenge. It is generally expected that in the higher levels of education, more blended or distant learning elements will be built into education. Careful research on the affective, embodied, and collective aspects of learning and teaching mathematics is required to overcome eventually the distance and alienation so widely experienced in online education. That is, we not only need to rethink social interactions between students and/or teachers in different settings but must also rethink how to engage and motivate students in online settings.

6.6 Studying and improving equity without perpetuating inequality

Several colleagues have warned, for a long time, that one risk of studying achievement gaps, differences between majority and minority groups, and so forth can also perpetuate inequity. Admittedly, pinpointing injustice and the need to invest in particular less privileged parts of education is necessary to redirect policymakers’ and teachers’ attention and gain funding. However, how can one reorient resources without stigmatizing? For example, Svensson et al. ( 2014 ) pointed out that research findings can fuel political debates about groups of people (e.g., parents with a migration background), who then may feel insecure about their own capacities. A challenge that we see is to identify and understand problematic situations without legitimizing problematic stereotyping (Hilt, 2015 ).

Furthermore, the field of mathematics education research does not have a consistent conceptualization of equity. There also seem to be regional differences: It struck us that equity is the more common term in the responses from the Americas, whereas inclusion and diversity were more often mentioned in the European responses. Future research will need to focus on both the conceptualization of equity and on improving equity and related values such as inclusion.

6.7 Assessing online

A key challenge is how to assess online and to do so more effectively. This challenge is related to both privacy, ethics, and performance issues. It is clear that online assessment may have significant advantages to assess student mathematics learning, such as more flexibility in test-taking and fast scoring. However, many teachers have faced privacy concerns, and we also have the impression that in an online environment it is even more challenging to successfully assess what we value rather than merely assessing what is relatively easy to assess. In particular, we need to systematically investigate any possible effect of administering assessments online as researchers have found a differential effect of online assessment versus paper-and-pencil assessment (Backes & Cowan, 2019 ). What further deserves careful ethical attention is what happens to learning analytics data that can and are collected when students work online.

6.8 Doing and publishing interdisciplinary research

When analyzing the responses, we were struck by a discrepancy between what respondents care about and what is typically researched and published in our monodisciplinary journals. Most of the challenges mentioned in this section require interdisciplinary or even transdisciplinary approaches (see also Burkhardt, 2019 ).

An overarching key question is: What role does mathematics education research play in addressing the bigger and more general challenges mentioned by our respondents? The importance of interdisciplinarity also raises a question about the scope of journals that focus on mathematics education research. Do we need to broaden the scope of monodisciplinary journals so that they can publish important research that combines mathematics education research with another disciplinary perspective? As editors, we see a place for interdisciplinary studies as long as there is one strong anchor in mathematics education research. In fact, there are many researchers who do not identify themselves as mathematics education researchers but who are currently doing high-quality work related to mathematics education in fields such as educational psychology and the cognitive and learning sciences. Encouraging the reporting of high-quality mathematics education research from a broader spectrum of researchers would serve to increase the impact of the mathematics education research journals in the wider educational arena. This, in turn, would serve to encourage further collaboration around mathematics education issues from various disciplines. Ultimately, mathematics education research journals could act as a hub for interdisciplinary collaboration to address the pressing questions of how mathematics is learned and taught.

7 Concluding remarks

In this paper, based on a survey conducted before and during the pandemic, we have examined how scholars in the field of mathematics education view the future of mathematics education research. On the one hand, there are no major surprises about the areas we need to focus on in the future; the themes are not new. On the other hand, the responses also show that the areas we have highlighted still persist and need further investigation (cf. OECD, 2020 ). But, there are a few areas, based on both the responses of the scholars and our own discussions and views, that stand out as requiring more attention. For example, we hope that these survey results will serve as propelling conversation about mathematics education research regarding online assessment and pedagogical considerations for virtual teaching.

The survey results are limited in two ways. The set of respondents to the survey is probably not representative of all mathematics education researchers in the world. In that regard, perhaps scholars in each country could use the same survey questions to survey representative samples within each country to understand how the scholars in that country view future research with respect to regional needs. The second limitation is related to the fact that mathematics education is a very culturally dependent field. Cultural differences in the teaching and learning of mathematics are well documented. Given the small numbers of responses from some continents, we did not break down the analysis for regional comparison. Representative samples from each country would help us see how scholars from different countries view research in mathematics education; they will add another layer of insights about mathematics education research to complement the results of the survey presented here. Nevertheless, we sincerely hope that the findings from the surveys will serve as a discussion point for the field of mathematics education to pursue continuous improvement.

Akkerman, S. F., & Bakker, A. (2011). Boundary crossing and boundary objects. Review of Educational Research , 81 (2), 132–169. https://doi.org/10.3102/0034654311404435

Article   Google Scholar  

Arendt, H. (1958/1998). The human condition (2nd ed.). University of Chicago Press.

Backes, B., & Cowan, J. (2019). Is the pen mightier than the keyboard? The effect of online testing on measured student achievement. Economics of Education Review , 68 , 89–103. https://doi.org/10.1016/j.econedurev.2018.12.007

Bakkenes, I., Vermunt, J. D., & Wubbels, T. (2010). Teacher learning in the context of educational innovation: Learning activities and learning outcomes of experienced teachers. Learning and Instruction , 20 (6), 533–548. https://doi.org/10.1016/j.learninstruc.2009.09.001

Bakker, A. (2019). What is worth publishing? A response to Niss. For the Learning of Mathematics , 39 (3), 43–45.

Google Scholar  

Bakker, A., & Gravemeijer, K. P. (2006). An historical phenomenology of mean and median. Educational Studies in Mathematics , 62 (2), 149–168. https://doi.org/10.1007/s10649-006-7099-8

Bakx, A., Bakker, A., Koopman, M., & Beijaard, D. (2016). Boundary crossing by science teacher researchers in a PhD program. Teaching and Teacher Education , 60 , 76–87. https://doi.org/10.1016/j.tate.2016.08.003

Battey, D. (2013). Access to mathematics: “A possessive investment in whiteness”. Curriculum Inquiry , 43 (3), 332–359.

Bawa, P. (2020). Learning in the age of SARS-COV-2: A quantitative study of learners’ performance in the age of emergency remote teaching. Computers and Education Open , 1 , 100016. https://doi.org/10.1016/j.caeo.2020.100016

Beckers, D., & Beckers, A. (2019). ‘Newton was heel exact wetenschappelijk – ook in zijn chemische werk’. Nederlandse wetenschapsgeschiedenis in niet-wetenschapshistorische tijdschriften, 1977–2017. Studium , 12 (4), 185–197. https://doi.org/10.18352/studium.10203

Bessot, A., & Ridgway, J. (Eds.). (2000). Education for mathematics in the workplace . Springer.

Bickerton, R. T., & Sangwin, C. (2020). Practical online assessment of mathematical proof. arXiv preprint:2006.01581 . https://arxiv.org/pdf/2006.01581.pdf .

Bikner-Ahsbahs, A., & Prediger, S. (Eds.). (2014). Networking of theories as a research practice in mathematics education . Springer.

Bini, G., Robutti, O., & Bikner-Ahsbahs, A. (2020). Maths in the time of social media: Conceptualizing the Internet phenomenon of mathematical memes. International Journal of Mathematical Education in Science and Technology , 1–40. https://doi.org/10.1080/0020739x.2020.1807069

Bosch, M., Dreyfus, T., Primi, C., & Shiel, G. (2017, February). Solid findings in mathematics education: What are they and what are they good for? CERME 10 . Ireland: Dublin https://hal.archives-ouvertes.fr/hal-01849607

Bowker, G. C., & Star, S. L. (2000). Sorting things out: Classification and its consequences . MIT Press. https://doi.org/10.7551/mitpress/6352.001.0001

Burkhardt, H. (2019). Improving policy and practice. Educational Designer , 3 (12) http://www.educationaldesigner.org/ed/volume3/issue12/article46/

Cai, J., & Hwang, S. (2019). Constructing and employing theoretical frameworks in (mathematics) education research. For the Learning of Mathematics , 39 (3), 44–47.

Cai, J., & Jiang, C. (2017). An analysis of problem-posing tasks in Chinese and U.S. elementary mathematics textbooks. International Journal of Science and Mathematics Education , 15 (8), 1521–1540. https://doi.org/10.1007/s10763-016-9758-2

Cai, J., & Leikin, R. (2020). Affect in mathematical problem posing: Conceptualization, advances, and future directions for research. Educational Studies in Mathematics , 105 , 287–301. https://doi.org/10.1007/s10649-020-10008-x

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., … Hiebert, J. (2020). Improving the impact of research on practice: Capitalizing on technological advances for research. Journal for Research in Mathematics Education , 51 (5), 518–529 https://pubs.nctm.org/view/journals/jrme/51/5/article-p518.xml

Chronaki, A. (2019). Affective bodying of mathematics, children and difference: Choreographing ‘sad affects’ as affirmative politics in early mathematics teacher education. ZDM-Mathematics Education , 51 (2), 319–330. https://doi.org/10.1007/s11858-019-01045-9

Civil, M., & Bernier, E. (2006). Exploring images of parental participation in mathematics education: Challenges and possibilities. Mathematical Thinking and Learning , 8 (3), 309–330. https://doi.org/10.1207/s15327833mtl0803_6

Cobb, P., Gresalfi, M., & Hodge, L. L. (2009). An interpretive scheme for analyzing the identities that students develop in mathematics classrooms. Journal for Research in Mathematics Education , 40 ( 1 ), 40–68 https://pubs.nctm.org/view/journals/jrme/40/1/article-p40.xml

Darragh, L. (2016). Identity research in mathematics education. Educational Studies in Mathematics , 93 (1), 19–33. https://doi.org/10.1007/s10649-016-9696-5

de Abreu, G., Bishop, A., & Presmeg, N. C. (Eds.). (2006). Transitions between contexts of mathematical practices . Kluwer.

de Freitas, E., Ferrara, F., & Ferrari, G. (2019). The coordinated movements of collaborative mathematical tasks: The role of affect in transindividual sympathy. ZDM-Mathematics Education , 51 (2), 305–318. https://doi.org/10.1007/s11858-018-1007-4

Deng, Z. (2018). Contemporary curriculum theorizing: Crisis and resolution. Journal of Curriculum Studies , 50 (6), 691–710. https://doi.org/10.1080/00220272.2018.1537376

Dobie, T. E., & Sherin, B. (2021). The language of mathematics teaching: A text mining approach to explore the zeitgeist of US mathematics education. Educational Studies in Mathematics .  https://doi.org/10.1007/s10649-020-10019-8

Eames, C., & Eames, R. (1977). Powers of Ten [Film]. YouTube. https://www.youtube.com/watch?v=0fKBhvDjuy0

Engelbrecht, J., Borba, M. C., Llinares, S., & Kaiser, G. (2020). Will 2020 be remembered as the year in which education was changed? ZDM-Mathematics Education , 52 (5), 821–824. https://doi.org/10.1007/s11858-020-01185-3

English, L. (2008). Setting an agenda for international research in mathematics education. In L. D. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 3–19). Routledge.

Ernest, P. (2020). Unpicking the meaning of the deceptive mathematics behind the COVID alert levels. Philosophy of Mathematics Education Journal , 36 http://socialsciences.exeter.ac.uk/education/research/centres/stem/publications/pmej/pome36/index.html

Freudenthal, H. (1986). Didactical phenomenology of mathematical structures . Springer.

Gilmore, C., Göbel, S. M., & Inglis, M. (2018). An introduction to mathematical cognition . Routledge.

Goos, M., & Beswick, K. (Eds.). (2021). The learning and development of mathematics teacher educators: International perspectives and challenges . Springer. https://doi.org/10.1007/978-3-030-62408-8

Gorard, S. (Ed.). (2020). Getting evidence into education. Evaluating the routes to policy and practice . Routledge.

Gravemeijer, K., Stephan, M., Julie, C., Lin, F.-L., & Ohtani, M. (2017). What mathematics education may prepare students for the society of the future? International Journal of Science and Mathematics Education , 15 (1), 105–123. https://doi.org/10.1007/s10763-017-9814-6

Hannula, M. S. (2019). Young learners’ mathematics-related affect: A commentary on concepts, methods, and developmental trends. Educational Studies in Mathematics , 100 (3), 309–316. https://doi.org/10.1007/s10649-018-9865-9

Hilt, L. T. (2015). Included as excluded and excluded as included: Minority language pupils in Norwegian inclusion policy. International Journal of Inclusive Education , 19 (2), 165–182.

Hodgen, J., Taylor, B., Jacques, L., Tereshchenko, A., Kwok, R., & Cockerill, M. (2020). Remote mathematics teaching during COVID-19: Intentions, practices and equity . UCL Institute of Education https://discovery.ucl.ac.uk/id/eprint/10110311/

Horn, I. S. (2017). Motivated: Designing math classrooms where students want to join in . Heinemann.

Hoyles, C., Noss, R., & Pozzi, S. (2001). Proportional reasoning in nursing practice. Journal for Research in Mathematics Education , 32 (1), 4–27. https://doi.org/10.2307/749619

Ito, M., Martin, C., Pfister, R. C., Rafalow, M. H., Salen, K., & Wortman, A. (2018). Affinity online: How connection and shared interest fuel learning . NYU Press.

Jackson, K. (2011). Approaching participation in school-based mathematics as a cross-setting phenomenon. The Journal of the Learning Sciences , 20 (1), 111–150. https://doi.org/10.1080/10508406.2011.528319

Jansen, A., Herbel-Eisenmann, B., & Smith III, J. P. (2012). Detecting students’ experiences of discontinuities between middle school and high school mathematics programs: Learning during boundary crossing. Mathematical Thinking and Learning , 14 (4), 285–309. https://doi.org/10.1080/10986065.2012.717379

Johnson, L. F., Smith, R. S., Smythe, J. T., & Varon, R. K. (2009). Challenge-based learning: An approach for our time (pp. 1–38). The New Media Consortium https://www.learntechlib.org/p/182083

Jullien, F. (2018). Living off landscape: Or the unthought-of in reason . Rowman & Littlefield.

Kazima, M. (2019). What is proven to work in successful countries should be implemented in other countries: The case of Malawi and Zambia. In M. Graven, H. Venkat, A. A. Essien, & P. Vale (Eds.), Proceedings of the 43rd conference of the international group for the Psychology of Mathematics Education (Vol. 1, pp. 73–78). PME.

Kim, H. (2019). Ask again, “why should we implement what works in successful countries?” In M. Graven, H. Venkat, A. A. Essien, & P. Vale (Eds.), Proceedings of the 43rd conference of the international group for the Psychology of Mathematics Education (Vol. 1, pp. 79–82). PME.

Kolovou, A., Van Den Heuvel-Panhuizen, M., & Bakker, A. (2009). Non-routine problem solving tasks in primary school mathematics textbooks—a needle in a haystack. Mediterranean Journal for Research in Mathematics Education , 8 (2), 29–66.

Kwon, O. N., Han, C., Lee, C., Lee, K., Kim, K., Jo, G., & Yoon, G. (2021). Graphs in the COVID-19 news: A mathematics audit of newspapers in Korea. Educational Studies in Mathematics . https://doi.org/10.1007/s10649-021-10029-0

Lefebvre, H. (2004). Rhythmanalysis: Space, time and everyday life (Original 1992; Translation by S. Elden & G. Moore) . Bloomsbury Academic. https://doi.org/10.5040/9781472547385 .

Li, Y. (2019). Should what works in successful countries be implemented in other countries? In M. Graven, H. Venkat, A. A. Essien, & P. Vale (Eds.), Proceedings of the 43rd conference of the international group for the Psychology of Mathematics Education (Vol. 1, pp. 67–72). PME.

Martin, D., Gholson, M., & Leonard, J. (2010). Mathematics as gatekeeper: Power and privilege in the production of power. Journal of Urban Mathematics Education , 3 (2), 12–24.

Masschelein, J., & Simons, M. (2019). Bringing more ‘school’ into our educational institutions. Reclaiming school as pedagogic form. In A. Bikner-Ahsbahs & M. Peters (Eds.), Unterrichtsentwicklung macht Schule (pp. 11–26) . Springer. https://doi.org/10.1007/978-3-658-20487-7_2

Meeter, M., Bele, T., den Hartogh, C., Bakker, T., de Vries, R. E., & Plak, S. (2020). College students’ motivation and study results after COVID-19 stay-at-home orders. https://psyarxiv.com .

Nemirovsky, R., Kelton, M. L., & Civil, M. (2017). Toward a vibrant and socially significant informal mathematics education. In J. Cai (Ed.), Compendium for Research in Mathematics Education (pp. 968–979). National Council of Teachers of Mathematics.

Niss, M. (2019). The very multi-faceted nature of mathematics education research. For the Learning of Mathematics , 39 (2), 2–7.

OECD. (2020). Back to the Future of Education: Four OECD Scenarios for Schooling. Educational Research and Innovation . OECD Publishing. https://doi.org/10.1787/20769679

Potari, D., Psycharis, G., Sakonidis, C., & Zachariades, T. (2019). Collaborative design of a reform-oriented mathematics curriculum: Contradictions and boundaries across teaching, research, and policy. Educational Studies in Mathematics , 102 (3), 417–434. https://doi.org/10.1007/s10649-018-9834-3

Proulx, J., & Maheux, J. F. (2019). Effect sizes, epistemological issues, and identity of mathematics education research: A commentary on editorial 102(1). Educational Studies in Mathematics , 102 (2), 299–302. https://doi.org/10.1007/s10649-019-09913-7

Roos, H. (2019). Inclusion in mathematics education: An ideology, A way of teaching, or both? Educational Studies in Mathematics , 100 (1), 25–41. https://doi.org/10.1007/s10649-018-9854-z

Saenz, M., Medina, A., & Urbine Holguin, B. (2020). Colombia: La prender al onda (to turn on the wave). Education continuity stories series . OECD Publishing https://oecdedutoday.com/wp-content/uploads/2020/12/Colombia-a-prender-la-onda.pdf

Schindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solving: A case study. Educational Studies in Mathematics , 105 , 303–324. https://doi.org/10.1007/s10649-020-09973-0

Schoenfeld, A. H. (1999). Looking toward the 21st century: Challenges of educational theory and practice. Educational Researcher , 28 (7), 4–14. https://doi.org/10.3102/0013189x028007004

Schukajlow, S., Rakoczy, K., & Pekrun, R. (2017). Emotions and motivation in mathematics education: Theoretical considerations and empirical contributions. ZDM-Mathematics Education , 49 (3), 307–322. https://doi.org/10.1007/s11858-017-0864-6

Sfard, A. (2005). What could be more practical than good research? Educational Studies in Mathematics , 58 (3), 393–413. https://doi.org/10.1007/s10649-005-4818-5

Shimizu, Y., & Vithal, R. (Eds.). (2019). ICMI Study 24 Conference Proceedings. School mathematics curriculum reforms: Challenges, changes and opportunities . ICMI: University of Tsukuba & ICMI http://www.human.tsukuba.ac.jp/~icmi24/

Sierpinska, A. (1990). Some remarks on understanding in mathematics. For the Learning of Mathematics , 10 (3), 24–41.

Stephan, M. L., Chval, K. B., Wanko, J. J., Civil, M., Fish, M. C., Herbel-Eisenmann, B., … Wilkerson, T. L. (2015). Grand challenges and opportunities in mathematics education research. Journal for Research in Mathematics Education , 46 (2), 134–146. https://doi.org/10.5951/jresematheduc.46.2.0134

Suazo-Flores, E., Alyami, H., Walker, W. S., Aqazade, M., & Kastberg, S. E. (2021). A call for exploring mathematics education researchers’ interdisciplinary research practices. Mathematics Education Research Journal , 1–10. https://doi.org/10.1007/s13394-021-00371-0

Svensson, P., Meaney, T., & Norén, E. (2014). Immigrant students’ perceptions of their possibilities to learn mathematics: The case of homework. For the Learning of Mathematics , 34 (3), 32–37.

UNESCO. (2015). Teacher policy development guide . UNESCO, International Task Force on Teachers for Education 2030. https://teachertaskforce.org/sites/default/files/2020-09/370966eng_0_1.pdf .

Van den Heuvel-Panhuizen, M. (2005). Can scientific research answer the ‘what’ question of mathematics education? Cambridge Journal of Education , 35 (1), 35–53. https://doi.org/10.1080/0305764042000332489

Wittmann, E. C. (1995). Mathematics education as a ‘design science’. Educational Studies in Mathematics , 29 (4), 355–374.

Yoon, H., Byerley, C. O. N., Joshua, S., Moore, K., Park, M. S., Musgrave, S., Valaas, L., & Drimalla, J. (2021). United States and South Korean citizens’ interpretation and assessment of COVID-19 quantitative data. The Journal of Mathematical Behavior . https://doi.org/10.1016/j.jmathb.2021.100865 .

Download references

Acknowledgments

We thank Anna Sfard for her advice on the survey, based on her own survey published in Sfard ( 2005 ). We are grateful for Stephen Hwang’s careful copyediting for an earlier version of the manuscript. Thanks also to Elisabeth Angerer, Elske de Waal, Paul Ernest, Vilma Mesa, Michelle Stephan, David Wagner, and anonymous reviewers for their feedback on earlier drafts.

Author information

Authors and affiliations.

Utrecht University, Utrecht, Netherlands

Arthur Bakker & Linda Zenger

University of Delaware, Newark, DE, USA

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Arthur Bakker .

Ethics declarations

In line with the guidelines of the Code of Publication Ethics (COPE), we note that the review process of this article was blinded to the authors.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Explanation of Fig. 1

figure a

We have divided Fig. 1 in 12 rectangles called A1 (bottom left) up to C4 (top right) to explain the details (for image annotation go to https://www.fisme.science.uu.nl/toepassingen/28937 )

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Bakker, A., Cai, J. & Zenger, L. Future themes of mathematics education research: an international survey before and during the pandemic. Educ Stud Math 107 , 1–24 (2021). https://doi.org/10.1007/s10649-021-10049-w

Download citation

Accepted : 04 March 2021

Published : 06 April 2021

Issue Date : May 2021

DOI : https://doi.org/10.1007/s10649-021-10049-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Grand challenges
  • Mathematics education research
  • Research agenda
  • Find a journal
  • Publish with us
  • Track your research

Mathematics Research Paper Topics

Academic Writing Service

See our list of mathematics research paper topics . Mathematics is the science that deals with the measurement, properties, and relationships of quantities, as expressed in either numbers or symbols. For example, a farmer might decide to fence in a field and plant oats there. He would have to use mathematics to measure the size of the field, to calculate the amount of fencing needed for the field, to determine how much seed he would have to buy, and to compute the cost of that seed. Mathematics is an essential part of every aspect of life—from determining the correct tip to leave for a waiter to calculating the speed of a space probe as it leaves Earth’s atmosphere.

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% off with 24start discount code.

  • Boolean algebra
  • Chaos theory
  • Complex numbers
  • Correlation
  • Fraction, common
  • Game theory
  • Graphs and graphing
  • Imaginary number
  • Multiplication
  • Natural numbers
  • Number theory
  • Numeration systems
  • Probability theory
  • Proof (mathematics)
  • Pythagorean theorem
  • Trigonometry

Mathematics undoubtedly began as an entirely practical activity— measuring fields, determining the volume of liquids, counting out coins, and the like. During the golden era of Greek science, between about the sixth and third centuries B.C., however, mathematicians introduced a new concept to their study of numbers. They began to realize that numbers could be considered as abstract concepts. The number 2, for example, did not necessarily have to mean 2 cows, 2 coins, 2 women, or 2 ships. It could also represent the idea of “two-ness.” Modern mathematics, then, deals both with problems involving specific, concrete, and practical number concepts (25,000 trucks, for example) and with properties of numbers themselves, separate from any practical meaning they may have (the square root of 2 is 1.4142135, for example).

Fields of Mathematics

Mathematics can be subdivided into a number of special categories, each of which can be further subdivided. Probably the oldest branch of mathematics is arithmetic, the study of numbers themselves. Some of the most fascinating questions in modern mathematics involve number theory. For example, how many prime numbers are there? (A prime number is a number that can be divided only by 1 and itself.) That question has fascinated mathematicians for hundreds of years. It doesn’t have any particular practical significance, but it’s an intriguing brainteaser in number theory.

Geometry, a second branch of mathematics, deals with shapes and spatial relationships. It also was established very early in human history because of its obvious connection with practical problems. Anyone who wants to know the distance around a circle, square, or triangle, or the space contained within a cube or a sphere has to use the techniques of geometry.

Algebra was established as mathematicians recognized the fact that real numbers (such as 4 and 5.35) can be represented by letters. It became a way of generalizing specific numerical problems to more general situations.

Analytic geometry was founded in the early 1600s as mathematicians learned to combine algebra and geometry. Analytic geometry uses algebraic equations to represent geometric figures and is, therefore, a way of using one field of mathematics to analyze problems in a second field of mathematics.

Over time, the methods used in analytic geometry were generalized to other fields of mathematics. That general approach is now referred to as analysis, a large and growing subdivision of mathematics. One of the most powerful forms of analysis—calculus—was created almost simultaneously in the early 1700s by English physicist and mathematician Isaac Newton (1642–1727) and German mathematician Gottfried Wilhelm Leibniz (1646–1716). Calculus is a method for analyzing changing systems, such as the changes that take place as a planet, star, or space probe moves across the sky.

Statistics is a field of mathematics that grew in significance throughout the twentieth century. During that time, scientists gradually came to realize that most of the physical phenomena they study can be expressed not in terms of certainty (“A always causes B”), but in terms of probability (“A is likely to cause B with a probability of XX%”). In order to analyze these phenomena, then, they needed to use statistics, the field of mathematics that analyzes the probability with which certain events will occur.

Each field of mathematics can be further subdivided into more specific specialties. For example, topology is the study of figures that are twisted into all kinds of bizarre shapes. It examines the properties of those figures that are retained after they have been deformed.

Back to Science Research Paper Topics .

ORDER HIGH QUALITY CUSTOM PAPER

math topics to research

  • Harvard Library
  • Research Guides
  • Guides by Subject

Mathematics

Except where otherwise noted, this work is subject to a Creative Commons Attribution 4.0 International License , which allows anyone to share and adapt our material as long as proper attribution is given. For details and exceptions, see the Harvard Library Copyright Policy ©2021 Presidents and Fellows of Harvard College.

Home

  • Math Careers

Search form

  • MAA Centennial
  • Spotlight: Archives of American Mathematics
  • MAA Officers
  • MAA to the Power of New
  • Council and Committees
  • MAA Code of Conduct
  • Policy on Conflict of Interest
  • Statement about Conflict of Interest
  • Recording or Broadcasting of MAA Events
  • Policy for Establishing Endowments and Funds
  • Avoiding Implicit Bias
  • Copyright Agreement
  • Principal Investigator's Manual
  • Planned Giving
  • The Icosahedron Society
  • Our Partners
  • Advertise with MAA
  • Employment Opportunities
  • Staff Directory
  • 2022 Impact Report
  • In Memoriam
  • Membership Categories
  • Become a Member
  • Membership Renewal
  • MERCER Insurance
  • MAA Member Directories
  • New Member Benefits
  • The American Mathematical Monthly
  • Mathematics Magazine
  • The College Mathematics Journal
  • How to Cite
  • Communications in Visual Mathematics
  • About Convergence
  • What's in Convergence?
  • Convergence Articles
  • Mathematical Treasures
  • Portrait Gallery
  • Paul R. Halmos Photograph Collection
  • Other Images
  • Critics Corner
  • Problems from Another Time
  • Conference Calendar
  • Guidelines for Convergence Authors
  • Math Horizons
  • Submissions to MAA Periodicals
  • Guide for Referees
  • Scatterplot
  • Math Values
  • MAA Book Series
  • MAA Press (an imprint of the AMS)
  • MAA Library Recommendations
  • Additional Sources for Math Book Reviews
  • About MAA Reviews
  • Mathematical Communication
  • Information for Libraries
  • Author Resources
  • MAA MathFest
  • Proposal and Abstract Deadlines
  • MAA Policies
  • Invited Paper Session Proposals
  • Contributed Paper Session Proposals
  • Panel, Poster, Town Hall, and Workshop Proposals
  • Minicourse Proposals
  • MAA Section Meetings
  • Virtual Programming
  • Joint Mathematics Meetings
  • Calendar of Events
  • MathFest Programs Archive
  • MathFest Abstract Archive
  • Historical Speakers
  • Information for School Administrators
  • Information for Students and Parents
  • Registration
  • Getting Started with the AMC
  • AMC Policies
  • AMC Administration Policies
  • Important AMC Dates
  • Competition Locations
  • Invitational Competitions
  • Putnam Competition Archive
  • AMC International
  • Curriculum Inspirations
  • Sliffe Award
  • MAA K-12 Benefits
  • Mailing List Requests
  • Statistics & Awards
  • Submit an NSF Proposal with MAA
  • MAA Distinguished Lecture Series
  • Common Vision
  • CUPM Curriculum Guide
  • Instructional Practices Guide
  • Möbius MAA Placement Test Suite
  • META Math Webinar May 2020
  • Progress through Calculus
  • Survey and Reports
  • "Camp" of Mathematical Queeries
  • DMEG Awardees
  • National Research Experience for Undergraduates Program (NREUP)
  • Neff Outreach Fund Awardees
  • Tensor SUMMA Grants
  • Tensor Women & Mathematics Grants
  • Grantee Highlight Stories
  • "Best Practices" Statements
  • CoMInDS Summer Workshop 2023
  • MAA Travel Grants for Project ACCCESS
  • 2024 Summer Workshops
  • Minority Serving Institutions Leadership Summit
  • Previous Workshops
  • Frequently Asked Questions
  • Course Resources
  • Industrial Math Case Studies
  • Participating Faculty
  • 2020 PIC Math Student Showcase
  • Previous PIC Math Workshops on Data Science
  • Dates and Locations
  • Past Programs
  • Leadership Team
  • Support Project NExT
  • Section NExT
  • Section Officers Meeting History
  • Preparations for Section Meetings
  • Bylaws Template
  • Editor Lectures Program
  • MAA Section Lecturer Series
  • Officer Election Support
  • Section Awards
  • Section Liaison Programs
  • Section Visitors Program
  • Expense Reimbursement
  • Guidelines for Bylaw Revisions
  • Guidelines for Local Arrangement Chair and/or Committee
  • Guidelines for Section Webmasters
  • MAA Logo Guidelines
  • MAA Section Email Policy
  • Section Newsletter Guidelines
  • Statement on Federal Tax ID and 501(c)3 Status
  • Communication Support
  • Guidelines for the Section Secretary and Treasurer
  • Legal & Liability Support for Section Officers
  • Section Marketing Services
  • Section in a Box
  • Subventions and Section Finances
  • Web Services
  • Joining a SIGMAA
  • Forming a SIGMAA
  • History of SIGMAA
  • SIGMAA Officer Handbook
  • MAA Connect
  • Meetings and Conferences for Students
  • Opportunities to Present
  • Information and Resources
  • MAA Undergraduate Student Poster Session
  • Undergraduate Research Resources
  • MathFest Student Paper Sessions
  • Research Experiences for Undergraduates
  • Student Poster Session FAQs
  • High School
  • A Graduate School Primer
  • Reading List
  • Student Chapters
  • Awards Booklets
  • Carl B. Allendoerfer Awards
  • Regulations Governing the Association's Award of The Chauvenet Prize
  • Trevor Evans Awards
  • Paul R. Halmos - Lester R. Ford Awards
  • Merten M. Hasse Prize
  • George Pólya Awards
  • David P. Robbins Prize
  • Beckenbach Book Prize
  • Euler Book Prize
  • Daniel Solow Author’s Award
  • Henry L. Alder Award
  • Deborah and Franklin Tepper Haimo Award
  • Certificate of Merit
  • Gung and Hu Distinguished Service
  • JPBM Communications Award
  • Meritorious Service
  • MAA Award for Inclusivity
  • T. Christine Stevens Award
  • Dolciani Award Guidelines
  • Morgan Prize Information
  • Selden Award Eligibility and Guidelines for Nomination
  • Selden Award Nomination Form
  • AMS-MAA-SIAM Gerald and Judith Porter Public Lecture
  • Etta Zuber Falconer
  • Hedrick Lectures
  • James R. C. Leitzel Lecture
  • Pólya Lecturer Information
  • Putnam Competition Individual and Team Winners
  • D. E. Shaw Group AMC 8 Awards & Certificates
  • Maryam Mirzakhani AMC 10 A Awards & Certificates
  • Two Sigma AMC 10 B Awards & Certificates
  • Jane Street AMC 12 A Awards & Certificates
  • Akamai AMC 12 B Awards & Certificates
  • High School Teachers
  • MAA Social Media

You are here

Writing math research papers: a guide for students and instructors.

math topics to research

  • From Amazon
  • From the MAA Bookstore

temp hardcoded node--book.tpl.php

Robert Gerver

  • Table of Contents

Writing Math Research Papers  is primarily a guide for high school students that describes how to write aand present mathematics research papers. But it’s really much more than that: it’s a systematic presentation of a philosophy that writing about math helps many students to understand it, and a practical method to move students from the relatively passive role of someone doing what is assigned to them, to creative thinkers and published writers who contribute to the mathematical literature.

As experienced writers know, the actual writing is not the half of it. William Zinsser once taught a writing class at the New School for Social Research which involved no writing at all: students talked through their ideas in class and through that process discovered the real story which could be written from their tangle of experiences, hopes and dreams. The actual writing was secondary, once they understood how to find the story and organize it.

Gerver, an experienced high school mathematics teacher, takes a similar approach. The primary audience is high school students who want to prepare formal papers or presentations, for contests or for a “math day” at their high school. But the discovery, research and organizational processes involved in writing an original paper, as opposed to rehashing information from a reference book, can help any student learn and understand math, and the experience will be useful even if the paper is never written.

Gerver leads students through a discovery process beginning with examining their own knowledge of mathematics and reviewing the basics of problem solving. The “math annotation” project follows next, in which students organize their class notes for one topic for presentation to their peers, resulting in a product similar to a section of a textbook or handbook, complete with illustrations and the necessary background and review material. Practical advice about finding a topic, developing it by keeping a research journal, and creating a final product, either a research paper or oral presentation, follows.

Writing Math Research Papers  is directed primarily to students, and could be assigned as a supplementary textbook for high school mathematics classes. It will also be useful to teachers who incorporate writing into their classes or who serve as mentors to the math club, and for student teachers in similar situations. An appendix for teachers includes practical advice about helping students through the research and writing process, organizing consultations, and grading the student papers and presentations. Excerpts from student research papers are included as well, and more materials are available from the web site www.keypress.com/wmrp .

Robert Gerver, PhD, is a mathematics instructor at North Shore High School in New York. He received the Presidential Award for Excellence in Mathematical Teaching in 1988 and the Tandy Prize and Chevron Best Practices Award in Education in 1997. He has been publishing mathematics. Dr. Gerver has written eleven mathematics textbooks and numerous articles, and holds two U.S. patents for educational devices.

Sarah Boslaugh, ( [email protected] ) is a Performance Review Analyst for BJC HealthCare and an Adjunct Instructor in the Washington University School of Medicine, both in St. Louis, MO. Her books include An Intermediate Guide to SPSS Programming: Using Syntax for Data Management  (Sage, 2004), Secondary Data Sources for Public Health: A Practical Guide (Cambridge, 2007), and Statistics in a Nutshell (O'Reilly, forthcoming), and she is Editor-in-Chief of The Encyclopedia of Epidemiology (Sage, forthcoming).

  • Log in to post comments

Dummy View - NOT TO BE DELETED

math topics to research

MAA Publications

  • Periodicals
  • MAA History
  • Policies and Procedures
  • Support MAA
  • Member Discount Programs
  • Propose a Session
  • MathFest Archive
  • Putnam Competition
  • AMC Resources
  • Curriculum Resources
  • Outreach Initiatives
  • Professional Development
  • Communities

Connect with MAA

Mathematical Association of America P: (800) 331-1622 F: (240) 396-5647 Email: [email protected]

Copyright © 2024

  • Terms of Use
  • Privacy Policy
  • Mobile Version

4 cool topics you can study in maths

Mathematics and statistics are vital to understanding every part of our world. It is a language, a tool for analysis and prediction, and a way of thinking.

We caught up with Dr Lamiae Azizi, Kevin Wang, Dr Diana Warren and Oded Yacobi to find out about their area of research in mathematics and statistics, to give you an idea of some of the interesting topics you could explore if you study maths with us.

Teaching machines to teach themselves

Probabilistic machine learning plays a central role in the development of artificial intelligence, seeking to teach a machine how to learn from experience.

Dr Lamiae Azizi , a senior lecturer in the School of Mathematics and Statistics and the Deputy Director at the Centre for Translational Data Science, is focused on developing and applying probabilistic machine learning models to problems including personalisation and decision making in various sectors, but particularly within healthcare.

“Everyone knows the role of a doctor in our society but not everyone understands that at the core of most technologies is maths,” says Azizi.

“In my area of work we develop mathematical models and algorithms that a machine, fed only with some observed data, can use to make predictions about future data and make decisions that are rational given these predictions.”

Dr Lamiae Azizi talking about her area of research at Raising the Bar 2018.

Dr Lamiae Azizi talking about her area of research at Raising the Bar 2018

Azizi’s research covers a range of areas and has many applications, such as working with biologists in genomics to work towards a cure for cancer and designing methods that can process large hyperspectral satellite images.

“I believe that the coolest things that are happening in artificial intelligence, are happening in the area of machine learning in general and probabilistic machine learning in particular,” she says.

“Mathematics provides us with the framework that allows us to better understand the world we live in and thus transform it.”

If you’re interested in understanding and exploring the possibilities of statistical machine learning, there are a range of statistics and data science units of study that you can incorporate in your degree.

Biological problem solving

Modern medicine relies very heavily on the machinery of mathematics and statistics to make sense of itself. Mathematics can be used to predict and model the behaviour of cancer, and to help us better understand genetics and DNA.

Kevin Wang , a PhD Candidate with the School of Mathematics and Statistics , works in the area of bioinformatics which applies theoretical mathematical methods to practical biological problems.

“I am working on a project with oncologists at the Melanoma Institute Australia which aims to improve the accuracy of predictions of survival times or cancer prognosis for patients,” says Wang.

“The growth mechanism of a tumour can often be linked to gene expression, which can be thought of as the information stored in a person's gene. The goal we are working towards is to obtain tissue samples from cancer patients in a clinic, sending those samples to a lab to measure gene expression and then providing patients with a prediction of their survival time or cancer prognosis.”

Kevin Wang presenting his research at a conference

Kevin Wang presenting his research at a conference

Wang explains that there can be multiple sources of variation during the process of measuring gene expression, which ultimately affects each patient’s prediction. His research focuses on eliminating these sources of variations to make them more accurate.

“Every problem in bioinformatics is a puzzle with no standard solution. This is a creative process and I have the freedom to use whatever method I want to reach the solution,” says Wang.

“The ability to critically think about data, work with data and to effectively communicate it are invaluable skills in any data-related job. And bioinformatics takes all of these skills to the extreme!”

If you’re interested in learning about how to take practical biological problems and converting them into something that can be solved using data, mathematics, statistics and computer science, bioinformatics is taught in a range of our undergraduate mathematics units.

Putting data to use

It’s no secret that making decisions based on actual evidence is key across all areas of research, work… and life. So, the importance of having people with the knowledge on how to use the data at our finger tips is only increasing over time.

“The 21st century has seen a ‘data deluge’, so an extraordinary amount of extraordinary data is now waiting for analysis,” explains Dr Diana Warren from the School of Mathematics and Statistics. “Data science allows us to make evidence-based decisions in almost every field imaginable.”

Warren is focused on developing a data science program that is accessible for every student across the University – no matter what their mathematical background, major or career focus.

Dr Diana Warren

Dr Diana Warren

“Data Science enhances study in any other area and will help reveal new insights. It can teach you how to problem-solve with data from any domain,” says Warren.

“Surprising breakthroughs will be facilitated by data-driven research, from cancer to climate change to astronomy.”

The new Data Science major can be undertaken as part of a range of degrees, so you can develop the kind of inferential thinking and computing skills necessary for the modern world of big data. We also have some Open Learning Environment units in data science that you could sink your teeth into.

Discovering hidden symmetries

Oded Yacobi , a senior lecturer in the School of Mathematics and Statistics, works in pure mathematics focusing his research on representation theory – the study of symmetry.

“We’ve discovered hidden symmetries using abstract methods, which has allowed us to resolve many long open questions and to also ask new questions,” says Yacobi.

“Representation theory is powerful because it allows us to understand symmetries of objects that are not obviously geometric. What does it mean for an equation to have symmetry and what does this say about the underlying structure that the equation is trying to model?”

Yacobi explains that answering these questions has significant consequences and is important for things like studying crystallography in chemistry, building the underlying theory of quantum computing and making models which predict the way robots will move.

Image of a "resolution of singularities" which is an example of the types of spaces Oded Yacobi studies.

Image of a "resolution of singularities" which is an example of the types of spaces Oded Yacobi studies.

“This is an exciting field which is rapidly changing, providing the opportunity to get in on the ground floor and contribute to fundamental developments. It helps develop an understanding of the connections between many central areas in mathematics, which is very useful beyond the mathematical realm,” says Yacobi.

“After all, mathematics is everywhere and the study of it will arm you with the fundamental tools needed to succeed in industry, government and beyond.”

Despite its abstract nature, this topic underlies much of our modern mathematical toolset, with remarkable applications in computer science, physics and other areas. Abstract algebra is covered in a number of our undergraduate mathematics units.

Interested in studying maths?

Artificial unintelligent.

Including number theory, algebraic geometry, and combinatorics

We have large groups of researchers active in number theory and algebraic geometry, as well as many individuals who work in other areas of algebra: groups, noncommutative rings, Lie algebras and Lie super-algebras, representation theory, combinatorics, game theory, and coding.

Chairs: George Bergman and Tony Feng

Algebra Faculty, Courses, Dissertations

Senate faculty, graduate students, visiting faculty, meet our faculty, george m. bergman, richard e. borcherds, sylvie corteel, david eisenbud, edward frenkel, vadim gorin, mark d. haiman, robin c. hartshorne, tsit-yuen lam (林節玄), hannah k. larson, hendrik w. lenstra, jr., ralph mckenzie, david nadler, andrew p. ogg, arthur e. ogus, martin olsson, alexander paulin, nicolai reshetikhin, john l. rhodes, marc a. rieffel, thomas scanlon, vera serganova.

  • 1 of 2 Grid: People (Current page)
  • 2 of 2 Grid: People
  • next › Grid: People
  • last » Grid: People

New User? Start here.

200+ Interesting Math Research Topics to Explore in 2024 – An Ultimate Guide!

blog author name

Table of Contents

Wait. Don’t tell us. You have been asked to turn in exceptional math research papers, haven’t you? Our safe bet is you’re unable to find interesting math research topics, right?

We are not psychic – it was merely an educated guess. We will make another educated guess – your professor has clearly specified to find unique math research paper topics, isn’t it?

Enrolling in a math course demands you come up with exemplary researchable topics in mathematics and structure your work around them perfectly. An excellent research topic can lead to further analysis and allow you to make a valuable contribution to the field of study.

However, there remains an abundance of topics you can dive into. So, how to make a wise decision and make sure you will engage the readers effectively? Which topic can enable you to make more value to the community?

Before you panic, ensure to go through this comprehensive post, especially if you’re seeking assistance like do my math homework .Here, we have highlighted certain effective guidelines and fantastic math research topics to help you think.

Let’s dive right in!

Areas of Research in Maths: A Quick Overview

Since Mathematics assignment is a diverse discipline that finds interrelation with countless other subjects and fields of study, there is continuous development in the areas of research. So, you must be aware of these essential areas before you go knee-deep in the challenging process of selecting math research topics. Here’s a molecular look at the different areas of research in math –

  • Arithmetic – This subject tackles numbers and basic operations like addition, subtraction, division, and multiplication.
  • Algebra – It focuses on manipulating symbols and solving equations. This area enables students to represent unknown quantities with alphabets and use them alongside numbers.
  • Calculus – It is crucial for figuring out different change rates like acceleration and velocity.
  • Probability and Statistics – This area help in evaluating numerical data to make certain predictions. Probability is all about remarkable chances, while statistics comprises tackling various data with the aid of different techniques.
  • Trigonometry – This area tackles evaluating distances and angles between different points. It mainly tackles triangles’ relationships, curves, and sides.
  • Topology – This area highly focuses on geometrical deformations like crumpling, twisting, stretching, and bedding. It is specifically applied in differentiable equations, dynamic systems, the theory of knot, and Riemann surfaces.

Now that you have become well-acquainted with the different areas of mathematics, it will become incredibly easy to choose suitable math research topics.

Now, let us spoil you with some of the most intriguing and unique researchable topics in mathematics. We have segregated the topics into different specialisations and academic levels.

So, go on and take a dip into it!

A Comprehensive List of Unique and Intriguing Math Research Topics

Math research topics for middle school students.

  • Explain the theorem of Artin-Wedderburn.
  • Discuss the ways to determine critical points in graphs
  • Explain the different ways to calculate net worth
  • What do you mean by ratio and root test?
  • Present a comparative analysis between multivariable and vector calculus
  • Present your views on the Jacobson density theorem
  • Explore the applications of finance in math
  • Discuss the role of statistics in business
  • Explore the crucial principles of calculus
  • What do you know about rates, ratios, and proportions?
  • Present your views on whole numbers.
  • Present detailed research on the crucial principles of the Pythagorean theorem

Mathematics Research Topics for High School Students

  • Explain what you know about hyperbola.
  • Discuss the reasons behind students disliking math
  • Explain the ways to estimate the slope of a curve
  • Present a comparative analysis between sine, cosine, and tangent
  • Explore the relationship between math and arts
  • Present the difference between arithmetic and algebra
  • Explain the significance of the Binomial theorem
  • Write the ways to create a chart on the financial analysis of an organisation.
  • Write about the remarkable ways to solve linear equations
  • Write your views on Egyptian mathematics
  • Matrix – What are the best ways to solve it effectively?
  • Figure out the best ways to identify the probability of rolling two dice.

Mathematical Research Topics for Undergraduates

  • Present your views on the evolution of math through the perspective of Gauss-Markov.
  • Discuss how theorems of primary math work
  • Discuss the role of continuous stochastic process in the process of math
  • Write about the objectives of standardised testing
  • Present a comparative analysis between multivariate and vector calculus
  • Explore the different mathematical logic theories
  • Discuss the application of number theory in daily life
  • Explain the  ways to solve Sudoku with the aid of mathematics
  • Evaluate the methods of Monte Carlo to solve inverse problems
  • Describe linear and quadratic equations
  • Explain the connection between math and culture
  • Explore the workings of an acute square triangulation

Fun Math Topics

  • Discuss the usage of game theory in social science
  • Explore the properties and geometry of a Mobius strip
  • Explore the growth of patterns in the theory of chaos
  • Present a comparative analysis between abstract algebra and universal algebra.
  • Explore the significance of limits in calculus.
  • Present a comparative analysis between prescriptive and predictive statistical analysis.
  • Write a paper on the applications of differential geometry in modern architecture.
  • Do you think the hexagon is the most balanced shape in the universe? If so, why and how?
  • Explore the connection between the Binomial Theorem and Pascal’s Triangle
  • Present your views on the logic behind challenging math problems
  • Explore the mathematical definitions of infinity and discuss the ways to measure it effectively
  • Write the remarkable ways to gain profound knowledge of math facts and develop a number sense
  • Present a detailed evaluation of the set theory of Georg Cantor
  • Explore the relation between mean, median, and mode with the usage of math grades of the class
  • Write about the remarkable contributions of Euclid to the mathematics field

Interesting Math Topics for Research

  • Present a study of the most challenging equations in math
  • Explore the significance of Scholz conjecture
  • Discuss the reasons behind multiplication tables being significant
  • Write your views on the Markov algorithm
  • Write about computational maths. What do you think of its classes?
  • Explore the renowned works of Jakob Bernoulli.
  • Write a detailed paper on the life, contribution, and time of Issac Newton in math.
  • Explore the crucial elements of Boolean algebra
  • Write about the most renowned works of Jean d’Alembert
  • Explore the purpose and application of calculus in the industry of banking
  • Evaluate the De Finetti theorem in probability and statistics
  • Explore the significance of the Tree automation
  • Write about what the Boolean satisfiability issue implies for a learner
  • Explore the four conditions of functional analysis
  • Discuss the objective of homological algebra

Applied Researchable Topics in Mathematics

  • Discuss the role of mathematics in the evaluation and prevention of crime data.
  • Discuss the principle and uncertainty
  • Discuss the significance of step-stress modelling
  • Assess the processing of the statistical signal
  • Explain the ways the Law of Motion of Issac Newton helps in real life
  • Discuss the use of algorithms in probabilistic modelling
  • Evaluate the rule of the perpendicular axes
  • Discuss the ways supercomputers are used to solve complicated mathematical issues.
  • Explain the Lorentz-FitzGerald contraction hypothesis in relativity in detail.
  • Write the best ways to solve simultaneous equations effectively
  • Evaluate predictive models
  • Write about the origins of Greek symbols in the field of mathematics
  • Explore the dimensions used to investigate fingerprints
  • Write about the accomplishments of Galilean Transformation

Advanced Topics of Math Research Papers

  • Explain the issue of minimum overlap.
  • Explain the Bernoulli scheme.
  • Present a comparative analysis between Ruelle Zeta and Riemann functions
  • Present your views on the basic properties of holomorphic functions
  • Explore when a trigonometric series is popularly known as a Fourier series
  • Present your views on the usage of algorithms for machine learning
  • Discuss the oblivious transfer
  • Present a comparative analysis of various kinds of knapsack issues
  • Write your views on the ways Cauchy’s integral theorem lead to the integral formula of Cauchy’s Integral
  • Present your views on the logistic map in connection to chaos
  • Explore the different cases of algebraic cycles
  • Discuss the ways the two theorems of Picard are connected to each other
  • Explore the ways to use elementary embedding in model theory
  • Explore the ways two lines can be ultra-parallel
  • Discuss the crucial aspects non-Euclidean geometry comprises

Math Education Research Topics

  • Present a comparative analysis between traditional math teaching and unconventional methods.
  • Discuss the ways to enhance mathematical education in the United States of America.
  • Explore the objectives of mathematics education.
  • Present detailed research on ways to make math available to students who have learning disabilities.
  • Evaluate the efficacy of gamification in algebra classes
  • Explore the advantages of shifting from standardised testing
  • Explore the advantage of using technology in math class
  • Discuss the history of teaching algebra
  • Discuss the ways dyscalculia impacts the daily life of a student
  • Explore the disadvantages of the common core standards
  • Write a paper on the advantages of Mathcamp
  • Do you think securing a mathematics degree can help in improving your value over the last couple of years?
  • Explore the ways students can improve their mathematical thinking outside the realms of the classroom.
  • Write about the political and social relevance of mathematics education
  • Write a paper on the different causes of math anxiety and the different ways to combat it

Algebra Math Research Paper Topic Examples

  • Discuss the usage of F-algebras.
  • Discuss the Descartes Rule of Signs
  • Discuss the differences between eigenvalues and eigenvectors
  • Write a paper on the properties of binary operations in algebra
  • Describe quadratic formula
  • Write about the Noetherian ring
  • Explain the duality of Morita in algebraic structures
  • Evaluate the unary operator
  • Present extensive research on the distance formula and its origin
  • Discuss the meaning of ‘range’ and ‘domains’ in algebra
  • Present a two-dimension analysis of the Gram-Schmidt process
  • Discuss the differences between eigenvectors and eigenvalues
  • Provide a paper on the example of induction-proof
  • Discuss the most appropriate ways to solve mathematical word problems
  • Present a comparison and contrasting analysis between epimorphisms and monomorphisms

Geometry Math Research Topics

  • Write your views on Archimedean solids.
  • Explore the real-life uses for a rhombicosidodecahedron
  • Explore the crucial aspects that are learned in projective geometry
  • Present detailed research on the usage of the geometry of M.C. Escher
  • Explore the significance of the circle
  • Write a research on the ways ancient Greeks developed a profound knowledge of geometry.
  • Discuss the ways to solve Heesch’s problem successfully
  • Write a detailed paper on the crucial applications of the golden ratio
  • What do you know about the Riemannian manifolds in Euclidean space?
  • Write the ways geometry translates into countless other disciplines, like physics and chemistry.
  • Explore the Klein bottle.
  • Present a comparative analysis of the different relationships between lines.
  • Explore the notions associated with manifolds of Dirac
  • Evaluate the usage of geometry in the paintings of Picasso
  • Explore the reasons for the requirement of n-dimensional vectors

Calculus Math Research Paper Topic Examples

  • Explore the distinctions between algebra, calculus, and trigonometry
  • Describe the concept of limits
  • Assess the applications of L’Hopital’s rule
  • Explain the best ways to resolve the phenomenon of Runge
  • Explore how integral becomes inaccurate
  • Write a detailed paper on the applications of calculus in real-life situations.
  • Discuss the extreme value theorem
  • Explore the best ways to estimate the Taylor series of a function
  • What do you know about Maria Gatetana Agnesi?
  • Discuss the extreme value theorem.
  • Explain how the methods of rings operate
  • Discuss the impact of nonstandard analysis on the theory of probability
  • Explain your views on the ratio and root tests
  • Explore linear approximations
  • Discuss the usage of predicate calculus

Researchable Topics in Business Mathematics

  • Explore the discount factor.
  • Discuss the ways loans work.
  • Explore how different businesses use statistics.
  • Annuities – Discuss the pros and the cons
  • Write the difference between a mortgage and a loan
  • Present a comparative analysis between consumer and business math
  • Explain the problem of economic lot scheduling
  • Stock market crash – Explore the key causes
  • Present detailed research behind debt amortisation
  • Write the markups and markdown notions
  • Discuss the ways to estimate sales tax
  • Write your views on the problem of economic lot scheduling
  • Present a comparative analysis of the usage of various types of charts
  • Discuss the ways a critical path analysis operates
  • Discuss the perfect time to use multi-period models

Unique Math Research Topics

  • Explore sphericon
  • Explore the role of mathematics in the field of artificial intelligence
  • Explore the theorem of De Finetti in statistics and probability
  • Write a paper on the theorem of linear speedup
  • Discuss the workings of the Back-and-forth method
  • In what ways geometry is used in the contemporary designs of architecture?
  • Evaluate the Georg Cantor set theory
  • Discuss Pascal’s triangle
  • Write the best ways to estimate the slope of a curve
  • What is the Stern-Brocot tree?
  • Discuss the implications of the post-correspondence issue
  • Explain why the multiplication table is significant
  • Discuss the theory of linear speedup in mathematics
  • Explore Egyptian pyramids in concert with calculus
  • What is the implication and application of calculus in banking?

Hardest Math Research Topics

  • Explore the ways the Iwasawa theory relates to modular forms
  • Explore the best ways to design a train schedule for the entire country
  • Write about stochastic differential geometry
  • Explore the fundamental theorem of natural selection of Fisher’s
  • Describe the orthodiagonal quadrilateral
  • Explain the concept of hyperboloid in 3D geometry
  • Write a paper on the impact of mathematics on the treatment of brain injury.
  • Explain geometric flows in the Hermitian Geometry
  • Discuss projects in computational topology
  • Discuss the crucial aspects that make a number of big
  • Evaluate the theorem of De Moivre –Laplace
  • Discuss the ways to apply the method of ANOVA to rank
  • Explain Skorokhod’s representation theorem in random variables
  • Discuss the principle of maximum entropy
  • What do you think of the Factorial moment in the probability theory?
  • Explore the concept of rolling two dice and estimating a probability.

Chart New Territories with Our Inspiring Math Research Topics and Ideas

Embark on the mathematical discovery journey with our curated list of math research topics. Whether you want to present an incredible paper on number theory, computational methods, algebraic structures, or data analysis, our list will help you explore avenues for both exploration and contribution to mathematical scholarship.

Check This Math Research Example

Most Popular Questions Searched By Students:

What are some current areas of research in math.

  • Differential geometry
  • Discrete mathematics
  • Theoretical computer science
  • Numerical analysis and scientific computing
  • ODE and PDE
  • Fluid mechanics
  • Probability

How do mathematicians develop new theories and concepts?

Ans. Generally, mathematicians tend to make discoveries by working effectively on an applied problem or encountering an issue that is either new or at least famous. Again, theories and concepts may be discovered by someone who tries to find an effective solution to a certain issue.

What are some common techniques used in math research?

  • Questions, approaches and outcomes are developed.
  • Usage of general methods by research mathematicians.
  • Working through cycles of visualisation, data assimilation, abstraction, proof, and conjecturing
  • Mathematical communication.
  • Forming a community of mathematicians by sharing and developing each other’s questions, theorems, and conjectures.

What are some ethical considerations in math research?

Ans. Certain ethical responsibilities of maths researchers include having profound knowledge of the field, refraining from plagiarism, providing credit, rectifying errors, and publishing without any kind of delay.

How can math be used to solve real-world problems?

  • Predicting the weather conditions
  • Analysis of epidemics
  • Balancing the checkbook
  • Figuring out the loans for trucks, cars, schooling, homes, or other purposes
  • Comprehending sports
  • Purchasing things at the best price
  • Managing loans and money

How do mathematicians collaborate on research projects?

Ans. Mathematicians can work with individuals who are close to their field or research project. They can also discuss subjects with people who have gained in-depth knowledge of other things. And when one comes across a common question of interest, one can combine ideas and knowledge from two distinct fields to attack a question.

What are some open problems in math research?

  • The Hodge Conjecture
  • The Birch and Swinnerton-Dyer Conjecture
  • The Navier-Stokes Equations
  • The Poincare Conjecture
  • The Riemann Hypothesis
  • The Yang-Mills Theory

How does computer technology influence math research?

  • Technology promotes an in-depth understanding of essential mathematical concepts and rules.
  • Students who use technology in the form of computers and calculators can work at higher levels of abstraction and generalisation.
  • Further, research also demonstrates that by using technology, students can develop a lucid understanding of the subject.

How can math education be improved?

  • Brush the fundamentals
  • Try game-based learning
  • Apply math to real life
  • Solve extra problems
  • Sketch word problems
  • Set realistic objectives
  • Engage with a math tutor
  • Make the most of the online resources

How can math be used to model complex systems?

Ans. Complex systems modelling denotes the application of diverse mathematical, statistical, and computational techniques. They are used to offer a crucial insight into certain most complex physical and natural systems in the world’s function. Math is also used to comprehend the behaviour of the system and ways to make predictions from numerical simulations of the model.

What are some applications of math in cryptography and security?

Ans. Mathematics is used in all crucial aspects of cryptography, incorporating the design of cryptographic algorithms, evaluation of certain strengths and vulnerabilities, and cryptanalysis.

Further, it is used to hide the data behind encryption. This involves storing secret info with a key that people should have to get access to the raw data.

What are some promising areas for future math research?

  • Analysis and Partial Differential Equations
  • Applied Analysis
  • Mathematical Biology
  • Mathematical Finance
  • Combinatorics
  • Numerical Analysis and Scientific Computing
  • Topology and Differential Geometry

Mark

Hi, I am Mark, a Literature writer by profession. Fueled by a lifelong passion for Literature, story, and creative expression, I went on to get a PhD in creative writing. Over all these years, my passion has helped me manage a publication of my write ups in prominent websites and e-magazines. I have also been working part-time as a writing expert for myassignmenthelp.com for 5+ years now. It’s fun to guide students on academic write ups and bag those top grades like a pro. Apart from my professional life, I am a big-time foodie and travel enthusiast in my personal life. So, when I am not working, I am probably travelling places to try regional delicacies and sharing my experiences with people through my blog. 

Related Post

icon

Writing Get your essay and assignment written from scratch by PhD expert

Rewriting: Paraphrase or rewrite your friend's essay with similar meaning at reduced cost

Editing: Proofread your work by experts and improve grade at Lowest cost

Enter phone no. to receive critical updates and urgent messages !

Please upload all relevant files for quick & complete assistance.

Get original papers written according to your instructions and save time for what matters most.

Secondary Menu

  • Math Intranet
  • Computational Mathematics

computational mathematics logo

Computational Mathematics involves mathematical research in areas of science and engineering where computing plays a central and essential role. Topics include for example developing accurate and efficient numerical methods for solving physical or biological models, analysis of numerical approximations to differential and integral equations, developing computational tools to better understand data and structure, etc. Computational mathematics is a field closely connected with a variety of other mathematical branches, as for often times a better mathematical understanding of the problem leads to innovative numerical techniques.

Duke's Mathematics Department has a large group of mathematicians whose research involves scientific computing, numerical analysis, machine learning, computational topology, and algorithmic algebraic geometry. The computational mathematics research of our faculty has applications in data analysis and signal processing, fluid and solid mechanics, electronic structure theory, biological networks, and many other topics.

Pankaj K. Agarwal

Undergraduate Research programs are a great opportunity for undergraduates to build research experience, connect with faculty and researchers, and (sometimes) even earn some money. Undergraduate Research programs can take a variety of formats. Some are informal arrangements with a professor where you work independently on a problem but with guidance from the professor. Other programs are more formal, such as the numerous summer REU programs funded by the National Science Foundation.

These programs are typically an 8-10 week residential program with other students from various universities where you work together on a problem.

Summer REU programs typically involve paid travel expenses and a summer stipend and are very competitive to get admitted to. If you are interested in finding out more about Undergraduate Research opportunities at Purdue, or how to apply to summer REU programs, contact Jon Peterson at [email protected] .

Summer is traditionally a time to kick back and take a break from studies, but not so for several mathematics students who are in residence in the Mathematics Department during summers.

With support provided by Purdue alumni Andy Zoltners, Joel Spira, as well as the National Science Foundation and other funding, undergraduate math students engage in research projects under the guidance of mathematics faculty members.

  • Purdue REU Opportunities

Summer REU Opportunities

Past Research Projects

  • Faculty Research Areas
  • Center for Computational & Applied Mathematics
  • Funding Opportunities
  • Research at Purdue

Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067

Phone: (765) 494-1901 - FAX: (765) 494-0548   Contact Us

© 2024 Purdue University | An equal access/equal opportunity university | Copyright Complaints

Trouble with this page? Disability-related accessibility issue ? Please contact the College of Science .

Maintained by Science IT

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • BOOK REVIEW
  • 14 August 2023

How to be successful as a research mathematician? Follow your gut

  • Davide Castelvecchi

You can also search for this author in PubMed   Google Scholar

Is Maths Real?: How Simple Questions Lead Us to Mathematics’ Deepest Truths Eugenia Cheng Profile (2023)

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

185,98 € per year

only 3,65 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

Nature 620 , 485-486 (2023)

doi: https://doi.org/10.1038/d41586-023-02555-z

This interview has been edited for length and clarity.

Competing Interests

The author declares no competing interests.

Related Articles

math topics to research

  • Mathematics and computing

AI’s keen diagnostic eye

AI’s keen diagnostic eye

Outlook 18 APR 24

Use game theory for climate models that really help reach net zero goals

Correspondence 16 APR 24

AI now beats humans at basic tasks — new benchmarks are needed, says major report

AI now beats humans at basic tasks — new benchmarks are needed, says major report

News 15 APR 24

Londoners see what a scientist looks like up close in 50 photographs

Londoners see what a scientist looks like up close in 50 photographs

Career News 18 APR 24

Dad always mows on summer Saturday mornings

Dad always mows on summer Saturday mornings

Futures 17 APR 24

Three possible muses

Three possible muses

Futures 10 APR 24

2024 Recruitment notice Shenzhen Institute of Synthetic Biology: Shenzhen, China

The wide-ranging expertise drawing from technical, engineering or science professions...

Shenzhen,China

Shenzhen Institute of Synthetic Biology

math topics to research

Recruitment of Global Talent at the Institute of Zoology, Chinese Academy of Sciences (IOZ, CAS)

The Institute of Zoology (IOZ), Chinese Academy of Sciences (CAS), is seeking global talents around the world.

Beijing, China

Institute of Zoology, Chinese Academy of Sciences (IOZ, CAS)

math topics to research

Research Associate - Brain Cancer

Houston, Texas (US)

Baylor College of Medicine (BCM)

math topics to research

Senior Manager, Animal Care

Research associate - genomics.

math topics to research

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

8. Appendices

In the appendices you should include any data or material that supported your research but that was too long to include in the body of your paper. Materials in an appendix should be referenced at some point in the body of the report.

Some examples:

• If you wrote a computer program to generate more data than you could produce by hand, you should include the code and some sample output.

• If you collected statistical data using a survey, include a copy of the survey.

• If you have lengthy tables of numbers that you do not want to include in the body of your report, you can put them in an appendix.

Sample Write-Up

Seating unfriendly customers, a combinatorics problem.

By Lisa Honeyman February 12, 2002

The Problem

In a certain coffee shop, the customers are grouchy in the early morning and none of them wishes to sit next to another at the counter.

1. Suppose there are ten seats at the counter. How many different ways can three early morning customers sit at the counter so that no one sits next to anyone else?

2. What if there are n seats at the counter?

3. What if we change the number of customers?

4. What if, instead of a counter, there was a round table and people refused to sit next to each other?

Assumptions

I am assuming that the order in which the people sit matters. So, if three people occupy the first, third and fifth seats, there are actually 6 (3!) different ways they can do this. I will explain more thoroughly in the body of my report.

Body of the Report

At first there are 10 seats available for the 3 people to sit in. But once the first person sits down, that limits where the second person can sit. Not only can’t he sit in the now-occupied seat, he can’t sit next to it either. What confused me at first was that if the first person sat at one of the ends, then there were 8 seats left for the second person to chose from. But if the 1 st person sat somewhere else, there were only 7 remaining seats available for the second person. I decided to look for patterns. By starting with a smaller number of seats, I was able to count the possibilities more easily. I was hoping to find a pattern so I could predict how many ways the 10 people could sit without actually trying to count them all. I realized that the smallest number of seats I could have would be 5. Anything less wouldn’t work because people would have to sit next to each other. So, I started with 5 seats. I called the customers A, B, and C.

With 5 seats there is only one configuration that works.

As I said in my assumptions section, I thought that the order in which the people sit is important. Maybe one person prefers to sit near the coffee maker or by the door. These would be different, so I decided to take into account the different possible ways these 3 people could occupy the 3 seats shown above. I know that ABC can be arranged in 3! = 6 ways. (ABC, ACB, BAC, BCA, CAB, CBA). So there are 6 ways to arrange 3 people in 5 seats with spaces between them. But, there is only one configuration of seats that can be used. (The 1 st , 3 rd , and 5 th ).

Next, I tried 6 seats. I used a systematic approach to show that there are 4 possible arrangements of seats. This is how my systematic approach works:

Assign person A to the 1 st seat. Put person B in the 3 rd seat, because he can’t sit next to person A. Now, person C can sit in either the 5 th or 6 th positions. (see the top two rows in the chart, below.) Next suppose that person B sits in the 4 th seat (the next possible one to the right.) That leaves only the 6 th seat free for person C. (see row 3, below.) These are all the possible ways for the people to sit if the 1 st seat is used. Now put person A in the 2 nd seat and person B in the 4 th . There is only one place where person C can sit, and that’s in the 6 th position. (see row 4, below.) There are no other ways to seat the three people if person A sits in the 2 nd seat. So, now we try putting person A in the 3 rd seat. If we do that, there are only 4 seats that can be used, but we know that we need at least 5, so there are no more possibilities.

Possible seats 3 people could occupy if there are 6 seats

Once again, the order the people sit in could be ABC, BAC, etc. so there are 4 * 6 = 24 ways for the 3 customers to sit in 6 seats with spaces between them.

I continued doing this, counting how many different groups of seats could be occupied by the three people using the systematic method I explained. Then I multiplied that number by 6 to account for the possible permutations of people in those seats. I created the following table of what I found.

Next I tried to come up with a formula. I decided to look for a formula using combinations or permutations. Since we are looking at 3 people, I decided to start by seeing what numbers I would get if I used n C 3 and n P 3 .

3 C 3 = 1   4 C 3 = 4   5 C 3 = 10   6 C 3 = 20

3 P 3 = 6   4 P 3 = 24   5 P 3 = 60   6 P 3 = 120

Surprisingly enough, these numbers matched the numbers I found in my table. However, the n in n P r and n C r seemed to be two less than the total # of seats I was investigating. 

Conjecture 1:

Given n seats at a lunch counter, there are n -2 C 3 ways to select the three seats in which the customers will sit such that no customer sits next to another one. There are n -2 P 3 ways to seat the 3 customers in such a way than none sits next to another.

After I found a pattern, I tried to figure out why n -2 C 3 works. (If the formula worked when order didn’t matter it could be easily extended to when the order did, but the numbers are smaller and easier to work with when looking at combinations rather than permutations.)

In order to prove Conjecture 1 convincingly, I need to show two things:

(1) Each n – 2 seat choice leads to a legal n seat configuration.

(2) Each n seat choice resulted from a unique n – 2 seat configuration.

To prove these two things I will show

And then conclude that these two procedures are both functions and therefore 1—1.

Claim (1): Each ( n – 2) -seat choice leads to a legal n seat configuration.

Suppose there were only n – 2 seats to begin with. First we pick three of them in which to put people, without regard to whether or not they sit next to each other. But, in order to guarantee that they don’t end up next to another person, we introduce an empty chair to the right of each of the first two people. It would look like this:

We don’t need a third “new” seat because once the person who is farthest to the right sits down, there are no more customers to seat. So, we started with n – 2 chairs but added two for a total of n chairs. Anyone entering the restaurant after this procedure had been completed wouldn’t know that there had been fewer chairs before these people arrived and would just see three customers sitting at a counter with n chairs. This procedure guarantees that two people will not end up next to each other. Thus, each ( n – 2)-seat choice leads to a unique, legal n seat configuration.

Therefore, positions s 1 ' s 2 ', and s 3 ' are all separated by at least one vacant seat.

This is a function that maps each combination of 3 seats selected from n – 2 seats onto a unique arrangement of n seats with 3 separated customers. Therefore, it is invertible.

Claim (2): Each 10-seat choice has a unique 8-seat configuration.

Given a legal 10-seat configuration, each of the two left-most diners must have an open seat to his/her right. Remove it and you get a unique 8-seat arrangement. If, in the 10-seat setting, we have q 1 > q 2 , q 3 ; q 3 – 1 > q 2 , and q 2 – 1 > q 1 , then the 8 seat positions are q 1 ' = q 2 , q 2 ' = q 2 – 1, and q 3 ' = q 3 – 2. Combining these equations with the conditions we have

q 2 ' = q 2 – 1 which implies q 2 ' > q 1 = q 1 '

q 3 ' = q 3 – 2 which implies q 3 ' > q 2 – 1 = q 2 '

Since q 3 ' > q 2 ' > q 1 ', these seats are distinct. If the diners are seated in locations q 1 , q 2 , and q 3 (where q 3 – 1 > q 2 and q 2 – 1 > q 1 ) and we remove the two seats to the right of q 1 and q 2 , then we can see that the diners came from q 1 , q 2 – 1, and q 3 – 2. This is a function that maps a legal 10-seat configuration to a unique 8-seat configuration.

The size of a set can be abbreviated s ( ). I will use the abbreviation S to stand for n separated seats and N to stand for the n – 2 non-separated seats.

therefore s ( N ) = s ( S ).

Because the sets are the same size, these functions are 1—1.

Using the technique of taking away and adding empty chairs, I can extend the problem to include any number of customers. For example, if there were 4 customers and 10 seats there would be 7 C 4 = 35 different combinations of chairs to use and 7 P 4 = 840 ways for the customers to sit (including the fact that order matters). You can imagine that three of the ten seats would be introduced by three of the customers. So, there would only be 7 to start with.

In general, given n seats and c customers, we remove c- 1 chairs and select the seats for the c customers. This leads to the formula n -( c -1) C c = n - c +1 C c for the number of arrangements.

Once the number of combinations of seats is found, it is necessary to multiply by c ! to find the number of permutations. Looking at the situation of 3 customers and using a little algebraic manipulation, we get the n P 3 formula shown below.

This same algebraic manipulation works if you have c people rather than 3, resulting in n - c +1 P c

Answers to Questions

  • With 10 seats there are 8 P 3 = 336 ways to seat the 3 people.
  • My formula for n seats and 3 customers is: n -2 P 3 .
  • My general formula for n seats and c customers, is: n -( c -1) P c = n - c +1 P c

_________________________________________________________________ _

After I finished looking at this question as it applied to people sitting in a row of chairs at a counter, I considered the last question, which asked would happen if there were a round table with people sitting, as before, always with at least one chair between them.

I went back to my original idea about each person dragging in an extra chair that she places to her right, barring anyone else from sitting there. There is no end seat, so even the last person needs to bring an extra chair because he might sit to the left of someone who has already been seated. So, if there were 3 people there would be 7 seats for them to choose from and 3 extra chairs that no one would be allowed to sit in. By this reasoning, there would be 7 C 3 = 35 possible configurations of chairs to choose and 7 P 3 = 840 ways for 3 unfriendly people to sit at a round table.

Conjecture 2: Given 3 customers and n seats there are n -3 C 3 possible groups of 3 chairs which can be used to seat these customers around a circular table in such a way that no one sits next to anyone else.

My first attempt at a proof: To test this conjecture I started by listing the first few numbers generated by my formula:

When n = 6    6-3 C 3 = 3 C 3 = 1

When n = 7    7-3 C 3 = 4 C 3 = 4

When n = 8    8-3 C 3 = 5 C 3 = 10

When n = 9    9-3 C 3 = 6 C 3 = 20

Then I started to systematically count the first few numbers of groups of possible seats. I got the numbers shown in the following table. The numbers do not agree, so something is wrong — probably my conjecture!

I looked at a circular table with 8 people and tried to figure out the reason this formula doesn’t work. If we remove 3 seats (leaving 5) there are 10 ways to select 3 of the 5 remaining chairs. ( 5 C 3 ).

The circular table at the left in the figure below shows the n – 3 (in this case 5) possible chairs from which 3 will be randomly chosen. The arrows point to where the person who selects that chair could end up. For example, if chair A is selected, that person will definitely end up in seat #1 at the table with 8 seats. If chair B is selected but chair A is not, then seat 2 will end up occupied. However, if chair A and B are selected, then the person who chose chair B will end up in seat 3 . The arrows show all the possible seats in which a person who chose a particular chair could end. Notice that it is impossible for seat #8 to be occupied. This is why the formula 5 C 3 doesn’t work. It does not allow all seats at the table of 8 to be chosen.

The difference is that in the row-of-chairs-at-a-counter problem there is a definite “starting point” and “ending point.” The first chair can be identified as the one farthest to the left, and the last one as the one farthest to the right. These seats are unique because the “starting point” has no seat to the left of it and the “ending point” has no seat to its right. In a circle, it is not so easy.

Using finite differences I was able to find a formula that generates the correct numbers:

Proof: We need to establish a “starting point.” This could be any of the n seats. So, we select one and seat person A in that seat. Person B cannot sit on this person’s left (as he faces the table), so we must eliminate that as a possibility. Also, remove any 2 other chairs, leaving ( n – 4) possible seats where the second person can sit. Select another seat and put person B in it. Now, select any other seat from the ( n – 5) remaining seats and put person C in that. Finally, take the two seats that were previously removed and put one to the left of B and one to the left of C.

The following diagram should help make this procedure clear.

In a manner similar to the method I used in the row-of-chairs-at-a-counter problem, this could be proven more rigorously.

An Idea for Further Research:

Consider a grid of chairs in a classroom and a group of 3 very smelly people. No one wants to sit adjacent to anyone else. (There would be 9 empty seats around each person.) Suppose there are 16 chairs in a room with 4 rows and 4 columns. How many different ways could 3 people sit? What if there was a room with n rows and n columns? What if it had n rows and m columns?

References:

Abrams, Joshua. Education Development Center, Newton, MA. December 2001 - February 2002. Conversations with my mathematics mentor.

Brown, Richard G. 1994. Advanced Mathematics . Evanston, Illinois. McDougal Littell Inc. pp. 578-591

The Oral Presentation

Giving an oral presentation about your mathematics research can be very exciting! You have the opportunity to share what you have learned, answer questions about your project, and engage others in the topic you have been studying. After you finish doing your mathematics research, you may have the opportunity to present your work to a group of people such as your classmates, judges at a science fair or other type of contest, or educators at a conference. With some advance preparation, you can give a thoughtful, engaging talk that will leave your audience informed and excited about what you have done.

Planning for Your Oral Presentation

In most situations, you will have a time limit of between 10 and 30 minutes in which to give your presentation. Based upon that limit, you must decide what to include in your talk. Come up with some good examples that will keep your audience engaged. Think about what vocabulary, explanations, and proofs are really necessary in order for people to understand your work. It is important to keep the information as simple as possible while accurately representing what you’ve done. It can be difficult for people to understand a lot of technical language or to follow a long proof during a talk. As you begin to plan, you may find it helpful to create an outline of the points you want to include. Then you can decide how best to make those points clear to your audience.

You must also consider who your audience is and where the presentation will take place. If you are going to give your presentation to a single judge while standing next to your project display, your presentation will be considerably different than if you are going to speak from the stage in an auditorium full of people! Consider the background of your audience as well. Is this a group of people that knows something about your topic area? Or, do you need to start with some very basic information in order for people to understand your work? If you can tailor your presentation to your audience, it will be much more satisfying for them and for you.

No matter where you are presenting your speech and for whom, the structure of your presentation is very important. There is an old bit of advice about public speaking that goes something like this: “Tell em what you’re gonna tell ’em. Tell ’em. Then tell ’em what you told ’em.” If you use this advice, your audience will find it very easy to follow your presentation. Get the attention of the audience and tell them what you are going to talk about, explain your research, and then following it up with a re-cap in the conclusion.

Writing Your Introduction

Your introduction sets the stage for your entire presentation. The first 30 seconds of your speech will either capture the attention of your audience or let them know that a short nap is in order. You want to capture their attention. There are many different ways to start your speech. Some people like to tell a joke, some quote famous people, and others tell stories.

Here are a few examples of different types of openers.

You can use a quote from a famous person that is engaging and relevant to your topic. For example:

• Benjamin Disraeli once said, “There are three kinds of lies: lies, damn lies, and statistics.” Even though I am going to show you some statistics this morning, I promise I am not going to lie to you! Instead, . . .

• The famous mathematician, Paul Erdös, said, “A Mathematician is a machine for turning coffee into theorems.” Today I’m here to show you a great theorem that I discovered and proved during my mathematics research experience. And yes, I did drink a lot of coffee during the project!

• According to Stephen Hawking, “Equations are just the boring part of mathematics.” With all due respect to Dr. Hawking, I am here to convince you that he is wrong. Today I’m going to show you one equation that is not boring at all!

Some people like to tell a short story that leads into their discussion.

“Last summer I worked at a diner during the breakfast shift. There were 3 regular customers who came in between 6:00 and 6:15 every morning. If I tell you that you didn’t want to talk to these folks before they’ve had their first cup of coffee, you’ll get the idea of what they were like. In fact, these people never sat next to each other. That’s how grouchy they were! Well, their anti-social behavior led me to wonder, how many different ways could these three grouchy customers sit at the breakfast counter without sitting next to each other? Amazingly enough, my summer job serving coffee and eggs to grouchy folks in Boston led me to an interesting combinatorics problem that I am going to talk to you about today.”

A short joke related to your topic can be an engaging way to start your speech.

It has been said that there are three kinds of mathematicians: those who can count and those who can’t.

All joking aside, my mathematics research project involves counting. I have spent the past 8 weeks working on a combinatorics problem.. . .

To find quotes to use in introductions and conclusions try: http://www.quotationspage.com/

To find some mathematical quotes, consult the Mathematical Quotation Server: http://math.furman.edu/~mwoodard/mquot.html

To find some mathematical jokes, you can look at the “Profession Jokes” web site: http://www.geocities.com/CapeCanaveral/4661/projoke22.htm

There is a collection of math jokes compiled by the Canadian Mathematical Society at http://camel.math.ca/Recreation/

After you have the attention of your audience, you must introduce your research more formally. You might start with a statement of the problem that you investigated and what lead you to choose that topic. Then you might say something like this,

“Today I will demonstrate how I came to the conclusion that there are n ( n  – 4)( n  – 5) ways to seat 3 people at a circular table with n seats in such a way that no two people sit next to each other. In order to do this I will first explain how I came up with this formula and then I will show you how I proved it works. Finally, I will extend this result to tables with more than 3 people sitting at them.”

By providing a brief outline of your talk at the beginning and reminding people where you are in the speech while you are talking, you will be more effective in keeping the attention of your audience. It will also make it much easier for you to remember where you are in your speech as you are giving it.

The Middle of Your Presentation

Because you only have a limited amount of time to present your work, you need to plan carefully. Decide what is most important about your project and what you want people to know when you are finished. Outline the steps that people need to follow in order to understand your research and then think carefully about how you will lead them through those steps. It may help to write your entire speech out in advance. Even if you choose not to memorize it and present it word for word, the act of writing will help you clarify your ideas. Some speakers like to display an outline of their talk throughout their entire presentation. That way, the audience always knows where they are in the presentation and the speaker can glance at it to remind him or herself what comes next.

An oral presentation must be structured differently than a written one because people can’t go back and “re-read” a complicated section when they are at a talk. You have to be extremely clear so that they can understand what you are saying the first time you say it. There is an acronym that some presenters like to remember as they prepare a talk: “KISS.” It means, “Keep It Simple, Student.” It may sound silly, but it is good advice. Keep your sentences short and try not to use too many complicated words. If you need to use technical language, be sure to define it carefully. If you feel that it is important to present a proof, remember that you need to keep things easy to understand. Rather than going through every step, discuss the main points and the conclusion. If you like, you can write out the entire proof and include it in a handout so that folks who are interested in the details can look at them later. Give lots of examples! Not only will examples make your talk more interesting, but they will also make it much easier for people to follow what you are saying.

It is useful to remember that when people have something to look at, it helps to hold their attention and makes it easier for them to understand what you are saying. Therefore, use lots of graphs and other visual materials to support your work. You can do this using posters, overhead transparencies, models, or anything else that helps make your explanations clear.

Using Materials

As you plan for your presentation, consider what equipment or other materials you might want use. Find out what is available in advance so you don’t spend valuable time creating materials that you will not be able to use. Common equipment used in talks include an over-head projector, VCR, computer, or graphing calculator. Be sure you know how to operate any equipment that you plan to use. On the day of your talk, make sure everything is ready to go (software loaded, tape at the right starting point etc.) so that you don’t have “technical difficulties.”

Visual aides can be very useful in a presentation. (See Displaying Your Results for details about poster design.) If you are going to introduce new vocabulary, consider making a poster with the words and their meanings to display throughout your talk. If people forget what a term means while you are speaking, they can refer to the poster you have provided. (You could also write the words and meanings on a black/white board in advance.) If there are important equations that you would like to show, you can present them on an overhead transparency that you prepare prior to the talk. Minimize the amount you write on the board or on an overhead transparency during your presentation. It is not very engaging for the audience to sit watching while you write things down. Prepare all equations and materials in advance. If you don’t want to reveal all of what you have written on your transparency at once, you can cover up sections of your overhead with a piece of paper and slide it down the page as you move along in your talk. If you decide to use overhead transparencies, be sure to make the lettering large enough for your audience to read. It also helps to limit how much you put on your transparencies so they are not cluttered. Lastly, note that you can only project approximately half of a standard 8.5" by 11" page at any one time, so limit your information to displays of that size.

Presenters often create handouts to give to members of the audience. Handouts may include more information about the topic than the presenter has time to discuss, allowing listeners to learn more if they are interested. Handouts may also include exercises that you would like audience members to try, copies of complicated diagrams that you will display, and a list of resources where folks might find more information about your topic. Give your audience the handout before you begin to speak so you don’t have to stop in the middle of the talk to distribute it. In a handout you might include:

• A proof you would like to share, but you don’t have time to present entirely.

• Copies of important overhead transparencies that you use in your talk.

• Diagrams that you will display, but which may be too complicated for someone to copy down accurately.

• Resources that you think your audience members might find useful if they are interested in learning more about your topic.

The Conclusion

Ending your speech is also very important. Your conclusion should leave the audience feeling satisfied that the presentation was complete. One effective way to conclude a speech is to review what you presented and then to tie back to your introduction. If you used the Disraeli quote in your introduction, you might end by saying something like,

I hope that my presentation today has convinced you that . . . Statistical analysis backs up the claims that I have made, but more importantly, . . . . And that’s no lie!

Getting Ready

After you have written your speech and prepared your visuals, there is still work to be done.

  • Prepare your notes on cards rather than full-size sheets of paper. Note cards will be less likely to block your face when you read from them. (They don’t flop around either.) Use a large font that is easy for you to read. Write notes to yourself on your notes. Remind yourself to smile or to look up. Mark when to show a particular slide, etc.
  • Practice! Be sure you know your speech well enough that you can look up from your notes and make eye contact with your audience. Practice for other people and listen to their feedback.
  • Time your speech in advance so that you are sure it is the right length. If necessary, cut or add some material and time yourself again until your speech meets the time requirements. Do not go over time!
  • Anticipate questions and be sure you are prepared to answer them.
  • Make a list of all materials that you will need so that you are sure you won’t forget anything.
  • If you are planning to provide a handout, make a few extras.
  • If you are going to write on a whiteboard or a blackboard, do it before starting your talk.

The Delivery

How you deliver your speech is almost as important as what you say. If you are enthusiastic about your presentation, it is far more likely that your audience will be engaged. Never apologize for yourself. If you start out by saying that your presentation isn’t very good, why would anyone want to listen to it? Everything about how you present yourself will contribute to how well your presentation is received. Dress professionally. And don’t forget to smile!

Here are a few tips about delivery that you might find helpful.

  • Make direct eye contact with members of your audience. Pick a person and speak an entire phrase before shifting your gaze to another person. Don’t just “scan” the audience. Try not to look over their heads or at the floor. Be sure to look at all parts of the room at some point during the speech so everyone feels included.
  • Speak loudly enough for people to hear and slowly enough for them to follow what you are saying.
  • Do not read your speech directly from your note cards or your paper. Be sure you know your speech well enough to make eye contact with your audience. Similarly, don’t read your talk directly off of transparencies.
  • Avoid using distracting or repetitive hand gestures. Be careful not to wave your manuscript around as you speak.
  • Move around the front of the room if possible. On the other hand, don’t pace around so much that it becomes distracting. (If you are speaking at a podium, you may not be able to move.)
  • Keep technical language to a minimum. Explain any new vocabulary carefully and provide a visual aide for people to use as a reference if necessary.
  • Be careful to avoid repetitive space-fillers and slang such as “umm”, “er”, “you know”, etc. If you need to pause to collect your thoughts, it is okay just to be silent for a moment. (You should ask your practice audiences to monitor this habit and let you know how you did).
  • Leave time at the end of your speech so that the audience can ask questions.

Displaying Your Results

When you create a visual display of your work, it is important to capture and retain the attention of your audience. Entice people to come over and look at your work. Once they are there, make them want to stay to learn about what you have to tell them. There are a number of different formats you may use in creating your visual display, but the underlying principle is always the same: your work should be neat, well-organized, informative, and easy to read.

It is unlikely that you will be able to present your entire project on a single poster or display board. So, you will need to decide which are the most important parts to include. Don’t try to cram too much onto the poster. If you do, it may look crowded and be hard to read! The display should summarize your most important points and conclusions and allow the reader to come away with a good understanding of what you have done.

A good display board will have a catchy title that is easy to read from a distance. Each section of your display should be easily identifiable. You can create posters such as this by using headings and also by separating parts visually. Titles and headings can be carefully hand-lettered or created using a computer. It is very important to include lots of examples on your display. It speeds up people’s understanding and makes your presentation much more effective. The use of diagrams, charts, and graphs also makes your presentation much more interesting to view. Every diagram or chart should be clearly labeled. If you include photographs or drawings, be sure to write captions that explain what the reader is looking at.

In order to make your presentation look more appealing, you will probably want to use some color. However, you must be careful that the color does not become distracting. Avoid florescent colors, and avoid using so many different colors that your display looks like a patch-work quilt. You want your presentation to be eye-catching, but you also want it to look professional.

People should be able to read your work easily, so use a reasonably large font for your text. (14 point is a recommended minimum.) Avoid writing in all-capitals because that is much harder to read than regular text. It is also a good idea to limit the number of different fonts you use on your display. Too many different fonts can make your poster look disorganized.

Notice how each section on the sample poster is defined by the use of a heading and how the various parts of the presentation are displayed on white rectangles. (Some of the rectangles are blank, but they would also have text or graphics on them in a real presentation.) Section titles were made with pale green paper mounted on red paper to create a boarder. Color was used in the diagrams to make them more eye-catching. This poster would be suitable for hanging on a bulletin board.

If you are planning to use a poster, such as this, as a visual aid during an oral presentation, you might consider backing your poster with foam-core board or corrugated cardboard. A strong board will not flop around while you are trying to show it to your audience. You can also stand a stiff board on an easel or the tray of a classroom blackboard or whiteboard so that your hands will be free during your talk. If you use a poster as a display during an oral presentation, you will need to make the text visible for your audience. You can create a hand-out or you can make overhead transparencies of the important parts. If you use overhead transparencies, be sure to use lettering that is large enough to be read at a distance when the text is projected.

If you are preparing your display for a science fair, you will probably want to use a presentation board that can be set up on a table. You can buy a pre-made presentation board at an office supply or art store or you can create one yourself using foam-core board. With a presentation board, you can often use the space created by the sides of the board by placing a copy of your report or other objects that you would like people to be able to look at there. In the illustration, a black trapezoid was cut out of foam-core board and placed on the table to make the entire display look more unified. Although the text is not shown in the various rectangles in this example, you will present your information in spaces such as these.

Don’t forget to put your name on your poster or display board. And, don’t forget to carefully proof-read your work. There should be no spelling, grammatical or typing mistakes on your project. If your display is not put together well, it may make people wonder about the quality of the work you did on the rest of your project.

For more information about creating posters for science fair competitions, see

http://school.discovery.com/sciencefaircentral/scifairstudio/handbook/display.html ,

http://www.siemens-foundation.org/science/poster_guidelines.htm ,

Robert Gerver’s book, Writing Math Research Papers , (published by Key Curriculum Press) has an excellent section about doing oral presentations and making posters, complete with many examples.

References Used

American Psychological Association . Electronic reference formats recommended by the American Psychological Association . (2000, August 22). Washington, DC: American Psychological Association. Retrieved October 6, 2000, from the World Wide Web: http://www.apastyle.org/elecsource.html

Bridgewater State College. (1998, August 5 ). APA Style: Sample Bibliographic Entries (4th ed) . Bridgewater, MA: Clement C. Maxwell Library. Retrieved December 20, 2001, from the World Wide Web: http://www.bridgew.edu/dept/maxwell/apa.htm

Crannell, Annalisa. (1994). A Guide to Writing in Mathematics Classes . Franklin & Marshall College. Retrieved January 2, 2002, from the World Wide Web: http://www.fandm.edu/Departments/Mathematics/writing_in_math/guide.html

Gerver, Robert. 1997. Writing Math Research Papers . Berkeley, CA: Key Curriculum Press.

Moncur, Michael. (1994-2002 ). The Quotations Page . Retrieved April 9, 2002, from the World Wide Web: http://www.quotationspage.com/

Public Speaking -- Be the Best You Can Be . (2002). Landover, Hills, MD: Advanced Public Speaking Institute. Retrieved April 9, 2002, from the World Wide Web: http://www.public-speaking.org/

Recreational Mathematics. (1988) Ottawa, Ontario, Canada: Canadian Mathematical Society. Retrieved April 9, 2002, from the World Wide Web: http://camel.math.ca/Recreation/

Shay, David. (1996). Profession Jokes — Mathematicians. Retrieved April 5, 2001, from the World Wide Web: http://www.geocities.com/CapeCanaveral/4661/projoke22.htm

Sieman’s Foundation. (2001). Judging Guidelines — Poster . Retrieved April 9, 2002, from the World Wide Web: http://www.siemens-foundation.org/science/poster_guidelines.htm ,

VanCleave, Janice. (1997). Science Fair Handbook. Discovery.com. Retrieved April 9, 2002, from the World Wide Web: http://school.discovery.com/sciencefaircentral/scifairstudio/handbook/display.html ,

Woodward, Mark. (2000) . The Mathematical Quotations Server . Furman University. Greenville, SC. Retrieved April 9, 2002, from the World Wide Web: http://math.furman.edu/~mwoodard/mquot.html

Making Mathematics Home | Mathematics Projects | Students | Teachers | Mentors | Parents | Hard Math Café |

Department of Mathematics

  • Toggle Navigation

Possible Student Research Topics

Projects are listed by faculty member.    Please contact faculty members directly for further information.

Dr. Gemmer:  Broadly, my research interests lie in analyzing and developing mathematical models of phenomenon in the physical and biological sciences. As an applied mathematician I find significant professional satisfaction studying “toy” models of systems which can yield concrete insights into phenomena observed in Nature. I am also particularly drawn to problems which not only have interesting and important applications but also have the potential to lead to new and deep mathematics. In my work I have developed expertise in calculus of variations, mathematical modeling, applied analysis, continuum mechanics, asymptotic methods, ordinary and partial differential equations and Riemannian geometry. I would be happy to meet with a student to discuss potential projects. Past projects I have mentored include modeling crowd dynamics, modeling the spread of infectious diseases on adaptive networks, brachistochrone problems in inverse square gravitational fields, rare events in stochastic differential equations, modeling adaptation in predator prey systems, and studying the stability of inverted pendulums, i.e. segues. A list of potential and past projects is available at  http://users.wfu.edu/gemmerj/projects.html .

Dr. Jiang:  1.  Network models of infectious disease:  try to investigate the difference between A Markov chain model and a deterministic model. Keywords: Markov chain, rate of eradication, network model, dynamical systems.  2. Multifractal analysis of time series.  Keyword: Holder exponents, Wavelet coefficients, Hausdorff dimension

Dr. Raynor:  I’m open to working on any topic in the general areas of analysis, differential equations, and differential geometry.  Some areas on which I’ve worked with students before are traffic modeling, free boundary problems, DNA solitary wave modeling, fractals, and ranking theory.

Dr. Rouse:   Rather than indicate a specific project, I prefer to decide on a project after talking with a student about their interests and background. That said, all the projects I am likely to suggest are in number theory.

Pure Mathematics Research

Pure mathematics fields.

Pure Research

  • Algebra & Algebraic Geometry
  • Algebraic Topology
  • Analysis & PDEs
  • Geometry & Topology
  • Mathematical Logic & Foundations
  • Number Theory
  • Probability & Statistics
  • Representation Theory

Pure Math Committee

  • Future Students
  • Current Students
  • Faculty/Staff

Stanford Graduate School of Education

News and Media

  • News & Media Home
  • Research Stories
  • School's In
  • In the Media

You are here

Research shows the best ways to learn math.

New Stanford paper says speed drills and timed testing in math can be damaging for students. (Cherries/Shutterstock)

Students learn math best when they approach the subject as something they enjoy. Speed pressure, timed testing and blind memorization pose high hurdles in the pursuit of math, according to Jo Boaler, professor of mathematics education  at Stanford Graduate School of Education and lead author on a new working paper called "Fluency Without Fear."

"There is a common and damaging misconception in mathematics – the idea that strong math students are fast math students," said Boaler, also cofounder of YouCubed at Stanford, which aims to inspire and empower math educators by making accessible in the most practical way the latest research on math learning.

Fortunately, said Boaler , the new national curriculum standards known as the Common Core Standards for K-12 schools de-emphasize the rote memorization of math facts. Maths facts are fundamental assumptions about math, such as the times tables (2 x 2 = 4), for example. Still, the expectation of rote memorization continues in classrooms and households across the United States.

While research shows that knowledge of math facts is important, Boaler said the best way for students to know math facts is by using them regularly and developing understanding of numerical relations. Memorization, speed and test pressure can be damaging, she added.

Number sense is critical

On the other hand, people with "number sense" are those who can use numbers flexibly, she said. For example, when asked to solve the problem of 7 x 8, someone with number sense may have memorized 56, but they would also be able to use a strategy such as working out 10 x 7 and subtracting two 7s (70-14).

"They would not have to rely on a distant memory," Boaler wrote in the paper.

In fact, in one research project the investigators found that the high-achieving students actually used number sense, rather than rote memory, and the low-achieving students did not.

The conclusion was that the low achievers are often low achievers not because they know less but because they don't use numbers flexibly.

"They have been set on the wrong path, often from an early age, of trying to memorize methods instead of interacting with numbers flexibly," she wrote. Number sense is the foundation for all higher-level mathematics, she noted.

Role of the brain

Boaler said that some students will be slower when memorizing, but still possess exceptional mathematics potential.

"Math facts are a very small part of mathematics, but unfortunately students who don't memorize math facts well often come to believe that they can never be successful with math and turn away from the subject," she said.

Prior research found that students who memorized more easily were not higher achieving – in fact, they did not have what the researchers described as more "math ability" or higher IQ scores. Using an MRI scanner, the only brain differences the researchers found were in a brain region called the hippocampus, which is the area in the brain responsible for memorizing facts – the working memory section.

But according to Boaler, when students are stressed – such as when they are solving math questions under time pressure – the working memory becomes blocked and the students cannot as easily recall the math facts they had previously studied. This particularly occurs among higher achieving students and female students, she said.

Some estimates suggest that at least a third of students experience extreme stress or "math anxiety" when they take a timed test, no matter their level of achievement. "When we put students through this anxiety-provoking experience, we lose students from mathematics," she said.

Math treated differently

Boaler contrasts the common approach to teaching math with that of teaching English. In English, a student reads and understands novels or poetry, without needing to memorize the meanings of words through testing. They learn words by using them in many different situations – talking, reading and writing.

"No English student would say or think that learning about English is about the fast memorization and fast recall of words," she added.

Strategies, activities

In the paper, coauthored by Cathy Williams, cofounder of YouCubed, and Amanda Confer, a Stanford graduate student in education, the scholars provide activities for teachers and parents that help students learn math facts at the same time as developing number sense. These include number talks, addition and multiplication activities, and math cards.

Importantly, Boaler said, these activities include a focus on the visual representation of number facts. When students connect visual and symbolic representations of numbers, they are using different pathways in the brain, which deepens their learning, as shown by recent brain research.

"Math fluency" is often misinterpreted, with an over-emphasis on speed and memorization, she said. "I work with a lot of mathematicians, and one thing I notice about them is that they are not particularly fast with numbers; in fact some of them are rather slow. This is not a bad thing; they are slow because they think deeply and carefully about mathematics."

She quotes the famous French mathematician, Laurent Schwartz. He wrote in his autobiography that he often felt stupid in school, as he was one of the slowest math thinkers in class.

Math anxiety and fear play a big role in students dropping out of mathematics, said Boaler.

"When we emphasize memorization and testing in the name of fluency we are harming children, we are risking the future of our ever-quantitative society and we are threatening the discipline of mathematics," she said. "We have the research knowledge we need to change this and to enable all children to be powerful mathematics learners. Now is the time to use it."

More Stories

A tutor sitting with a young reader

⟵ Go to all Research Stories

Get the Educator

Subscribe to our monthly newsletter.

Stanford Graduate School of Education

482 Galvez Mall Stanford, CA 94305-3096 Tel: (650) 723-2109

  • Contact Admissions
  • GSE Leadership
  • Site Feedback
  • Web Accessibility
  • Career Resources
  • Faculty Open Positions
  • Explore Courses
  • Academic Calendar
  • Office of the Registrar
  • Cubberley Library
  • StanfordWho
  • StanfordYou

Improving lives through learning

Make a gift now

  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Non-Discrimination
  • Accessibility

© Stanford University , Stanford , California 94305 .

50 IB Maths IA Topic Ideas

math topics to research

IB Maths is a struggle for most people going through their diploma. To make matters worse, on top of just doing the dreaded maths exam, we’re also expected to write a Maths IA exploration into a topic of our choice! Where do you even begin such a task? How do you even choose a topic? To make things easier, we have plenty of free Maths resources! Firstly though, we’ve compiled 50 common Maths IA topics that may spark some creative juices and set you on your way to conquering one of the hardest assignments of the diploma!

Once you have chosen your topic, you may want to check out our other posts on how to structure and format your Maths IA or how to write your IA .

NOTE: These topics are purely meant as inspiration and are not to be chosen blindly. Even though many of these topics led to high scores for some of our graduates in the past, it is important that you listen to the advice of your subject teacher before choosing any topic!

  • Pascal’s triangle : Discovering patterns within this famous array of numbers
  • Pythagorean triples : Can you find patterns in what numbers form a pythagorean triple?
  • Monty Hall problem : How does Bayesian probability work in this real-life example, and can you add a layer of complexity to it?
  • The Chinese Remainder Theorem : An insight into the mathematics of number theory
  • Sum of all positive integers is -1/12? Explore this fascinating physics phenomenon through the world of sequences and series
  • Birthday paradox : Why is it that in a room of people probability dictates that people are very likely to share a birthday? 
  • Harmonic series : Explore why certain notes/chords in music sound dissonant, and others consonant, by looking at the ratios of frequencies between the notes.
  • Optimizing areas : Optimizing the area of a rectangle is easy, but can you find a way to do it for any polygon?
  • Optimizing volumes : Explore the mathematics of finding a maximum volume of a cuboid subject to some constraint
  • Flow of traffic : How does mathematics feed into our traffic jams that we endure every morning?
  • Football statistics : Does spending a lot of cash during the transfer window translate to more points the following year? Or is there a better predictor of a team’s success like wages, historic performance, or player valuation?
  • Football statistics #2 : How does a manager sacking affect results? 
  • Gini coefficient : Can you use integration to derive the gini coefficient for a few countries, allowing you to accurately compare their levels of economic inequality?
  • Linear regressions : Run linear regressions using OLS to predict and estimate the effect of one variable on another.
  • The Prisoner’s Dilemma : Use game theory in order to deduce the optimal strategy in this famous situation
  • Tic Tac Toe : What is the optimal strategy in this legendary game? Will my probability of winning drastically increase by some move that I can make?
  • Monopoly : Is there a strategy that dominates all others? Which properties should I be most excited to land on?
  • Rock Paper Scissors : If I played and won with rock already, should I make sure to change what I play this time? Or is it better to switch? 
  • The Toast problem : If there is a room of some number of people, how many toasts are necessary for everyone to have toasted with everyone?
  • Cracking a Password : How long would it take to be able to correctly guess a password? How much safer does a password get by adding symbols or numbers?
  • Stacking Balls : Suppose you want to place balls in a cardboard box, what is the optimal way to do this to use your space most effectively?
  • The Wobbly Table : Many tables are wobbly because of uneven ground, but is there a way to orient the tables to make sure they are always stable?
  • The Stable Marriage Problem : Is there a matching algorithm that ensures each person in society ends up with their one true love? What is the next best alternative if this is not viable?
  • Mathematical Card Tricks : Look at the probabilities at play in the famous 3 card monte scam. 
  • Modelling the Spread of a Virus : How long would it take for us all to be wiped out if a deadly influenza spreads throughout the population?
  • The Tragedy of the Common s : Our population of fish is dwindling, but how much do we need to reduce our production by in order to ensure the fish can replenish faster than we kill?
  • The Risk of Insurance : An investigation into asymmetric information and how being unsure about the future state of the world may lead us to be risk-averse
  • Gabriel’s Horn : This figure has an infinite surface area but a finite volume, can you p rove this?
  • Modelling the Shape of an Egg : Although it may sound easy, finding the surface area or volume of this common shape requires some in-depth mathematical investigation
  • Voting Systems : What voting system ensures that the largest amount of people get the official that they would prefer? With 2 candidates this is logical, but what if they have more than 2?
  • Probability : Are Oxford and Cambridge biased against state-school applicants?
  • Statistics : With Tokyo 2020 around the corner, how aboutmodelling change in record performances for a particular discipline?
  • Analysing Data : In the 200 meter dash, is there an advantage to a particular lane in track? 
  • Coverage : Calculation of rate of deforestation, and afforestation. How long will our forests last?
  • Friendly numbers, Solitary numbers, perfect numbers : Investigate what changes the condition of numbers
  • Force : Calculating the intensity of a climber’s fall based upon their distance above where they last clamped in
  • Königsberg bridge problem : Using networks to solve problems. 
  • Handshake problem : How many handshakes are required so that everyone shakes hands with all the other people in the room? 
  • The mathematics of deceit : How con artists use pyramid schemes to get rich quick!
  • Modelling radioactive decay : The maths of Chernobyl – when will it be safe to live there?
  • Mathematics and photography : Exploring the relationship between the aperture of a camera and a geometric sequence
  • Normal Distribution : Using distributions to examine the 2008 financial crisis
  • Mechanics : Body Proportions for Track and Field events
  • Modelling : How does a cup of Tea cool?
  • Relationships : Do BMI ratings and country wealth share a significant relationship?
  • Modelling : Can we mathematically model musical chords and concepts like dissonance?
  • Evaluating limits : Exploring L’Hôpital’s rule
  • Chinese postman problem : How do we calculate shortest possible routes?
  • Maths and Time : Exploring ideas regarding time dilation
  • Plotting Planets : Using log functions to track planets!

So there we have it: 50 IB Maths IA topic ideas to give you a head-start for attacking this piece of IB coursework ! We also have similar ideas for Biology , Chemistry , Economics , History , Physics , TOK … and many many more tips and tricks on securing those top marks on our free resources page – just click the ‘Maths resources’ button!

Still feeling confused, or want some personalised help? We offer online private tuition from experienced IB graduates who got top marks in their Maths IA. 

Share article links

Related Articles

math topics to research

  • Most Popular

30 IB Biology IA Topic Ideas!

Are you struggling with choosing your topic for your IB Biology IA? Don’t worry, we’ve all been there. Finding a topic is one of the – if not THE – most important part of writing your IA, so we want to make sure that you get it right! Luckily, there are so many great topics […]

math topics to research

20 IB Physics IA Topic Ideas!

Choosing where to start with an IA can be the hardest part, and this is definitely true for the Physics IA. We know that our topic has to be somewhat related to the syllabus, but where should we focus? Thankfully, we’ve asked some of our favourite IB graduates for some of the ideas they pursued! […]

25 History IA Topic Ideas!

Are you about to start your History internal assessment? We know the struggle. One of the most difficult parts about the task is finding a good History IA topic because it feels like you can just write about anything. The IB breaks it down into 7 main different types of topics that you can choose, […]

3 Ways to Strengthen Math Instruction

math topics to research

  • Share article

Students’ math scores have plummeted, national assessments show , and educators are working hard to turn math outcomes around.

But it’s a challenge, made harder by factors like math anxiety , students’ feelings of deep ambivalence about how math is taught, and learning gaps that were exacerbated by the pandemic’s disruption of schools.

This week, three educators offered solutions on how districts can turn around poor math scores in a conversation moderated by Peter DeWitt, an opinion blogger for Education Week.

Here are three takeaways from the discussion. For more, watch the recording on demand .

1. Intervention is key

Research shows that early math skills are a key predictor of later academic success.

“Children who know more do better, and math is cumulative—so if you don’t grasp some of the earlier concepts, math gets increasingly harder,” said Nancy Jordan, a professor of education at the University of Delaware.

For example, many students struggle with the concept of fractions, she said. Her research has found that by 6th grade, some students still don’t really understand what a fraction is, which makes it harder for them to master more advanced concepts, like adding or subtracting fractions with unlike denominators.

At that point, though, teachers don’t always have the time in class to re-teach those basic or fundamental concepts, she said, which is why targeted intervention is so important.

 Conceptual photo of of a young boy studying mathematics using fingers in primary school.

Still, Jordan’s research revealed that in some middle schools, intervention time is not a priority: “If there’s an assembly, or if there is a special event or whatever, it takes place during intervention time,” she said. “Or ... the children might sit on computers, and they’re not getting any really explicit instruction.”

2. ‘Gamify’ math class

Students today need new modes of instruction that meet them where they are, said Gerilyn Williams, a math teacher at Pinelands Regional Junior High School in Little Egg Harbor Township, N.J.

“Most of them learn through things like TikTok or YouTube videos,” she said. “They like to play games, they like to interact. So how can I bring those same attributes into my lesson?”

Part of her solution is gamifying instruction. Williams avoids worksheets. Instead, she provides opportunities for students to practice skills that incorporate elements of game design.

That includes digital tools, which provide students with the instant feedback they crave, she said.

But not all the games are digital. Williams’ students sometimes play “trashketball,” a game in which they work in teams to answer math questions. If they get the question right, they can crumble the piece of paper and throw it into a trash can from across the room.

“The kids love this,” she said.

Gerilyn Williams, a middle school math teacher in New Jersey, stands in her classroom.

Williams also incorporates game-based vocabulary into her instruction, drawing on terms from video games.

For example, “instead of calling them quizzes and tests, I call them boss battles,” she said. “It’s less frightening. It reduces that math anxiety, and it makes them more engaging.

“We normalize things like failure, because when they play video games, think about what they’re doing,” Williams continued. “They fail—they try again and again and again and again until they achieve success.”

3. Strengthen teacher expertise

To turn around math outcomes, districts need to invest in teacher professional development and curriculum support, said Chaunté Garrett, the CEO of ELLE Education, which partners with schools and districts to support student learning.

“You’re not going to be able to replace the value of a well-supported and well-equipped mathematics teacher,” she said. “We also want to make sure that that teacher has a math curriculum that’s grounded in the standards and conceptually based.”

Students will develop more critical thinking skills and better understand math concepts if teachers are able to relate instruction to real life, Garrett said—so that “kids have relationships that they can pull on, and math has some type of meaning and context to them outside of just numbers and procedures.”

Tonya Clarke, coordinator of K–12 mathematics in the division of school leadership and improvement for Clayton County Public Schools in Jonesboro, Ga., in the hallway at Adamson Middle School.

It’s important for math curriculum to be both culturally responsive and relevant, she added. And teachers might need training on how to offer opportunities for students to analyze and solve real-world problems.

“So often, [in math problems], we want to go back to soccer and basketball and all of those things that we lived through, and it’s not that [current students] don’t enjoy those, but our students live social media—they literally live it,” Garrett said. “Those are the things that have to live out in classrooms right now, and if we’re not doing those things, we are doing a disservice.”

Sign Up for EdWeek Update

Edweek top school jobs.

Conceptual image of A.I. robot head and numbers flowing through it's head.

Sign Up & Sign In

module image 9

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

What the data says about Americans’ views of climate change

Activists display prints replicating solar panels during a rally to mark Earth Day at Lafayette Square in Washington, D.C., on April 23, 2022. (Gemunu Amarasinghe/AP File)

A recent report from the United Nations’ Intergovernmental Panel on Climate Change has underscored the need for international action to avoid increasingly severe climate impacts in the years to come. Steps outlined in the report, and by climate experts, include major reductions in greenhouse gas emissions from sectors such as energy production and transportation.

But how do Americans feel about climate change, and what steps do they think the United States should take to address it? Here are eight charts that illustrate Americans’ views on the issue, based on recent Pew Research Center surveys.

Pew Research Center published this collection of survey findings as part of its ongoing work to understand attitudes about climate change and energy issues. The most recent survey was conducted May 30-June 4, 2023, among 10,329 U.S. adults. Earlier findings have been previously published, and methodological information, including the sample sizes and field dates, can be found by following the links in the text.

Everyone who took part in the June 2023 survey is a member of the Center’s American Trends Panel (ATP), an online survey panel that is recruited through national, random sampling of residential addresses. This way, nearly all U.S. adults have a chance of selection. The survey is weighted to be representative of the U.S. adult population by gender, race, ethnicity, partisan affiliation, education and other categories. Read more about the ATP’s methodology .

Here are the questions used for this analysis , along with responses, and its methodology .

A majority of Americans support prioritizing the development of renewable energy sources. Two-thirds of U.S. adults say the country should prioritize developing renewable energy sources, such as wind and solar, over expanding the production of oil, coal and natural gas, according to a survey conducted in June 2023.

A bar chart showing that two-thirds of Americans prioritize developing alternative energy sources, like wind and solar.

In a previous Center survey conducted in 2022, nearly the same share of Americans (69%) favored the U.S. taking steps to become carbon neutral by 2050 , a goal outlined by President Joe Biden at the outset of his administration. Carbon neutrality means releasing no more carbon dioxide into the atmosphere than is removed.

Nine-in-ten Democrats and Democratic-leaning independents say the U.S. should prioritize developing alternative energy sources to address America’s energy supply. Among Republicans and Republican leaners, 42% support developing alternative energy sources, while 58% say the country should prioritize expanding exploration and production of oil, coal and natural gas.

There are important differences by age within the GOP. Two-thirds of Republicans under age 30 (67%) prioritize the development of alternative energy sources. By contrast, 75% of Republicans ages 65 and older prioritize expanding the production of oil, coal and natural gas.

Americans are reluctant to phase out fossil fuels altogether, but younger adults are more open to it. Overall, about three-in-ten adults (31%) say the U.S. should completely phase out oil, coal and natural gas. More than twice as many (68%) say the country should use a mix of energy sources, including fossil fuels and renewables.

A bar chart that shows younger U.S. adults are more open than older adults to phasing out fossil fuels completely.

While the public is generally reluctant to phase out fossil fuels altogether, younger adults are more supportive of this idea. Among Americans ages 18 to 29, 48% say the U.S. should exclusively use renewables, compared with 52% who say the U.S. should use a mix of energy sources, including fossil fuels.

There are age differences within both political parties on this question. Among Democrats and Democratic leaners, 58% of those ages 18 to 29 favor phasing out fossil fuels entirely, compared with 42% of Democrats 65 and older. Republicans of all age groups back continuing to use a mix of energy sources, including oil, coal and natural gas. However, about three-in-ten (29%) Republicans ages 18 to 29 say the U.S. should phase out fossil fuels altogether, compared with fewer than one-in-ten Republicans 50 and older.

There are multiple potential routes to carbon neutrality in the U.S. All involve major reductions to carbon emissions in sectors such as energy and transportation by increasing the use of things like wind and solar power and electric vehicles. There are also ways to potentially remove carbon from the atmosphere and store it, such as capturing it directly from the air or using trees and algae to facilitate carbon sequestration.

The public supports the federal government incentivizing wind and solar energy production. In many sectors, including energy and transportation, federal incentives and regulations significantly influence investment and development.

A bar chart showing that two-thirds of U.S. adults say the federal government should encourage production of wind and solar power.

Two-thirds of Americans think the federal government should encourage domestic production of wind and solar power. Just 7% say the government should discourage this, while 26% think it should neither encourage nor discourage it.

Views are more mixed on how the federal government should approach other activities that would reduce carbon emissions. On balance, more Americans think the government should encourage than discourage the use of electric vehicles and nuclear power production, though sizable shares say it should not exert an influence either way.

When it comes to oil and gas drilling, Americans’ views are also closely divided: 34% think the government should encourage drilling, while 30% say it should discourage this and 35% say it should do neither. Coal mining is the one activity included in the survey where public sentiment is negative on balance: More say the federal government should discourage than encourage coal mining (39% vs. 21%), while 39% say it should do neither.

Americans see room for multiple actors – including corporations and the federal government – to do more to address the impacts of climate change. Two-thirds of adults say large businesses and corporations are doing too little to reduce the effects of climate change. Far fewer say they are doing about the right amount (21%) or too much (10%).

A bar chart showing that two-thirds say large businesses and corporations are doing too little to reduce climate change effects.

Majorities also say their state elected officials (58%) and the energy industry (55%) are doing too little to address climate change, according to a March 2023 survey.

In a separate Center survey conducted in June 2023, a similar share of Americans (56%) said the federal government should do more to reduce the effects of global climate change.

When it comes to their own efforts, about half of Americans (51%) think they are doing about the right amount as an individual to help reduce the effects of climate change, according to the March 2023 survey. However, about four-in-ten (43%) say they are doing too little.

Democrats and Republicans have grown further apart over the last decade in their assessments of the threat posed by climate change. Overall, a majority of U.S. adults (54%) describe climate change as a major threat to the country’s well-being. This share is down slightly from 2020 but remains higher than in the early 2010s.

A line chart that shows 54% of Americans view climate change as a major threat, but the partisan divide has grown.

Nearly eight-in-ten Democrats (78%) describe climate change as a major threat to the country’s well-being, up from about six-in-ten (58%) a decade ago. By contrast, about one-in-four Republicans (23%) consider climate change a major threat, a share that’s almost identical to 10 years ago.

Concern over climate change has also risen internationally, as shown by separate Pew Research Center polling across 19 countries in 2022. People in many advanced economies express higher levels of concern than Americans . For instance, 81% of French adults and 73% of Germans describe climate change as a major threat.

Climate change is a lower priority for Americans than other national issues. While a majority of adults view climate change as a major threat, it is a lower priority than issues such as strengthening the economy and reducing health care costs.

Overall, 37% of Americans say addressing climate change should be a top priority for the president and Congress in 2023, and another 34% say it’s an important but lower priority. This ranks climate change 17th out of 21 national issues included in a Center survey from January.

As with views of the threat that climate change poses, there’s a striking contrast between how Republicans and Democrats prioritize the issue. For Democrats, it falls in the top half of priority issues, and 59% call it a top priority. By comparison, among Republicans, it ranks second to last, and just 13% describe it as a top priority.

Our analyses have found that partisan gaps on climate change are often widest on questions – such as this one – that measure the salience or importance of the issue. The gaps are more modest when it comes to some specific climate policies. For example, majorities of Republicans and Democrats alike say they would favor a proposal to provide a tax credit to businesses for developing technologies for carbon capture and storage.

A dot plot that shows climate change is a much lower priority for Republicans than for Democrats.

Perceptions of local climate impacts vary by Americans’ political affiliation and whether they believe that climate change is a serious problem. A majority of Americans (61%) say that global climate change is affecting their local community either a great deal or some. About four-in-ten (39%) see little or no impact in their own community.

A bar chart that shows Democrats more likely than Republicans to see local effects of climate change.

The perception that the effects of climate change are happening close to home is one factor that could drive public concern and calls for action on the issue. But perceptions are tied more strongly to people’s beliefs about climate change – and their partisan affiliation – than to local conditions.

For example, Americans living in the Pacific region – California, Washington, Oregon, Hawaii and Alaska – are more likely than those in other areas of the country to say that climate change is having a great deal of impact locally. But only Democrats in the Pacific region are more likely to say they are seeing effects of climate change where they live. Republicans in this region are no more likely than Republicans in other areas to say that climate change is affecting their local community.

Our previous surveys show that nearly all Democrats believe climate change is at least a somewhat serious problem, and a large majority believe that humans play a role in it. Republicans are much less likely to hold these beliefs, but views within the GOP do vary significantly by age and ideology. Younger Republicans and those who describe their views as moderate or liberal are much more likely than older and more conservative Republicans to describe climate change as at least a somewhat serious problem and to say human activity plays a role.

Democrats are also more likely than Republicans to report experiencing extreme weather events in their area over the past year – such as intense storms and floods, long periods of hot weather or droughts – and to see these events as connected with climate change.

About three-quarters of Americans support U.S. participation in international efforts to reduce the effects of climate change. Americans offer broad support for international engagement on climate change: 74% say they support U.S. participation in international efforts to reduce the effects of climate change.

A bar chart showing that about three-quarters of Americans support a U.S. role in global efforts to address climate change.

Still, there’s little consensus on how current U.S. efforts stack up against those of other large economies. About one-in-three Americans (36%) think the U.S. is doing more than other large economies to reduce the effects of global climate change, while 30% say the U.S. is doing less than other large economies and 32% think it is doing about as much as others. The U.S. is the second-largest carbon dioxide emitter , contributing about 13.5% of the global total.

When asked what they think the right balance of responsibility is, a majority of Americans (56%) say the U.S. should do about as much as other large economies to reduce the effects of climate change, while 27% think it should do more than others.

A previous Center survey found that while Americans favor international cooperation on climate change in general terms, their support has its limits. In January 2022 , 59% of Americans said that the U.S. does not have a responsibility to provide financial assistance to developing countries to help them build renewable energy sources.

In recent years, the UN conference on climate change has grappled with how wealthier nations should assist developing countries in dealing with climate change. The most recent convening in fall 2022, known as COP27, established a “loss and damage” fund for vulnerable countries impacted by climate change.

Note: This is an update of a post originally published April 22, 2022. Here are the questions used for this analysis , along with responses, and its methodology .

  • Climate, Energy & Environment
  • Environment & Climate
  • Partisanship & Issues
  • Political Issues

Portrait photo of staff

How Republicans view climate change and energy issues

How americans view future harms from climate change in their community and around the u.s., americans continue to have doubts about climate scientists’ understanding of climate change, growing share of americans favor more nuclear power, why some americans do not see urgency on climate change, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

ScienceDaily

Accelerating the discovery of new materials via the ion-exchange method

Tohoku University researchers have unveiled a new means of predicting how to synthesize new materials via the ion-exchange. Based on computer simulations, the method significantly reduces the time and energy required to explore for inorganic materials.

Details of their research were published in the journal Chemistry of Materials on April 17, 2024.

In the quest to form new materials that facilitate environmentally friendly and efficient energy technologies, scientists regularly rely on the high temperature reaction method to synthesize inorganic materials. When the raw substances are mixed and heated to very high temperatures, they are split into atoms and then reassemble into new substances. But this approach has some drawbacks. Only materials with the most energetically stable crystal structure can be formed, and it is not possible to synthesize materials that would decompose at high temperatures.

On the contrary, the ion-exchange method forms new materials at relatively low temperatures. Ions from existing materials are exchanged with ions of similar charge from other materials, thereby forming new inorganic substances. The low synthesis temperature makes it possible to obtain compounds that would not be available by the usual high temperature reaction method.

Despite its potential, however, the lack of a systematic approach to predicting appropriate material combinations for ion exchange has hindered its widespread adoption, necessitating laborious trial-and-error experiments.

"In our study, we predicted the feasibility of materials suited for ion exchange using computer simulations," says Issei Suzuki, a senior assistant professor at Tohoku University's Institute of Multidisciplinary Research for Advanced Materials, and co-author of the paper.

The simulations involved investigating the potential for ion exchange reactions between ternary wurtzite-type oxides and halides/nitrates. Specifically, Suzuki and his colleagues performed simulations on 42 combinations of β-MIGaO2, MI = Na, Li, Cu, Ag as precursors, and halides and nitrates as ion sources.

The simulation results were divided into three categories: "ion exchange occurs," "no ion exchange occurs," and "partial ion exchange occurs (solid solution is formed). To confirm their results, the researchers verified the simulation through actual experiments, confirming an agreement between simulation and experiments in all 42 combinations.

Suzuki believes that their advancement will accelerate the development of new materials suitable for improved energy technologies. "Our findings have shown that it is possible to predict whether ion exchange is feasible and to design reactions in advance without experimental trial and error. In the future, we plan to use this method to search for materials with new and attractive properties that will tackle energy problems."

  • Materials Science
  • Civil Engineering
  • Engineering and Construction
  • Computer Modeling
  • Mathematics
  • Distributed Computing
  • Computer Graphics
  • Materials science
  • Computer simulation
  • Virtual reality
  • Formaldehyde
  • Pyroelectricity
  • Nanoparticle
  • Electron microscope

Story Source:

Materials provided by Tohoku University . Note: Content may be edited for style and length.

Journal Reference :

  • Issei Suzuki, Masao Kita, Takahisa Omata. Designing Topotactic Ion-Exchange Reactions in Solid-State Oxides Through First-Principles Calculations . Chemistry of Materials , 2024; DOI: 10.1021/acs.chemmater.3c03016

Cite This Page :

Explore More

  • This Alloy Is Kinky
  • Giant Galactic Explosion: Galaxy Pollution
  • Flare Erupting Around a Black Hole
  • Two Species Interbreeding Created New Butterfly
  • Warming Antarctic Deep-Sea and Sea Level Rise
  • Octopus Inspires New Suction Mechanism for ...
  • Cities Sinking: Urban Populations at Risk
  • Puzzle Solved About Ancient Galaxy
  • How 3D Printers Can Give Robots a Soft Touch
  • Combo of Multiple Health Stressors Harming Bees

Trending Topics

Strange & offbeat.

IMAGES

  1. 230 Fantastic Math Research Topics

    math topics to research

  2. 210 Brilliant Math Research Topics and Ideas for Students

    math topics to research

  3. 181 Math Research Topics

    math topics to research

  4. 210 Brilliant Math Research Topics and Ideas for Students

    math topics to research

  5. Top 50 Math Research Topics to Write an Interesting Paper

    math topics to research

  6. 166 Math Research Topics for Academic Papers and Essays

    math topics to research

VIDEO

  1. New Math Discovery

  2. Math Topics Unit 8 Day 4 Notes 23-24

  3. Connecting Research with Education: 20 research scenarios that require new computational practice

  4. Research Methodology in Mathematics

  5. Interesting Facts about Maths #WeLoveMaths

  6. How to Get a Math Research Position as a Student

COMMENTS

  1. 181 Math Research Topics

    If you are an undergraduate looking for some research topics for your next math paper, you will surely appreciate our list of interesting undergraduate math research topics: Methods to count discrete objects. The origins of Greek symbols in mathematics. Methods to solve simultaneous equations. Real-world applications of the theorem of Pythagoras.

  2. 210 Brilliant Math Research Topics and Ideas for Students

    Math Research Paper Topics for Undergraduate Students. Explain the different theories of mathematical logic. Discuss the origins of Greek symbols in mathematics. Explain the significance of circles. Analyze predictive models. Explain the emergence of patterns in chaos theory.

  3. Research

    In applied mathematics, we look for important connections with other disciplines that may inspire interesting and useful mathematics, and where innovative mathematical reasoning may lead to new insights and applications. Combinatorics. Computational Biology. Physical Applied Mathematics. Computational Science & Numerical Analysis.

  4. Lists of mathematics topics

    Lists of mathematics topics cover a variety of topics related to mathematics. Some of these lists link to hundreds of articles; some link only to a few. ... scheme authors find many mathematics research journals asking them to use to classify their submissions; those published then include these classifications. The Mathematical Atlas; Maths ...

  5. Mathematics News -- ScienceDaily

    Explore a wide range of recent research in mathematics. From mathematical modeling to why some people have difficulty learning math, read all the math-related news here.

  6. Future themes of mathematics education research: an ...

    Before the pandemic (2019), we asked: On what themes should research in mathematics education focus in the coming decade? The 229 responses from 44 countries led to eight themes plus considerations about mathematics education research itself. The themes can be summarized as teaching approaches, goals, relations to practices outside mathematics education, teacher professional development ...

  7. Mathematics Research Paper Topics

    Mathematics Research Paper Topics. Mathematics undoubtedly began as an entirely practical activity— measuring fields, determining the volume of liquids, counting out coins, and the like. During the golden era of Greek science, between about the sixth and third centuries B.C., however, mathematicians introduced a new concept to their study of ...

  8. Mathematics

    Browse our best resources, organized by subject. 182 Select a Subject.

  9. Writing Math Research Papers: A Guide for Students and Instructors

    Practical advice about finding a topic, developing it by keeping a research journal, and creating a final product, either a research paper or oral presentation, follows. Writing Math Research Papers is directed primarily to students, and could be assigned as a supplementary textbook for high school mathematics classes. It will also be useful to ...

  10. 4 cool topics you can study in maths

    We talked to four Sydney mathematicians about their research and why maths (and the study of it) is so important. Mathematics and statistics are vital to understanding every part of our world. It is a language, a tool for analysis and prediction, and a way of thinking. We caught up with Dr Lamiae Azizi, Kevin Wang, Dr Diana Warren and Oded ...

  11. Research in Mathematics

    Research in Mathematics is a broad open access journal publishing all aspects of mathematics including pure, applied, and interdisciplinary mathematics, and mathematical education and other fields. The journal primarily publishes research articles, but also welcomes review and survey articles, and case studies. Topics include, but are not limited to:

  12. Algebra

    We have large groups of researchers active in number theory and algebraic geometry, as well as many individuals who work in other areas of algebra: groups, noncommutative rings, Lie algebras and Lie super-algebras, representation theory, combinatorics, game theory, and coding. Chairs: George Bergman and Tony Feng.

  13. 200+ Importont Math Research Topics & Ideas [2024] + FAQs

    Mathematical Research Topics for Undergraduates. Present your views on the evolution of math through the perspective of Gauss-Markov. Discuss how theorems of primary math work. Discuss the role of continuous stochastic process in the process of math. Write about the objectives of standardised testing.

  14. Computational Mathematics

    Computational Mathematics involves mathematical research in areas of science and engineering where computing plays a central and essential role. Topics include for example developing accurate and efficient numerical methods for solving physical or biological models, analysis of numerical approximations to differential and integral equations ...

  15. Making Mathematics: Mathematics Research Teacher Handbook

    Mathematics research influences student learning in a number of ways: Research provides students with an understanding of what it means to do mathematics and of mathematics as a living, growing field. Writing mathematics and problem-solving become central to student's learning. Students develop mastery of mathematics topics.

  16. 2022 Founder's Lecture: Current Research Trends in Mathematics Learning

    I present a brief overview of research in mathematics education through the lens of Investigations in Mathematics Learning, the official journal of the Research Council on Mathematics Learning, using issues from 2017-2021. Included are findings from qualitative analyses and ideas calling on the mathematics education community to consider that ...

  17. Undergraduate Research

    Undergraduate Research. Undergraduate Research programs are a great opportunity for undergraduates to build research experience, connect with faculty and researchers, and (sometimes) even earn some money. Undergraduate Research programs can take a variety of formats. Some are informal arrangements with a professor where you work independently ...

  18. How to be successful as a research mathematician? Follow your gut

    But now I realize that, in maths research, you don't just follow logical steps. If you do, you'll never get anywhere interesting. You have to use your gut instinct and feel your way through ...

  19. Making Mathematics: Mathematics Research Teacher Handbook

    This guide will give you a brief overview of the parts of a mathematics research paper. Following the guide is a sample write up so you can see how one person wrote about her research experience and shared her results. A formal mathematics research paper includes a number of sections. These will be appropriate for your write-up as well.

  20. Possible Student Research Topics

    Department of Mathematics. Department of Mathematics. 127 Manchester Hall. Wake Forest University. Box 7388. Winston-Salem, NC 27109. 336.758.5300. A Private Liberal Arts University in Winston-Salem, North Carolina / Founded 1834 / Pro Humanitate. 33°.

  21. Pure Mathematics Research

    Pure Mathematics Research Pure Mathematics Fields The E 8 Lie group. Algebra & Algebraic Geometry; Algebraic Topology; Analysis & PDEs; Geometry & Topology; Mathematical Logic & Foundations; ... Department of Mathematics Headquarters Office Simons Building (Building 2), Room 106 77 Massachusetts Avenue Cambridge, MA 02139-4307 Campus Map (617 ...

  22. Research shows the best ways to learn math

    Research shows the best ways to learn math. Professor Jo Boaler says students learn math best when they work on problems they enjoy, rather than exercises and drills they fear. Students learn math best when they approach the subject as something they enjoy. Speed pressure, timed testing and blind memorization pose high hurdles in the pursuit of ...

  23. 50 IB Maths IA Topic Ideas

    Maths and Time: Exploring ideas regarding time dilation. Plotting Planets: Using log functions to track planets! So there we have it: 50 IB Maths IA topic ideas to give you a head-start for attacking this piece of IB coursework! We also have similar ideas for Biology, Chemistry, Economics, History, Physics, TOK… and many many more tips and ...

  24. 3 Ways to Strengthen Math Instruction

    Here are three takeaways from the discussion. For more, watch the recording on demand. 1. Intervention is key. Research shows that early math skills are a key predictor of later academic success.

  25. Americans' views of climate change in 8 charts

    Nearly eight-in-ten Democrats (78%) describe climate change as a major threat to the country's well-being, up from about six-in-ten (58%) a decade ago. By contrast, about one-in-four Republicans (23%) consider climate change a major threat, a share that's almost identical to 10 years ago.

  26. Accelerating the discovery of new materials via the ion ...

    Details of their research were published in the journal Chemistry of Materials on April 17, 2024.. In the quest to form new materials that facilitate environmentally friendly and efficient energy ...