• Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

phenomenon that promotes a creative problem solving process

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

What Is Creative Problem-Solving & Why Is It Important?

Business team using creative problem-solving

  • 01 Feb 2022

One of the biggest hindrances to innovation is complacency—it can be more comfortable to do what you know than venture into the unknown. Business leaders can overcome this barrier by mobilizing creative team members and providing space to innovate.

There are several tools you can use to encourage creativity in the workplace. Creative problem-solving is one of them, which facilitates the development of innovative solutions to difficult problems.

Here’s an overview of creative problem-solving and why it’s important in business.

Access your free e-book today.

What Is Creative Problem-Solving?

Research is necessary when solving a problem. But there are situations where a problem’s specific cause is difficult to pinpoint. This can occur when there’s not enough time to narrow down the problem’s source or there are differing opinions about its root cause.

In such cases, you can use creative problem-solving , which allows you to explore potential solutions regardless of whether a problem has been defined.

Creative problem-solving is less structured than other innovation processes and encourages exploring open-ended solutions. It also focuses on developing new perspectives and fostering creativity in the workplace . Its benefits include:

  • Finding creative solutions to complex problems : User research can insufficiently illustrate a situation’s complexity. While other innovation processes rely on this information, creative problem-solving can yield solutions without it.
  • Adapting to change : Business is constantly changing, and business leaders need to adapt. Creative problem-solving helps overcome unforeseen challenges and find solutions to unconventional problems.
  • Fueling innovation and growth : In addition to solutions, creative problem-solving can spark innovative ideas that drive company growth. These ideas can lead to new product lines, services, or a modified operations structure that improves efficiency.

Design Thinking and Innovation | Uncover creative solutions to your business problems | Learn More

Creative problem-solving is traditionally based on the following key principles :

1. Balance Divergent and Convergent Thinking

Creative problem-solving uses two primary tools to find solutions: divergence and convergence. Divergence generates ideas in response to a problem, while convergence narrows them down to a shortlist. It balances these two practices and turns ideas into concrete solutions.

2. Reframe Problems as Questions

By framing problems as questions, you shift from focusing on obstacles to solutions. This provides the freedom to brainstorm potential ideas.

3. Defer Judgment of Ideas

When brainstorming, it can be natural to reject or accept ideas right away. Yet, immediate judgments interfere with the idea generation process. Even ideas that seem implausible can turn into outstanding innovations upon further exploration and development.

4. Focus on "Yes, And" Instead of "No, But"

Using negative words like "no" discourages creative thinking. Instead, use positive language to build and maintain an environment that fosters the development of creative and innovative ideas.

Creative Problem-Solving and Design Thinking

Whereas creative problem-solving facilitates developing innovative ideas through a less structured workflow, design thinking takes a far more organized approach.

Design thinking is a human-centered, solutions-based process that fosters the ideation and development of solutions. In the online course Design Thinking and Innovation , Harvard Business School Dean Srikant Datar leverages a four-phase framework to explain design thinking.

The four stages are:

The four stages of design thinking: clarify, ideate, develop, and implement

  • Clarify: The clarification stage allows you to empathize with the user and identify problems. Observations and insights are informed by thorough research. Findings are then reframed as problem statements or questions.
  • Ideate: Ideation is the process of coming up with innovative ideas. The divergence of ideas involved with creative problem-solving is a major focus.
  • Develop: In the development stage, ideas evolve into experiments and tests. Ideas converge and are explored through prototyping and open critique.
  • Implement: Implementation involves continuing to test and experiment to refine the solution and encourage its adoption.

Creative problem-solving primarily operates in the ideate phase of design thinking but can be applied to others. This is because design thinking is an iterative process that moves between the stages as ideas are generated and pursued. This is normal and encouraged, as innovation requires exploring multiple ideas.

Creative Problem-Solving Tools

While there are many useful tools in the creative problem-solving process, here are three you should know:

Creating a Problem Story

One way to innovate is by creating a story about a problem to understand how it affects users and what solutions best fit their needs. Here are the steps you need to take to use this tool properly.

1. Identify a UDP

Create a problem story to identify the undesired phenomena (UDP). For example, consider a company that produces printers that overheat. In this case, the UDP is "our printers overheat."

2. Move Forward in Time

To move forward in time, ask: “Why is this a problem?” For example, minor damage could be one result of the machines overheating. In more extreme cases, printers may catch fire. Don't be afraid to create multiple problem stories if you think of more than one UDP.

3. Move Backward in Time

To move backward in time, ask: “What caused this UDP?” If you can't identify the root problem, think about what typically causes the UDP to occur. For the overheating printers, overuse could be a cause.

Following the three-step framework above helps illustrate a clear problem story:

  • The printer is overused.
  • The printer overheats.
  • The printer breaks down.

You can extend the problem story in either direction if you think of additional cause-and-effect relationships.

4. Break the Chains

By this point, you’ll have multiple UDP storylines. Take two that are similar and focus on breaking the chains connecting them. This can be accomplished through inversion or neutralization.

  • Inversion: Inversion changes the relationship between two UDPs so the cause is the same but the effect is the opposite. For example, if the UDP is "the more X happens, the more likely Y is to happen," inversion changes the equation to "the more X happens, the less likely Y is to happen." Using the printer example, inversion would consider: "What if the more a printer is used, the less likely it’s going to overheat?" Innovation requires an open mind. Just because a solution initially seems unlikely doesn't mean it can't be pursued further or spark additional ideas.
  • Neutralization: Neutralization completely eliminates the cause-and-effect relationship between X and Y. This changes the above equation to "the more or less X happens has no effect on Y." In the case of the printers, neutralization would rephrase the relationship to "the more or less a printer is used has no effect on whether it overheats."

Even if creating a problem story doesn't provide a solution, it can offer useful context to users’ problems and additional ideas to be explored. Given that divergence is one of the fundamental practices of creative problem-solving, it’s a good idea to incorporate it into each tool you use.

Brainstorming

Brainstorming is a tool that can be highly effective when guided by the iterative qualities of the design thinking process. It involves openly discussing and debating ideas and topics in a group setting. This facilitates idea generation and exploration as different team members consider the same concept from multiple perspectives.

Hosting brainstorming sessions can result in problems, such as groupthink or social loafing. To combat this, leverage a three-step brainstorming method involving divergence and convergence :

  • Have each group member come up with as many ideas as possible and write them down to ensure the brainstorming session is productive.
  • Continue the divergence of ideas by collectively sharing and exploring each idea as a group. The goal is to create a setting where new ideas are inspired by open discussion.
  • Begin the convergence of ideas by narrowing them down to a few explorable options. There’s no "right number of ideas." Don't be afraid to consider exploring all of them, as long as you have the resources to do so.

Alternate Worlds

The alternate worlds tool is an empathetic approach to creative problem-solving. It encourages you to consider how someone in another world would approach your situation.

For example, if you’re concerned that the printers you produce overheat and catch fire, consider how a different industry would approach the problem. How would an automotive expert solve it? How would a firefighter?

Be creative as you consider and research alternate worlds. The purpose is not to nail down a solution right away but to continue the ideation process through diverging and exploring ideas.

Which HBS Online Entrepreneurship and Innovation Course is Right for You? | Download Your Free Flowchart

Continue Developing Your Skills

Whether you’re an entrepreneur, marketer, or business leader, learning the ropes of design thinking can be an effective way to build your skills and foster creativity and innovation in any setting.

If you're ready to develop your design thinking and creative problem-solving skills, explore Design Thinking and Innovation , one of our online entrepreneurship and innovation courses. If you aren't sure which course is the right fit, download our free course flowchart to determine which best aligns with your goals.

phenomenon that promotes a creative problem solving process

About the Author

loading

How it works

For Business

Join Mind Tools

Article • 10 min read

Creative Problem Solving

Finding Innovative Solutions to Challenges

By the Mind Tools Content Team

phenomenon that promotes a creative problem solving process

Imagine that you're vacuuming your house in a hurry because you've got friends coming over. Frustratingly, you're working hard but you're not getting very far. You kneel down, open up the vacuum cleaner, and pull out the bag. In a cloud of dust, you realize that it's full... again. Coughing, you empty it and wonder why vacuum cleaners with bags still exist!

James Dyson, inventor and founder of Dyson® vacuum cleaners, had exactly the same problem, and he used creative problem solving to find the answer. While many companies focused on developing a better vacuum cleaner filter, he realized that he had to think differently and find a more creative solution. So, he devised a revolutionary way to separate the dirt from the air, and invented the world's first bagless vacuum cleaner. [1]

Creative problem solving (CPS) is a way of solving problems or identifying opportunities when conventional thinking has failed. It encourages you to find fresh perspectives and come up with innovative solutions, so that you can formulate a plan to overcome obstacles and reach your goals.

In this article, we'll explore what CPS is, and we'll look at its key principles. We'll also provide a model that you can use to generate creative solutions.

About Creative Problem Solving

Alex Osborn, founder of the Creative Education Foundation, first developed creative problem solving in the 1940s, along with the term "brainstorming." And, together with Sid Parnes, he developed the Osborn-Parnes Creative Problem Solving Process. Despite its age, this model remains a valuable approach to problem solving. [2]

The early Osborn-Parnes model inspired a number of other tools. One of these is the 2011 CPS Learner's Model, also from the Creative Education Foundation, developed by Dr Gerard J. Puccio, Marie Mance, and co-workers. In this article, we'll use this modern four-step model to explore how you can use CPS to generate innovative, effective solutions.

Why Use Creative Problem Solving?

Dealing with obstacles and challenges is a regular part of working life, and overcoming them isn't always easy. To improve your products, services, communications, and interpersonal skills, and for you and your organization to excel, you need to encourage creative thinking and find innovative solutions that work.

CPS asks you to separate your "divergent" and "convergent" thinking as a way to do this. Divergent thinking is the process of generating lots of potential solutions and possibilities, otherwise known as brainstorming. And convergent thinking involves evaluating those options and choosing the most promising one. Often, we use a combination of the two to develop new ideas or solutions. However, using them simultaneously can result in unbalanced or biased decisions, and can stifle idea generation.

For more on divergent and convergent thinking, and for a useful diagram, see the book "Facilitator's Guide to Participatory Decision-Making." [3]

Core Principles of Creative Problem Solving

CPS has four core principles. Let's explore each one in more detail:

  • Divergent and convergent thinking must be balanced. The key to creativity is learning how to identify and balance divergent and convergent thinking (done separately), and knowing when to practice each one.
  • Ask problems as questions. When you rephrase problems and challenges as open-ended questions with multiple possibilities, it's easier to come up with solutions. Asking these types of questions generates lots of rich information, while asking closed questions tends to elicit short answers, such as confirmations or disagreements. Problem statements tend to generate limited responses, or none at all.
  • Defer or suspend judgment. As Alex Osborn learned from his work on brainstorming, judging solutions early on tends to shut down idea generation. Instead, there's an appropriate and necessary time to judge ideas during the convergence stage.
  • Focus on "Yes, and," rather than "No, but." Language matters when you're generating information and ideas. "Yes, and" encourages people to expand their thoughts, which is necessary during certain stages of CPS. Using the word "but" – preceded by "yes" or "no" – ends conversation, and often negates what's come before it.

How to Use the Tool

Let's explore how you can use each of the four steps of the CPS Learner's Model (shown in figure 1, below) to generate innovative ideas and solutions.

Figure 1 – CPS Learner's Model

phenomenon that promotes a creative problem solving process

Explore the Vision

Identify your goal, desire or challenge. This is a crucial first step because it's easy to assume, incorrectly, that you know what the problem is. However, you may have missed something or have failed to understand the issue fully, and defining your objective can provide clarity. Read our article, 5 Whys , for more on getting to the root of a problem quickly.

Gather Data

Once you've identified and understood the problem, you can collect information about it and develop a clear understanding of it. Make a note of details such as who and what is involved, all the relevant facts, and everyone's feelings and opinions.

Formulate Questions

When you've increased your awareness of the challenge or problem you've identified, ask questions that will generate solutions. Think about the obstacles you might face and the opportunities they could present.

Explore Ideas

Generate ideas that answer the challenge questions you identified in step 1. It can be tempting to consider solutions that you've tried before, as our minds tend to return to habitual thinking patterns that stop us from producing new ideas. However, this is a chance to use your creativity .

Brainstorming and Mind Maps are great ways to explore ideas during this divergent stage of CPS. And our articles, Encouraging Team Creativity , Problem Solving , Rolestorming , Hurson's Productive Thinking Model , and The Four-Step Innovation Process , can also help boost your creativity.

See our Brainstorming resources within our Creativity section for more on this.

Formulate Solutions

This is the convergent stage of CPS, where you begin to focus on evaluating all of your possible options and come up with solutions. Analyze whether potential solutions meet your needs and criteria, and decide whether you can implement them successfully. Next, consider how you can strengthen them and determine which ones are the best "fit." Our articles, Critical Thinking and ORAPAPA , are useful here.

4. Implement

Formulate a plan.

Once you've chosen the best solution, it's time to develop a plan of action. Start by identifying resources and actions that will allow you to implement your chosen solution. Next, communicate your plan and make sure that everyone involved understands and accepts it.

There have been many adaptations of CPS since its inception, because nobody owns the idea.

For example, Scott Isaksen and Donald Treffinger formed The Creative Problem Solving Group Inc . and the Center for Creative Learning , and their model has evolved over many versions. Blair Miller, Jonathan Vehar and Roger L. Firestien also created their own version, and Dr Gerard J. Puccio, Mary C. Murdock, and Marie Mance developed CPS: The Thinking Skills Model. [4] Tim Hurson created The Productive Thinking Model , and Paul Reali developed CPS: Competencies Model. [5]

Sid Parnes continued to adapt the CPS model by adding concepts such as imagery and visualization , and he founded the Creative Studies Project to teach CPS. For more information on the evolution and development of the CPS process, see Creative Problem Solving Version 6.1 by Donald J. Treffinger, Scott G. Isaksen, and K. Brian Dorval. [6]

Creative Problem Solving (CPS) Infographic

See our infographic on Creative Problem Solving .

phenomenon that promotes a creative problem solving process

Creative problem solving (CPS) is a way of using your creativity to develop new ideas and solutions to problems. The process is based on separating divergent and convergent thinking styles, so that you can focus your mind on creating at the first stage, and then evaluating at the second stage.

There have been many adaptations of the original Osborn-Parnes model, but they all involve a clear structure of identifying the problem, generating new ideas, evaluating the options, and then formulating a plan for successful implementation.

[1] Entrepreneur (2012). James Dyson on Using Failure to Drive Success [online]. Available here . [Accessed May 27, 2022.]

[2] Creative Education Foundation (2015). The CPS Process [online]. Available here . [Accessed May 26, 2022.]

[3] Kaner, S. et al. (2014). 'Facilitator′s Guide to Participatory Decision–Making,' San Francisco: Jossey-Bass.

[4] Puccio, G., Mance, M., and Murdock, M. (2011). 'Creative Leadership: Skils That Drive Change' (2nd Ed.), Thousand Oaks, CA: Sage.

[5] OmniSkills (2013). Creative Problem Solving [online]. Available here . [Accessed May 26, 2022].

[6] Treffinger, G., Isaksen, S., and Dorval, B. (2010). Creative Problem Solving (CPS Version 6.1). Center for Creative Learning, Inc. & Creative Problem Solving Group, Inc. Available here .

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

Simplex thinking.

8 Steps for Solving Complex Problems

Book Insights

Theory U: Leading From the Future as It Emerges

C. Otto Scharmer

Add comment

Comments (0)

Be the first to comment!

phenomenon that promotes a creative problem solving process

Get 30% off your first year of Mind Tools

Great teams begin with empowered leaders. Our tools and resources offer the support to let you flourish into leadership. Join today!

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Latest Updates

Article aelqacs

The Objective Leader

Article a6kw61z

6 Ways to Energize Your Workplace

Mind Tools Store

About Mind Tools Content

Discover something new today

Generate ideas with scamper.

Brainstorming Improvements to Your Goods and Services

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Ge-mckinsey matrix.

Determining Investment Priorities

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

6.2 Creative Problem-Solving Process

Portions of the material in this section are based on original work by Geoffrey Graybeal and produced with support from the Rebus Community. The original is freely available under the terms of the CC BY 4.0 license at https://press.rebus.community/media-innovation-and-entrepreneurship/.

Learning Objectives

By the end of this section, you will be able to:

  • Describe the five steps in the creative problem-solving process
  • Identify and describe common creative problem-solving tools

Creativity can be an important trait of an entrepreneur, as the chapter on Creativity, Innovation, and Invention discussed. In that discussion, we learned about creativity’s role in innovation . Here, we will look in more depth at creativity’s role in problem solving . Let’s first formally define creativity as the development of original ideas to solve an issue. The intent of being an entrepreneur is to break away from practical norms and use imagination to embrace quick and effective solutions to an existing problem, usually outside the corporate environment.

The Steps of the Creative Problem-Solving Process

Training oneself to think like an entrepreneur means learning the steps to evaluating a challenge: clarify, ideate, develop, implement, and evaluate ( Figure 6.9 ).

Step 1: Clarify

To clarify is the critical step of recognizing the existence of a gap between the current state and a desired state. This can also be thought of as having need awareness , which occurs when the entrepreneur notes a gap between societal or customer needs and actual circumstances. Clarifying the problem by speaking with clients and developing a detailed description of the problem brings the specifics of a problem to light. Failure to identify the specifics of a problem leaves the entrepreneur with the impossible task of solving a ghost problem, a problem that is fully unknown or unseen. To establish and maintain credibility, an entrepreneur must clarify the problem by focusing on solving the problem itself, rather than solving a symptom of the problem.

For example, a farm could have polluted water, but it would not be enough to solve the problem only on that farm. Clarifying would involve identifying the source of the pollution to adequately tackle the problem. After gaining an understanding of a problem, the entrepreneur should begin to formulate plans for eliminating the gap. A fishbone diagram , as shown in Figure 6.10 , is a tool that can be used to identify the causes of such a problem.

In the case of our water pollution example, a fishbone diagram exploring the issue might reveal the items shown in Figure 6.11 .

Step 2: Ideate

To ideate is the step of the creative problem-solving process that involves generating and detailing ideas by the entrepreneur. After collecting all information relevant to the problem, the entrepreneur lists as many causes of the problem as possible. This is the step in which the largest variety of ideas are put forth. Each idea must be evaluated for feasibility and cost as a solution to the problem. If a farm does not have clean water, for example, the entrepreneur must list causes of toxic water and eliminate as many of those causes as possible. The entrepreneur must then move forward investigating solutions to bring the water back to a safe state. If, say, nearby livestock are polluting the water, the livestock should be isolated from the water source.

Step 3: Develop

To develop is the step in which the entrepreneur takes the list of ideas generated and tests each solution for feasibility. The entrepreneur must consider the cost of each idea and the obstacles to implementation. In the preceding example, adding a chemical to the water may not be a feasible solution to the farmer. Not every farmer wants additional chloride or fluoride added to the water due to the effect on both humans and livestock. These tradeoffs should be addressed in the feasibility assessment. The farmer might prefer a filtration system, but the cost of that solution might not be practicable. The entrepreneur should identify and assess alternative solutions to find one that is most cost-effective and feasible to the customer.

Step 4: Implement

To implement is the step in which the solution to the problem is tested and evaluated. The entrepreneur walks through the planned implementation with the client and tests each part of the solution, if a service, or thoroughly tests a developed good. The entrepreneur implements the solution and goes through a structured system of follow-up to ensure the solution remains effective and viable. In the water example, the solution would be reducing runoff from toxic insecticides by adding prairie strips, buffers of grass, and vegetation along banks of streams.

Step 5: Evaluate

To evaluate is the step in which the final solution is assessed. This is a very important step that entrepreneurs often overlook. Any fallacy in the implementation of the product or service is reassessed, and new solutions are implemented. A continual testing process may be needed to find the final solution. The prairie strips, buffers of grass, and vegetation along banks of streams chosen in the farming water example should then be analyzed and tested to ensure the chosen solution changed the content of the water.

Are You Ready?

Implementing creative problem solving.

Removing waste is a problem, and it can also present an entrepreneurial opportunity. Try to examine ways in which waste products that you usually pay to have hauled away can now generate revenue. Whether it’s recycling aluminum cans or cardboard, or garbage that could be used to feed animals, your task is to come up with solutions to this entrepreneurial-oriented problem.

  • Try following the first step of the creative problem-solving process and clearly identify the problem.
  • Next, gather data and formulate the challenge.
  • Then, explore ideas and come up with solutions.
  • Develop a plan of action.
  • Finally, note how you would evaluate the effectiveness of your solution.

Using Creativity to Solve Problems

Entrepreneurs are faced with solving many problems as they develop their ideas for filling gaps, whether those opportunities involve establishing a new company or starting a new enterprise within an existing company. Some of these problems include staffing, hiring and managing employees, handling legal compliance, funding, marketing, and paying taxes. Beyond the mundane activities listed, the entrepreneur, or the team that the entrepreneur puts in place, is indispensable in maintaining the ongoing creativity behind the product line or service offered. Innovation and creativity in the business are necessary to expand the product line or develop a groundbreaking service.

It is not necessary for the entrepreneur to feel isolated when it comes to finding creative solutions to a problem. There are societies, tools, and new methods available to spur the creativity of the entrepreneur that will further support the success and expansion of a new enterprise. 14 Learning and using entrepreneurial methods to solve problems alleviates the stress many startup owners feel. The entrepreneur’s creativity will increase using collaborative methodologies . Some entrepreneurial collaborative methodologies include crowdsourcing, brainstorming, storyboarding, conducting quick online surveys to test ideas and concepts, and team creativity activities.

Crowdsourcing

Professor Daren Brabham at the University of Southern California has written books on crowdsourcing and touts its potential in for-profit and not-for-profit business sectors. He defines it simply as “an online, distributed problem-solving and production model.” 15 Crowdsourcing involves teams of amateurs and nonexperts working together to form a solution to a problem. 16 The idea, as cbsnews.com’s Jennifer Alsever has put it, is to “tap into the collective intelligence of the public at large to complete business-related tasks that a company would normally either perform itself or outsource to a third-party provider. Yet free labor is only a narrow part of crowdsourcing's appeal. More importantly, it enables managers to expand the size of their talent pool while also gaining deeper insight into what customers really want. The challenge is to take a cautionary approach to the ‘wisdom of the crowd,’ which can lead to a ‘herd’ mentality.” 17

Link to Learning

Read this article that discusses what crowdsourcing is, how to use it, and its benefits for more information.

This new business prototype, similar to outsourcing, features an enterprise posting a problem online and asking for volunteers to consider the problem and propose solutions. Volunteers earn a reward, such as prize money, promotional materials like a T-shirt, royalties on creative outlets like photos or designs, and in some cases, compensation for their labor. Before proposing the solution, volunteers learn that the solutions become the intellectual property of the startup posting the problem. The solution is then mass produced for profit by the startup that posted the problem. 18 The process evolves into the crowdsourcing process after the enterprise mass produces and profits from the labor of the volunteers and the team. Entrepreneurs should consider that untapped masses have solutions for many issues for which agendas do not yet exist. Crowdsourcing can exploit those agendas and add to the tools used to stimulate personal creativity. This type of innovation is planned and strategically implemented for profit.

For example, Bombardier held a crowdsourced innovation contest to solicit input on the future of train interiors, including seat design and coach class interior. A corporate jury judged the submissions, with the top ten receiving computers or cash prizes. Companies are often constrained, however, by internal rules limiting open source or external idea sourcing, as they could be accused of “stealing” an idea. While crowdsourcing outside of software can be problematic, some products such as MakerBot ’s 3D printers, 3DR’ s drones, and Jibo ’s Social Robot have used developer kits and “makers” to help build a community and stimulate innovation from the outside.

Work It Out

A crowdsourced potato chip.

In an effort to increase sales among millennials, PepsiCo turned to crowdsourcing to get new flavor ideas for their Lay’s potato chips (called Walker’s in the UK). Their 2012 campaign, “Do Us a Flavor,” was so successful that they received over 14 million submissions. The winner was Cheesy Garlic Bread, which increased their potato chip sales by 8 percent during the first three months after the launch.

  • What are some other products that would work well for a crowdsourced campaign contest?
  • What items wouldn’t work well?

Amazon ’s Mechanical Turk is an online crowdsourcing platform that allows individuals to post tasks for workers to complete. In many instances, these tasks are compensated, but the payment can be less than one dollar per item completed. Mechanical Turk is one of the largest and most well-known crowdsourcing platforms, but there are a number of other more niche ones as well that would apply to smaller markets. In the case of innovation contests and outsourced tasks from corporations, those tasks may be hosted internally by the corporation.

Brainstorming

Brainstorming is the generation of ideas in an environment free of judgment or dissension with the goal of creating solutions. See Creativity, Innovation, and Invention to refresh yourself on this technique. Brainstorming is meant to stimulate participants into thinking about problem solving in a new way. Using a multifunctional group, meaning participants come from different departments and with different skill sets, gives entrepreneurs and support teams a genuine chance to suggest and actualize ideas. The group works together to refine and prototype potential solutions to a problem.

Brainstorming is a highly researched and often practiced technique for the development of innovative solutions. One of the more successful proponents of brainstorming is the United Nations Children’s Fund (UNICEF) . UNICEF faces unique problems of solving resource problems for mothers and children in underdeveloped nations. See how UNICEF practices brainstorming to solve problems including child survival, gender inclusion, refugee crises, education, and others.

The setting for a brainstorming session should remain as informal and relaxed as possible. The group needs to avoid standard solutions. All ideas are welcome and listed and considered with no censorship and with no regard to administrative restrictions. All team members have an equal voice. The focus of brainstorming is on quantity of ideas rather than on the ideal solution provided in every suggestion. A classic entrepreneurial brainstorming activity, as popularized by business software developer Strategyzer , is known as the “silly cow” exercise. Teams come up with ideas for new business models pertaining to a cow, with the results often outrageous, ranging from sponsored cows to stroking cows for therapeutic release. Participants are asked to identify some aspect of a cow and develop three business models around that concept in a short time period, typically two minutes or fewer. The activity is designed to get creative juices flowing.

Watch this video from ABC’s Nightline that shows how IDEO designed a new shopping cart for an example of a design process that involves brainstorming.

Storyboarding

Storyboarding is the process of presenting an idea in a step-by-step graphic format, as Figure 6.12 shows. This tool is useful when the entrepreneur is attempting to visualize a solution to a problem. The steps to the solution of a problem are sketched and hung in graphic format. Once the original graphic is placed, images of steps working toward a solution are added, subtracted, and rearranged on a continual basis, until the ultimate solution emerges in the ultimate graphic format. For many years, entrepreneurs have used this process to create a pre-visual for various media sequences.

Team Creativity

Team creativity is the process whereby an entrepreneur works with a team to create an unexpected solution for an issue or challenge. Teams progress through the same creative problem-solving process described already: clarify, ideate, develop, implement, and evaluate. The main advantage of team creativity is the collaboration and support members receive from one another. Great teams trust in other team members, have diverse members with diverse points of view, are cohesive, and have chemistry.

Team members should work in a stress-free and relaxing environment. Reinforcement and expansion of ideas in the team environment motivates the team to continually expand horizons toward problem solution. A small idea in a team may spark the imagination of a team member to an original idea. Mark Zuckerberg , cofounder of Facebook , once said, “The most important thing for you as an entrepreneur trying to build something is, you need to build a really good team. And that’s what I spend all my time on.” 19

Entrepreneur In Action

Taaluma totes 20.

Young entrepreneurs Jack DuFour and Alley Heffern began to notice the beautiful fabrics that came from the different countries they visited. The entrepreneurs thought about what could be done with the fabrics to create employment opportunities both in the country from which the fabric originated and in their home base of Virginia. They decided to test producing totes from the fabrics they found and formed Taaluma Totes ( Figure 6.13 ). DuFour and Heffern also wanted to promote the production of these fabrics and help underserved populations in countries where the fabric originated maintain a living or follow a dream.

The team continued to test the process and gathered original fabrics, which they sent to Virginia to create totes. They trained individuals with disabilities in Virginia to manufacture the totes, thus serving populations in the United States. The entrepreneurs then decided to take 20 percent of their profits and make microloans to farmers and small business owners in the countries where the fabric originated to create jobs there. Microloans are small loans, below $50,000, which certain lenders offer to enterprising startups. These startups, for various reasons (they are in poor nations, at poverty level), can’t afford a traditional loan from a major bank. The lenders offer business support to the borrower, which in turn helps the borrower repay the microloan. The microloans from Taaluma are repaid when the borrower is able. Repayments are used to buy more fabric, completing Taaluma’s desire to serve dual populations. If the process proved unsuccessful, the co-owners would revise the process to meet the plan’s requirements.

DuFour and Heffern now have fabrics from dozens of countries from Thailand to Ecuador. The totes are specialized with features to meet individual needs. The product line is innovated regularly and Taaluma Totes serves a dual purpose of employing persons with disabilities in Virginia and creating employment for underserved populations in other countries.

  • 14 “Creating a World of Opportunities.” The Collegiate Entrepreneurs’ Organization . n.d. https://www.c-e-o.org/
  • 15 Daren C. Brabham. “Crowdsourcing as a Model for Problem Solving: An Introduction and Cases.” Convergence: The International Journal of Research into New Media Technologies 14, no. 1 (2008): 75–90.
  • 16 Michael Houlihan and Bonnie Harvey. “How Crowdsourcing Is Shaping the Future of Everything.” Entrepreneur. January 13, 2018. https://www.entrepreneur.com/article/307438
  • 17 Jennifer Alsever. “What Is Crowdsourcing?” CBS News . May 1, 2008. https://www.cbsnews.com/news/what-is-crowdsourcing
  • 18 Daren C. Brabham. “Crowdsourcing as a Model for Problem Solving: An Introduction and Cases.” Convergence: The International Journal of Research into New Media Technologies 14, no. 1 (2008): 75–90.
  • 19 “Three Tips for Entrepreneurs Creating the Perfect Team.” Virgin . n.d. https://www.virgin.com/entrepreneur/three-tips-entrepreneurs-creating-perfect-team
  • 20 “Backpacks That Carry a Country.” Taaluma Totes. n.d. https://www.carryacountry.com/pages/about

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/entrepreneurship/pages/1-introduction
  • Authors: Michael Laverty, Chris Littel
  • Publisher/website: OpenStax
  • Book title: Entrepreneurship
  • Publication date: Jan 16, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/entrepreneurship/pages/1-introduction
  • Section URL: https://openstax.org/books/entrepreneurship/pages/6-2-creative-problem-solving-process

© Jan 4, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Creative Problem Solving Process

Creative Problem Solving Process

Learn more about this CPS innovation methodology here.

When it comes to developing innovative solutions to unique organizational challenges or your own life, using tried and true methods to brainstorm ideas and find the best possible solution can be a great way to achieve your goals. One such methodology is creative problem solving, which will be defined and explored in this latest article from Innovation Training.

  • What is creative problem solving?

Creative problem solving is a method for solving problems or identifying opportunities in an innovative way. The methodology was developed by Alex Osborn and Sid Parnes in the 1940s as the “Osborn-Parnes Creative Problem Solving Process”. This initial thought process has led to later models, including the 2011 Creative Problem Solving (CPS) Learner’s Model from the Creative Education Foundation. Despite its long history, creative problem solving is still incredibly valuable today and is used in many creative pursuits and industries. 

Why you may want to use creative problem solving

Overcoming challenges and finding new ways of doing things is difficult and can be costly. Using a trusted approach like creative problem solving can help you develop the ability to find these innovative solutions and generate many different ideas to use in your project or challenge. 

CPS helps you think in new ways by separating divergent and convergent thinking. While divergent thinking, or brainstorming, generates lots of potential possibilities, convergent thinking involves evaluating and choosing the most promising one. Oftentimes, we suffer by combining these two processes into one, stifling idea generation. By thinking of them as separate processes, you can generate more ideas and evaluate them more fairly later on. 

Four principles of creative problem solving

CPS is based on a few key assumptions:

  • Divergent and convergent thinking must be balanced
  • Problems are open-ended questions with multiple possibilities
  • Judgment and assumptions should be suspended in the brainstorming process
  • Focus on “Yes and” versus “No but” 

This last principle refers to the idea that it is better to use language such as “yes and” that allows continuation and expansion, versus a word such as “but” that negates and closes the conversation. 

How to use creative problem solving techniques

The simplest form of the creative problem solving process involves four steps:

  • Clarify – define the objectives, the problem, the facts, and the opportunity to achieve
  • Ideate – brainstorm many possible solutions or approaches
  • Develop – further develop your ideas by turning them into experiments
  • Implement – create a plan and move forward with next steps

From an innovator’s perspective, we tend to add a few more steps in the mix that help further establish the problem and allow for evaluation and experimentation of ideas. The process therefore can look like this:

  • Research – learn more about the problem, stakeholders, and other involved entities
  • Generate ideas – brainstorm many possible solutions or approaches
  • Combine and evaluate – review ideas and narrow in on the best opportunities
  • Solve – further develop your “winning” ideas by turning them into experiments
  • Iterate – test your best idea and get feedback, iterate based on what you find out
  • Implement – create a plan and move forward with next steps for the “winning” solution

Top Creative Problem Solving Questions

In a future post we will provide more problem solving tips and answer 10 of the most common questions people ask about creative problem solving:

  • How can I become more creative?
  • What are some common creative problem solving techniques?
  • How do I know if I’m stuck in a fixed mindset?
  • How can I overcome creative blocks?
  • How can I encourage creativity in my team or organization?
  • What are some ways to generate new ideas?
  • How do I evaluate and choose the best solution to a problem?
  • How can I apply creative problem solving to my work or personal life?
  • How can I measure the effectiveness of my creative problem solving efforts?

Creative Problem Solving Process Conclusion

In this article, we explored the creative problem solving process (CPS) and how to use the technique to solve your own innovation challenges. Want personalized help using this method in your workshop or innovation event? Reach out  to us online today about a creative problem solving training workshop .

Want even more resources? Review this guide to creative problem solving techniques training and creative problem solving templates post.

  • About us

Creative problem solving: basics, techniques, activities

Why is creative problem solving so important.

Problem-solving is a part of almost every person's daily life at home and in the workplace. Creative problem solving helps us understand our environment, identify the things we want or need to change, and find a solution to improve the environment's performance.

Creative problem solving is essential for individuals and organizations because it helps us control what's happening in our environment.

Humans have learned to observe the environment and identify risks that may lead to specific outcomes in the future. Anticipating is helpful not only for fixing broken things but also for influencing the performance of items.

Creative problem solving is not just about fixing broken things; it's about innovating and creating something new. Observing and analyzing the environment, we identify opportunities for new ideas that will improve our environment in the future.

The 7-step creative problem-solving process

The creative problem-solving process usually consists of seven steps.

1. Define the problem.

The very first step in the CPS process is understanding the problem itself. You may think that it's the most natural step, but sometimes what we consider a problem is not a problem. We are very often mistaken about the real issue and misunderstood them. You need to analyze the situation. Otherwise, the wrong question will bring your CPS process in the wrong direction. Take the time to understand the problem and clear up any doubts or confusion.

2. Research the problem.

Once you identify the problem, you need to gather all possible data to find the best workable solution. Use various data sources for research. Start with collecting data from search engines, but don't forget about traditional sources like libraries. You can also ask your friends or colleagues who can share additional thoughts on your issue. Asking questions on forums is a good option, too.

3. Make challenge questions.

After you've researched the problem and collected all the necessary details about it, formulate challenge questions. They should encourage you to generate ideas and be short and focused only on one issue. You may start your challenge questions with "How might I…?" or "In what way could I…?" Then try to answer them.

4. Generate ideas.

Now you are ready to brainstorm ideas. Here it is the stage where the creativity starts. You must note each idea you brainstorm, even if it seems crazy, not inefficient from your first point of view. You can fix your thoughts on a sheet of paper or use any up-to-date tools developed for these needs.

5. Test and review the ideas.

Then you need to evaluate your ideas and choose the one you believe is the perfect solution. Think whether the possible solutions are workable and implementing them will solve the problem. If the result doesn't fix the issue, test the next idea. Repeat your tests until the best solution is found.

6. Create an action plan.

Once you've found the perfect solution, you need to work out the implementation steps. Think about what you need to implement the solution and how it will take.

7. Implement the plan.

Now it's time to implement your solution and resolve the issue.

Top 5 Easy creative thinking techniques to use at work

1. brainstorming.

Brainstorming is one of the most glaring CPS techniques, and it's beneficial. You can practice it in a group or individually.

Define the problem you need to resolve and take notes of every idea you generate. Don't judge your thoughts, even if you think they are strange. After you create a list of ideas, let your colleagues vote for the best idea.

2. Drawing techniques

It's very convenient to visualize concepts and ideas by drawing techniques such as mind mapping or creating concept maps. They are used for organizing thoughts and building connections between ideas. These techniques have a lot in common, but still, they have some differences.

When starting a mind map, you need to put the key concept in the center and add new connections. You can discover as many joints as you can.

Concept maps represent the structure of knowledge stored in our minds about a particular topic. One of the key characteristics of a concept map is its hierarchical structure, which means placing specific concepts under more general ones.

3. SWOT Analysis

The SWOT technique is used during the strategic planning stage before the actual brainstorming of ideas. It helps you identify strengths, weaknesses, opportunities, and threats of your project, idea, or business. Once you analyze these characteristics, you are ready to generate possible solutions to your problem.

4. Random words

This technique is one of the simplest to use for generating ideas. It's often applied by people who need to create a new product, for example. You need to prepare a list of random words, expressions, or stories and put them on the desk or board or write them down on a large sheet of paper.

Once you have a list of random words, you should think of associations with them and analyze how they work with the problem. Since our brain is good at making connections, the associations will stimulate brainstorming of new ideas.

5. Storyboarding

This CPS method is popular because it tells a story visually. This technique is based on a step-creation process. Follow this instruction to see the storyboarding process in progress:

  • Set a problem and write down the steps you need to reach your goal.
  • Put the actions in the right order.
  • Make sub-steps for some steps if necessary. This will help you see the process in detail.
  • Evaluate your moves and try to identify problems in it. It's necessary for predicting possible negative scenarios.

7 Ways to improve your creative problem-solving skills

1. play brain games.

It's considered that brain games are an excellent way to stimulate human brain function. They develop a lot of thinking skills that are crucial for creative problem-solving.

You can solve puzzles or play math games, for example. These activities will bring you many benefits, including strong logical, critical, and analytical thinking skills.

If you are keen on playing fun math games and solving complicated logic tasks, try LogicLike online.

We created 3500+ puzzles, mathematical games, and brain exercises. Our website and mobile app, developed for adults and kids, help to make pastime more productive just in one place.

2. Practice asking questions

Reasoning stimulates you to generate new ideas and solutions. To make the CPS process more accessible, ask questions about different things. By developing curiosity, you get more information that broadens your background. The more you know about a specific topic, the more solutions you will be able to generate. Make it your useful habit to ask questions. You can research on your own. Alternatively, you can ask someone who is an expert in the field. Anyway, this will help you improve your CPS skills.

3. Challenge yourself with new opportunities

After you've gained a certain level of creativity, you shouldn't stop developing your skills. Try something new, and don't be afraid of challenging yourself with more complicated methods and techniques. Don't use the same tools and solutions for similar problems. Learn from your experience and make another step to move to the next level.

4. Master your expertise

If you want to keep on generating creative ideas, you need to master your skills in the industry you are working in. The better you understand your industry vertical, the more comfortable you identify problems, find connections between them, and create actionable solutions.

Once you are satisfied with your professional life, you shouldn't stop learning new things and get additional knowledge in your field. It's vital if you want to be creative both in professional and daily life. Broaden your background to brainstorm more innovative solutions.

5. Develop persistence

If you understand why you go through this CPS challenge and why you need to come up with a resolution to your problem, you are more motivated to go through the obstacles you face. By doing this, you develop persistence that enables you to move forward toward a goal.

Practice persistence in daily routine or at work. For example, you can minimize the time you need to implement your action plan. Alternatively, some problems require a long-term period to accomplish a goal. That's why you need to follow the steps or try different solutions until you find what works for solving your problem. Don't forget about the reason why you need to find a solution to motivate yourself to be persistent.

6. Improve emotional intelligence

Empathy is a critical element of emotional intelligence. It means that you can view the issues from the perspective of other people. By practicing compassion, you can understand your colleagues that work on the project together with you. Understanding will help you implement the solutions that are beneficial for you and others.

7. Use a thinking strategy

You are mistaken if you think that creative thinking is an unstructured process. Any thinking process is a multi-step procedure, and creative thinking isn't an exclusion. Always follow a particular strategy framework while finding a solution. It will make your thinking activity more efficient and result-oriented.

Develop your logic and mathematical skills. 3500+ fun math problems and brain games with answers and explanations.

Creative Problem-Solving

  • First Online: 29 January 2023

Cite this chapter

phenomenon that promotes a creative problem solving process

  • Terence Lee 4 ,
  • Lauren O’Mahony 5 &
  • Pia Lebeck 6  

608 Accesses

This chapter presents Alex Osborn’s 1953 creative problem-solving (CPS) model as a three-procedure approach that can be deployed to problems that emerge in our everyday lives. The three procedures are fact-finding, idea-finding and solution-finding, with each step carefully informed by both divergent and convergent thinking. Using case studies to elaborate on the efficacy of CPS, the chapter also identifies a few common flaws that can impact on creativity and innovation. This chapter explores the challenges posed by ‘wicked problems’ that are particularly challenging in that they are ill-defined, unique, contradictory, multi-causal and recurring; it considers the practical importance of building team environments, of embracing diversity and difference, and other characteristics of effective teams. The chapter builds conceptually and practically on the earlier chapters, especially Chapter 4 , and provides case studies to help make sense of the key principles of creative problem-solving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

The creative problem-solving process explored in this chapter is not to be confused with the broader ‘creative process’ that is presented in Chapter 2 of this book. See Chapter 2 to understand what creative process entails.

A general online search of the Osborn-Parnes Creative Problem-Solving (CPS) process will generate many results. One of them is: https://projectbliss.net/osborn-parnes-creative-problem-solving-process/ . Osborn is largely credited as the creator of CPS, hence references are largely made to him (Osborn 1953 , 1957 ).

Founded in 2002, Fahrenheit 212 described itself as “a global innovation consultancy delivering sustainable, profitable growth for companies by pairing business acumen and consumer empathy.” It merged with Capgemini Consulting in 2016 and remains based in New York City, USA. ( https://www.capgemini.com/in-en/news/press-releases/capgemini-acquires-innovation-and-design-consultancy-fahrenheit-212-to-drive/ ).

More information on the NeoNurture incubator can be found in the Design That Matters website ( https://www.designthatmatters.org/ ) and in a TEDx presentation by Timothy Prestero ( https://www.ted.com/talks/timothy_prestero_design_for_people_not_awards ) (Prestero 2012 ).

For more information on the Embrace infant warmer, see Embrace Global: https://www.embraceglobal.org/ .

See also David Alger’s popular descriptions of the ‘Rules of Improv’ (Parts 1 and 2): https://www.pantheater.com/rules-of-improv.html ; and, ‘How to be a better improvisor’: https://www.pantheater.com/how-to-be-a-better-improvisor.html .

For more information about the Bay of Pigs, visit the John F. Kennedy Presidential Library and Museum at Columbia Point, Boston, Massachusetts, USA. Online information can be accessed here: https://www.jfklibrary.org/learn/about-jfk/jfk-in-history/the-bay-of-pigs .

Bhat, R. 2021. Solving Wicked Problems Is What MBA Programs Need to Prepare the Students For? Business World Education . May 20. Available: http://bweducation.businessworld.in/article/Solving-Wicked-Problems-Is-What-MBA-Programs-Need-To-Prepare-The-Students-For-/20-05-2021-390302/. Accessed 30 August 2022.

Bratton, J., et al. 2010. Work and Organizational Behaviour , 2nd ed. Basingstoke: Palgrave.

Book   Google Scholar  

Buzan, T. 1974. Use Your Head . London: BBC Active.

Google Scholar  

Cohen, A.K., and J.R. Cromwell. 2021. How to Respond to the COVID-19 Pandemic with More Creativity and Innovation. Population Health Management 24 (2): 153–155.

Article   Google Scholar  

Cunningham, E., B. Smyth, and D. Greene. 2021. Collaboration in the Time of COVID: A Scientometric Analysis of Multidisciplinary SARSCoV-2 Research. Humanities & Social Sciences Communications. 8 (240): 1–8.

Cunningham, S. 2021. Sitting with Difficult Things: Meaningful Action in Contested Times. Griffith Review 71 (February): 124–133.

De Bono, E. 1985. Six Thinking Hats . Boston: Little, Brown and Company.

Dutta, K. 2018. Solving Wicked Problems: Searching for the Critical Cognitive Trait. The International Journal of Management Education 16 (3): 493–503.

Elia, G., and A. Margherita. 2018. Can we Solve Wicked Problems? A Conceptual Framework and a Collective Intelligence System to Support Problem Analysis and Solution Design for Complex Social Issues. Technological Forecasting & Social Change 133: 279–286.

Engler, J.O., D.J. Abson, and H. von Wehrden. 2021. The Coronavirus Pandemic as an Analogy for Future Sustainability. Sustainability Science 16: 317–319.

Grivas, C., and G. Puccio. 2012. The Innovative Team: Unleashing Creative Potential for Breakthrough Results . San Francisco, CA: Jossey-Bass.

Holmes, K. 2021. Generation Covid: Crafting History and Collective Memory. Griffith Review 71 (February): 79–88.

Kapoor, H., and J.C. Kaufman. 2020. Meaning-Making Through Creativity During COVID-19. Frontiers in Psychology 18 (December): 1–8.

Kelley, T. 2001. The Art of Innovation: Lessons in Creativity from IDEO, America’s Leading Design Firm . New York, NY: Random House.

Kite-Powell, J. 2014. Simple Tech Creates Infant-Warmer to Save Lives in Developing Countries. Forbes , 29 January. Available: https://www.forbes.com/sites/jenniferhicks/2014/01/29/simple-tech-creates-infant-warmer-to-save-lives-in-developing-countries/?sh=df540aa758c1. Accessed 31 August 2022.

May, M. 2009. In Pursuit of Elegance . NY: Broadway Books.

McShane, S., M. Olekalns, and T. Travaglione. 2010. Organisational Behaviour on the Pacific Rim , 3rd ed. Sydney: McGraw Hill.

Osborn, A. 1953. Applied Imagination: Principles and Procedures of Creative Thinking . New York: Scribners.

Osborn, A. 1957. Applied Imagination: Principles and Procedures of Creative Thinking , 10th ed. New York: Scribners.

Page, S.E. 2007. The Difference: How the power of Diversity Creates Better Groups, Firms, Schools, and Societies . Princeton, NJ: Princeton University Press.

Page, S.E. 2011. Diversity and Complexity . Princeton, NJ: Princeton University Press.

Page, S.E. 2012. The Hidden Factor: Why Thinking Differently Is Your Greatest Asset . Chantilly, Virginia: The Great Courses.

Payne, M. 2014. How to Kill a Unicorn: How the World’s Hottest Innovation Factory Builds Bold Ideas That Make It to Market . New York: Crown Business.

Potter, A., M. McClure, and K. Sellers. 2010. Mass Collaboration Problem Solving: A New Approach to Wicked Problems. Proceedings of 2010 International Symposium on Collaborative Technologies and Systems . IEEE Explore, Chicago, Illinois. May 17–21: 398–407.

Prestero, T. 2012. Design for People, Not Awards. TEDxBoston . Available: https://www.ted.com/speakers/timothy_prestero. Accessed 30 August 2022.

Proctor, T. 2013. Creative Problem Solving for Managers: Developing Skills for Decision Making and Managers , 4th ed. New York: Routledge.

Puccio, G.J. 2012. Creativity Rising: Creative Thinking and Creative Problem Solving in the 21st Century . Buffalo, NY: ICSC Press.

Rittel, H.W.J., and M.M. Webber. 1973. Dilemmas in a General Theory of Planning. Policy Sciences 4 (2), June: 155–169.

Roberto, M. 2009. The Art of Critical Decision Making: The Great Courses. Chantilly, Virginia: The Teaching Company.

Roy, A. 2020. Arundhati Roy: “The Pandemic is a Portal”. Financial Times , April 4. Available: https://www.ft.com/content/10d8f5e8-74eb-11ea-95fe-fcd274e920ca . Accessed 28 February 2022.

Ruggiero, V.R. 2009. The Art of Thinking: A Guide to Critical and Creative Thought , 9th ed. New York: Longman.

Sawyer, K. 2007. Group Genius: The Creative Power of Collaboration . New York: Basic Books.

Schuelke-Leech, B. 2021. A Problem Taxonomy for Engineering. IEEE Transactions on Technology and Society 2 (2), June: 105.

Stellar, D. 2010. The PlayPump: What Went Wrong? State of the Planet, Columbia Climate School. Columbia University. Available: https://news.climate.columbia.edu/2010/07/01/the-playpump-what-went-wrong/. Accessed 30 August 2022.

Surowiecki, J. 2004. The Wisdom of Crowds: Why the Many Are Smarter than the Few and How Collective Wisdom Shapes Businesses, Economies, Societies and Nations . New York: Anchor Books.

Sweet, C., H. Blythe, and R. Carpenter. 2021. Creativity in the Time of COVID-19: Three Principles. The National Teaching and Learning Forum. 30 (5): 6–8.

Taibbi, R. 2011. The Tao of Improv: 5 Rules for Improvising Your Life. Psychology Today , 25 January. Available: https://www.psychologytoday.com/us/blog/fixing-families/201101/the-tao-improv-5-rules-improvising-your-life. Accessed 1 September 2022.

Walton, M. 2010. Playpump is Not a Panacea for Africa’s Water Problems. Circle of Blue , July 24. Available: http://www.circleofblue.org/waternews/2010/world/playpump-not-a-panacea-for-africas-water-problems/. Accessed 30 August 2022.

World Health Organization (WHO). 2022. Child Mortality (Under 5 Years). Available: https://www.who.int/news-room/fact-sheets/detail/levels-and-trends-in-child-under-5-mortality-in-2020. Accessed 28 February 2022.

Download references

Author information

Authors and affiliations.

Humanities and Social Sciences, Sheridan Institute of Higher Education, Perth, WA, Australia

Terence Lee

Media and Communication, Murdoch University, Perth, WA, Australia

Lauren O’Mahony

Humanities, Arts and Social Sciences, Murdoch University, Perth, WA, Australia

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Terence Lee .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Lee, T., O’Mahony, L., Lebeck, P. (2023). Creative Problem-Solving. In: Creativity and Innovation. Palgrave Macmillan, Singapore. https://doi.org/10.1007/978-981-19-8880-6_5

Download citation

DOI : https://doi.org/10.1007/978-981-19-8880-6_5

Published : 29 January 2023

Publisher Name : Palgrave Macmillan, Singapore

Print ISBN : 978-981-19-8879-0

Online ISBN : 978-981-19-8880-6

eBook Packages : Business and Management Business and Management (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

What Is Creative Problem Solving

By: Author Paul Jenkins

Posted on August 1, 2023

Categories Creativity

Ever felt stuck in a problem, spinning your wheels? Welcome to an exploration of creative problem solving. This isn’t about finding just any solution; it’s about discovering the most innovative, effective ones.

We’ll unravel the importance of creativity and critical thinking in this exciting process, share techniques and resources you can use, plus peek into its future.

Ready to think outside the box? Let’s dive in!

Key Takeaways

  • Problem solving involves two stages: Problem Framing and Solution Evaluation
  • Creativity is crucial for finding innovative solutions
  • Techniques like brainstorming, mind mapping, and lateral thinking are used for creative problem solving
  • Collaboration enhances innovative solution development

Understanding the Basics of Problem Solving

Let’s dive into understanding the basics of problem solving, which is a crucial first step in creative problem solving. At its core, it involves two vital stages – Problem Framing and Solution Evaluation.

Imagine you’re an artist confronted with a blank canvas. Problem Framing is akin to sketching the outline – identifying what shape your challenge takes. It’s about being curious, asking questions and not rushing towards solutions right off the bat.

Once you’ve framed your issue, you proceed to Solution Evaluation. Here’s where you paint in vibrant strokes of creativity, exploring diverse ideas and alternatives. You experiment boldly, not fearing mistakes but treating them as stepping stones towards success.

The Importance of Creativity in Problem Solving

Innovation’s crucial role in finding solutions can’t be underestimated. It’s not only about thinking outside the box but also reshaping that box to fit your unique perspective. Imagine handling a problem with not just logic and analysis, but also with an artistic touch, a sprinkle of imagination, and a pinch of originality – that’s where the magic happens.

Your creativity constraints might seem like hurdles at first glance, but they’re actually stepping stones leading you to unexplored territories of thought. They push you beyond conventional boundaries and cultivate innovation influence.

Remember, every problem is an opportunity for creativity to shine. Use it as a platform to showcase your innovative prowess and remember – there isn’t always one right answer, there are many waiting for discovery through your creative vision!

The Creative Problem-Solving Process

Dive headfirst into the intriguing world of the creative problem-solving process. Here, you’re not just solving problems but transforming them into opportunities for growth and innovation.

First, you’ll master the art of identifying and clarifying your challenges. This will help you turn vague issues into clear targets.

Then, ignite a brainstorming storm as you generate an array of unique ideas. Next, sculpt these ideas into effective solutions.

Finally, implement these strategies with finesse. Take the necessary steps to put your solutions into action.

Identification and Clarification of the Problem

Understanding and articulating the problem clearly is a crucial first step in creative problem solving. It’s not merely about spotting an issue, but digging deeper to uncover its root cause. This is where Problem Identification Techniques come into play. These might involve brainstorming sessions or mind-mapping exercises that let you see beyond the surface-level complications.

But don’t stop there! To truly grasp the challenge at hand, Clarification Strategies are essential too. They urge you to question every aspect of your problem – What? Why? How? Such inquiries compel you to look at issues from fresh perspectives.

It’s like peeling back layers of an onion, revealing hidden dimensions of the real puzzle that await your ingenious solutions.

Generating Ideas

Once you’ve got a clear grasp on the issue at hand, it’s time to start generating ideas for possible solutions. This is where your creativity really gets to shine. Don’t shy away from thinking outside of the box.

With Brainstorming Techniques and Idea Generation Strategies in your arsenal, you’re ready to conquer any problem.

Brainstorming Techniques can be anything from simple lists to intricate mind maps. The goal here is quantity over quality. Let an influx of thoughts flow freely, without judgement or criticism.

On the other hand, Idea Generation Strategies focus on diverse perspectives and approaches. Try role-playing different characters or using analogies for fresh insights.

Remember, there’s no ‘wrong’ idea during this stage. It’s about exploring possibilities and pushing boundaries, so let your imagination run wild!

Developing Solutions

Now that you’ve generated a plethora of ideas, it’s time to narrow them down and start developing actionable solutions. This stage demands a blend of logic, precision, creativity, and even some unconventional approaches.

Here are three steps to follow:

  • Prioritize : Distinguish the feasible from the fantastical. Choose ideas with sustainable solutions and potential long-term impact.
  • Prototype : Draft rudimentary versions of your top ideas. Use these prototypes to test feasibility and remedy any issues before full-scale implementation.
  • Test : Evaluate your prototype in real-world conditions if possible. Iterate based on feedback until you have a solution ready for rollout.

Remember, innovation often involves stepping off the beaten path. Embrace unconventional approaches when they lead to sustainable solutions, and never fear refining your creations until they shine brightest.

Implementation of Solutions

After refining your solutions, it’s time to put them into action and monitor their progress. This stage is known as Innovation Implementation. Now, you’re not just thinking creatively but acting on it too. Remember, the success of a solution doesn’t solely rest on its brilliance but in its execution.

In this phase of creative problem solving, it’s crucial to be agile and adaptable to changes based on the results from the Solution Evaluation.

Be ready for iterations because creativity is an ongoing process rather than a one-time event.

Techniques for Creative Problem Solving

You’ll find a variety of techniques available for creative problem solving, each unique in its approach and effectiveness. You might be familiar with the classic brainstorming session, a collaborative effort to pool together diverse ideas. Yet, sometimes you may hit brainstorming barriers that hinder the flow of creativity.

In those moments, don’t be disheartened. Instead, consider innovative techniques like mind mapping or lateral thinking to navigate around these innovation roadblocks.

Mind mapping helps you visually organize information, sparking connections between ideas that may not initially seem related. Lateral thinking encourages you to look at problems from different angles, challenging traditional logic and promoting out-of-the-box solutions.

Remember, your creativity is not limited; it’s merely waiting for the right technique to unleash its full potential. Keep exploring until you discover what works best for you!

The Role of Critical Thinking in Creative Problem Solving

Critical thinking plays a pivotal role in developing innovative solutions, acting as the analytical counterpart to your unleashed creativity. It’s not just about wild ideas; it’s critical analysis that makes these ideas viable.

Thought exploration and critical thinking work hand-in-hand when solving problems creatively. You explore different perspectives, dissecting each idea using logical reasoning and precise evaluation.

Here’s a helpful table:

Remember, the creative process isn’t complete without critical thinking.

Your imaginative ideas need the grounding force of rational analysis to become brilliant solutions. Embrace both for successful creative problem solving!

The Importance of Collaboration in Creative Problem Solving

In the realm of innovative solution development, it’s essential to recognize that two heads are often better than one. This isn’t just a cliche but a testament to the power of collaboration in creative problem solving.

Consider Team Dynamics; when you bring together a group with diverse skill sets, backgrounds, and perspectives, you’re essentially stirring up a hotbed of creativity and innovation.

You see, each member adds something unique to the mix; they toss their ideas into this mental melting pot and voila! Out comes an array of solutions more ingenious than any single mind could’ve conjured.

Then there’s Innovation Culture – your team’s shared belief in dreaming big, challenging norms and pushing boundaries. This culture promotes risk-taking and bold thinking which are vital for groundbreaking problem-solving.

So remember, collaboration isn’t just nice—it’s necessary.

The Role of Technology in Creative Problem Solving

Technology’s role can’t be overstated when it comes to fostering innovation and devising unique solutions. It’s a game-changer, pushing the boundaries of what you believe is possible. But remember, even technology has limitations. It doesn’t mean it hinders creativity; instead, it challenges you to think outside the box.

Imagine a scenario where software constraints prevent you from executing an idea as envisioned. This is where your creative problem-solving skills come into play! You might discover unconventional applications for existing tools that bypass these tech restrictions.

Leverage technology to its full potential but never let its limitations confine your creativity. Harness this dynamic duo—creativity and technology—to generate groundbreaking solutions that reshape the world around us. Be fearless in exploring unknown territories of technological possibilities!

The Benefits of Creative Problem Solving

Imagine you’re on a journey of self-discovery. Every challenge is an opportunity for personal growth. You’ve got the power of creative problem solving at your fingertips. It’s like a secret weapon.

This weapon not only propels you towards professional advancement but also refines your persona. Embrace this transformative process. Watch as it amplifies your potential, catapulting you onto paths less trodden. You’ll have a newfound sense of innovation and imagination.

Personal Growth

Developing your skills in creative problem-solving can greatly contribute to personal growth. It allows you to perceive obstacles from new angles and invent novel solutions.

By engaging in self-reflection techniques, you’ll discover previously unseen aspects of yourself that unlock hidden potentials. You’ll start seeing challenges as opportunities for progress, not roadblocks.

The impact of emotional intelligence on this journey can’t be overstated. It fuels your ability to understand others’ perspectives, making collaboration more effective and enriching. Your newfound perspective will allow you to empathize with different viewpoints and navigate complex social dynamics with finesse.

Creative problem-solving encourages a continuous learning mindset, fostering resilience and adaptability – qualities vital for thriving in today’s ever-changing world. This isn’t just about solving problems; it’s about evolving into the best version of yourself.

Professional Advancement

Just as creative problem solving can fuel your personal growth, it’s a critical tool for professional advancement as well. It’s not just about moving up the corporate ladder; it’s about reshaping that ladder and creating new steps.

Here are some key ways creative problem solving promotes career mobility and effective leadership strategies:

  • It encourages innovation, pushing you to think outside the box and challenge traditional approaches.
  • It fosters resilience, allowing you to adapt in rapidly changing business environments.
  • It cultivates influence, empowering you with unique solutions that inspire others.
  • It drives progress by transforming obstacles into opportunities.

Remember, when you solve problems creatively, you demonstrate value beyond your job description. You become more than just an employee – you become an essential asset and visionary leader within your organization.

Creative Problem Solving in Different Fields

In various fields like business, education, science, and arts, creative problem solving is often the key to overcoming challenges and driving innovation. Each sector uses field-specific strategies to address its unique issues.

For instance, in business, you might use mind mapping or brainstorming sessions. In the sciences, experimentation or hypothesis testing may be your go-to.

Interdisciplinary approaches are also vital for creative problem-solving. Imagine combining artistic creativity with scientific rigor – a fusion that could lead to innovative solutions! Don’t limit yourself within your field’s boundaries; explore outside-of-the-box methods from other disciplines too.

Creative problem solving isn’t one size fits all. It calls for flexibility and adaptability depending on the situation at hand. Your imagination is a powerful tool – let it loose!

How to Foster Creative Problem Solving Skills

To foster these essential skills, you’ll need to exercise your mind and step outside of traditional thinking patterns. Embrace the role of emotions in creative problem solving; they’re not a hindrance but rather an ignition for innovation. Feelings can lead you down unexpected pathways, illuminating solutions that logic might overlook.

Next, try out Mind Mapping Techniques. This visual strategy allows you to explore different branches of thought simultaneously instead of the linear approach we’re often taught to employ. It’s like setting foot into a labyrinth where each turn could unlock a new idea.

Creativity isn’t just about being artistic—it’s about inventing fresh approaches to obstacles.

So dare to dream differently, feel freely, and visualize your thoughts because fostering creative problem-solving skills is akin to mastering the art of possibility.

The Challenges of Creative Problem Solving

Despite its many benefits, mastering the art of innovative thinking isn’t without its hurdles. You’re bound to encounter obstacles in creativity and mental blockades that can hinder your progress.

Remember, each hurdle is an opportunity for growth. Don’t let these challenges discourage you; instead, see them as catalysts for honing your creativity towards problem-solving mastery.

Case Studies of Successful Creative Problem Solving

Now that you’ve had a glimpse of the challenges, let’s dive into some real-life examples of creative problem solving in action. These case studies serve as your problem solving inspiration, showcasing how individuals and organizations have turned stumbling blocks into stepping stones.

  • Dyson Vacuum Cleaner : James Dyson faced over 5,000 failed prototypes before he invented his bagless vacuum cleaner by embracing creative constraints.
  • Airbnb : The founders solved their financial struggles by selling themed cereal boxes during the 2008 US election.
  • Uber : Travis Kalanick and Garrett Camp came up with Uber after having difficulty hailing a taxi on a snowy evening in Paris.
  • Netflix : Reed Hastings created Netflix out of frustration with late fees from video rental stores.

These success stories testify to the power of innovative problem-solving techniques!

Tools and Resources for Creative Problem Solving

You’ll find a variety of tools and resources at your disposal that can help you think outside the box and tackle challenges in innovative ways.

One such resource is the concept of ‘Problem Solving Artistry’. This technique encourages you to approach problems like an artist, using creativity and imagination to craft unique solutions.

Another tool is ‘Innovation Constraints’. By imposing artificial restrictions, you force yourself to get creative within those boundaries. It’s a counterintuitive strategy that often leads to ground-breaking ideas.

There are also numerous online platforms offering courses on creative problem-solving, fostering both lateral thinking and critical analysis.

So don’t be afraid to inject some art into your problem-solving process or use constraints as catalysts for innovation – they could unlock surprising results!

The Future of Creative Problem Solving

Looking ahead, it’s clear that your ability to think outside the box will play a crucial role in navigating an increasingly complex world. The future of creative problem solving is bound to be redefined by emerging trends.

  • Innovation Forecast – Rapid advancements in technology are set to revolutionize how you approach and solve problems creatively.
  • Artificial Intelligence (AI) – AI can generate new ideas, breaking through creativity constraints traditionally faced by humans.
  • Virtual Reality – This tech opens up immersive environments where your creative problem-solving skills can be tested and honed like never before.
  • Collaborative Platforms – These tools are expected to further promote collective intelligence, enabling global brainstorming sessions.

Gear up for these changes; they’re poised to reshape the landscape of creative problem-solving, offering you uncharted territories of opportunities!

Final Thoughts on Embracing Creative Problem Solving

Embrace the future with open arms, and you’ll find that your ability to generate innovative solutions will not only skyrocket, but also make a true difference in our ever-evolving world.

A key element of embracing creative problem solving is accepting failure. Mistakes are merely stepping stones on your path to success, so don’t shy away from them.

Risk taking should be encouraged in the realm of creative problem-solving. Often, the most unconventional ideas turn out to be game-changers. So dare to step outside your comfort zone and try something new.

Remember that it’s OK if things don’t work out as planned first time around – just dust yourself off and try again! Embracing failure and risk-taking paves the way for truly transformative solutions.

  • Student Textbooks
  • Business Books

en

Your Personal and Professional Development: Plans, Tips and Lists

Powered by bookboon, your personal elibrary with 1,700+ ebooks on soft skills and personal development, creative problem-solving: the 4 principles of creative problem-solving.

creative problem solving

Creative problem-solving takes imagination through to action through the mental process of searching for an innovative solution to a problem. Creative problem-solving is often most effective through teamwork and brainstorming making it fun, imaginative and collaborative. However, imagining new and innovative solutions isn’t always easy, but by following a few steps, your team will be more likely to reach success. Creative problem solving has four core principles. Let’s explore each one in more detail.

Balance divergent and convergent thinking

Defer or suspend judgment.

When it comes to creative problem-solving, brainstorming is an essential element. When brainstorming, it is important to cast judgment aside and be open to all ideas. Judging solutions early on tends to shut down idea generation.

Present problems as questions

Got problems? We’ve got the solution: our weekly #FrictionlessFriday newsletter has all the answers and more! 

Use “Yes, and” rather than “No, but”

When formulating ideas and solving problems, language is important . When one or more individuals are working towards a solution, using positive, active language such as “Yes, and” allows continuation and expansion, which is necessary for successful creative problem-solving. The use of the word “but” – preceded by “yes” or “no” – ends the conversation, negating everything that has come before it.

Having problems solving problems? our weekly #FrictionlessFriday newsletter has the solution! 

phenomenon that promotes a creative problem solving process

Creative Problem Solving

To find out more about problem solving, read our eBook "Creative Problem Solving".

Related Posts

creative thinking

5 creative thinking books you can’t miss

Creative thinking is a way of looking at a situation or problem and coming up with unique ideas or solutions to improve or solve it. It is one of the top 5 soft skills of the future and contrary to popular belief, this in-demand skill can be learned. Let’s look at our top 5 eBooks that promote and improve creative thinking. …

phenomenon that promotes a creative problem solving process

GDPR: 6 Tips for managers

As a manager or business owner, it is important that you have a good understanding of what GDPR means for you, your business, your employees and your clients. That’s why we’ve got GDPR 6 tips for managers. …

phenomenon that promotes a creative problem solving process

4 Reasons businesses should prioritise developing soft skills as much as developing technology

Keeping up to date with tech advancements is important but a company’s future success comes down to the skills of its people….

Robots jobs

How not to be replaced by a robot

‘The Robot Revolution’, ‘Computerisation’ or ‘Automation’; whatever you prefer to call it, technology isn’t going anywhere any time soon, but our jobs just might be….

Empowering you to succeed, academically and professionally

© Copyright 2019 BookBoon.com

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Learn Health Syst
  • v.6(2); 2022 Apr

Logo of learnhealth

Creativity in problem solving to improve complex health outcomes: Insights from hospitals seeking to improve cardiovascular care

Amanda l. brewster.

1 Health Policy and Management, School of Public Health, University of California, Berkeley California, USA

Yuna S. H. Lee

2 Health Policy and Management, Columbia Mailman School of Public Health, New York New York, USA

Erika L. Linnander

3 Global Health Leadership Initiative, Yale School of Public Health, New Haven Connecticut, USA

Leslie A. Curry

4 Health Policy and Management, Yale School of Public Health, New Haven Connecticut, USA

Associated Data

Introduction.

Improving performance often requires health care teams to employ creativity in problem solving, a key attribute of learning health systems. Despite increasing interest in the role of creativity in health care, empirical evidence documenting how this concept manifests in real‐world contexts remains limited.

We conducted a qualitative study to understand how creativity was fostered during problem solving in 10 hospitals that took part in a 2‐year collaborative to improve cardiovascular care outcomes. We analyzed interviews with 197 hospital team members involved in the collaborative, focusing on work processes or outcomes that participants self‐identified as creative or promoting creativity. We sought to identify recurrent patterns across instances of creativity in problem solving.

Participants reported examples of creativity at both stages typically identified in problem solving research and practice: uncovering non‐obvious problems and finding novel solutions. Creativity generally involved the assembly of an “ecological view” of the care process, which reflected a more complete understanding of relationships between individual care providers, organizational sub‐units, and their environment. Teams used three prominent behaviors to construct the ecological view: (a) collecting new and diverse information, (b) accepting (rather than dismissing) disruptive information, and (c) employing empathy to understand and share feelings of others.

Conclusions

We anticipate that findings will be useful to researchers and practitioners who wish to understand how creativity can be fostered in problem solving to improve clinical outcomes and foster learning health systems.

1. INTRODUCTION

Improving performance often requires health care teams to employ creativity in problem solving, a key attribute of learning health systems. Creativity is defined the process of generating approaches that are both novel and useful. 1 , 2 Incorporating creativity into problem solving can help to address unique, site‐specific complexities that influence performance in health care, 3 , 4 and to enhance the positive impact of evidence‐based strategies adapted from outside the organization. 5 While some advances in health care can be applied generically across settings, researchers have documented the importance of innovation and adaptation by local implementation teams, 6 , 7 , 8 , 9 and customization to patients and context is a key part of patient‐centered, high‐quality care. 10 These observations from health care cohere with management research from other industries, which posits that when innovation depends on complex contextual information that is difficult to codify and transfer, innovation‐related problem solving needs to occur where that information is held, 11 and by the individuals who have agency to act on these solutions. 12 That is, key innovations must be made by staff located at each implementation site.

Despite the known importance of creativity in problem solving, relatively few studies detail how workers incorporate creativity into problem solving during the natural course of work—in health care or in other industries. 13 Prior research on creative problem solving in the workplace has been largely theoretical, 14 , 15 with some empirical research deriving from industries such as new product development 16 , 17 where novelty is an explicit goal of work. Such research also focuses on creative outcomes while neglecting processes that incorporate creativity as habit and routine, that is, as part of the organizational culture. 18 , 19 , 20 , 21 Detailed studies of front‐line problem solving in the automotive industry provide a useful framework for considering the dimensions of problem solving—including an important distinction between problem definition and generation of solutions 22 —but do not focus on creativity and innovation. More research is needed to better understand how creativity manifests during complex problem solving in health care. 18

Prominent learning and quality improvement models in health care assume that both problem definition and generation of solutions can be important sites of creativity. Models including Lean/Six‐Sigma, 23 the Institute for Healthcare Improvement (IHI) Model for Improvement, 24 the strategic problem‐solving process, 25 and user‐centered design 26 focus on uncovering nonobvious problems through an emphasis on root cause analysis and understanding user experience. More research is needed to understand the process by which creativity manifests when grappling with the complexity and customization that health care demands. 20

Even as more health care organizations seek to become learning organizations by implementing structured improvement interventions, 23 reports of such efforts highlight the fact that these improvement interventions do not always achieve intended results. Health care teams must overcome distinctive and substantial barriers to creativity, including strong hierarchies, aversion to risk, highly specialized professionals, and emphasis on standardization of care to promote reliability and quality. 27 , 28 There can be tension between creativity and health care performance improvement, as health care delivery often seeks to minimize variation, and the core of creativity is enhancing variation. 29 Yet, influencing performance in health care often requires moving beyond stability and the status quo, a process well served by incorporating creativity. 27 Accumulating grounded evidence on how creative problem solving manifests in a variety of health care contexts is important for advancing understanding of this phenomenon. 30

2. QUESTION OF INTEREST

To describe in detail how creativity emerges as health care workers engage in problem solving, we sought to characterize the processes through which creativity emerged in problem solving within hospitals seeking to reduce mortality from acute myocardial infarction (AMI) as part of a 2‐year performance improvement collaborative called leadership saves lives (LSL). Mortality for AMI, now publicly reported and included in the value‐based purchasing bundle, 31 is influenced by components of care delivery that cross multiple boundaries within and outside of the hospital. 32 , 33 One important contributor to lower AMI mortality is clinicians' ability to resolve open‐ended problems through creative thinking. 34 Creative problem solving is especially relevant to AMI care teams working to reduce mortality because of the multifaceted nature of the problem, which spans multiple units and levels of hierarchy within the hospital, and extends past hospital boundaries to pre‐hospital and post discharge systems. Each care setting is unique in numerous important ways, making it essential for teams to develop novel solutions that work in their own contexts (ie, apply creativity).

The LSL collaborative involved 10 hospitals in which AMI care teams engaged in a curriculum designed to foster group learning and problem solving. While teams were encouraged to be creative in their problem solving, the limitations of prior evidence meant that the intervention could not be prescriptive about exactly how creativity was expected to be cultivated. As described elsewhere, 35 participating hospital teams reported increased capacity for learning and problem solving, and their hospitals experienced significant decreases in risk‐stratified mortality rate (RSMR) over the course of the study period, suggesting that these hospitals would be an ideal context for examining multiple instances of creative problem solving and distilling common patterns. We anticipate that findings will be useful to researchers and practitioners who wish to understand how creativity can be fostered in problem solving to improve clinical outcomes.

3.1. Study design and setting

We conducted a qualitative study to understand how creativity was fostered during problem solving in the 10 hospitals that took part in the LSL collaborative from 2014 to 2016. As previously described, 35 hospitals were selected for participation from the membership of the Mayo Clinic Care Network (MCCN), a national group of medical systems committed to quality improvement through collaboration. From the 21 MCCN members (as of January 2014), hospitals were identified as candidates if they met all three eligibility criteria: (a) at least 200 AMI discharges per year to ensure sufficient experience in caring for patients with AMI, (b) average or below average national performance on 30‐day RSMR between January 07, 2009 and June 30, 2012 as reported by Center for Medicare and Medicaid Services (CMS) Hospital Compare in Spring 2014, suggesting opportunity for improvement, and (c) the largest hospital in the system, for hospitals in multihospital systems. From the list of 18 hospitals that met eligibility criteria, random sampling with a purposeful component 36 as used to select hospitals that were diverse in geography and teaching status. The first 10 hospitals were approached to determine receptivity; two declined and were replaced with sites similar in geography and teaching status. Hospital characteristics are presented in Table  1 .

Hospital characteristics (n = 10 hospitals)

3.2. LSL intervention

The LSL intervention, previously described in detail, 37 was implemented from June 2014 to June 2016. LSL was designed to foster reductions in AMI mortality by supporting the implementation of evidence‐based strategies and fostering improvements in domains of organizational culture related to hospital performance. Each hospital established a guiding coalition of approximately 15 staff involved in care of patients with AMI, representing multiple departments, and including senior executives as well as front‐line staff. Guiding coalition members participated in four, 1‐day workshops in which they were coached through a strategic problem‐solving methodology 25 to define a shared problem (ie, RSMR is too high) and objective (ie, reduce RSMR), and then use root cause analysis to generate, implement, and evaluate strategies designed to achieve the defined objective. Erika Linnander led intervention workshops at multiple LSL hospitals, and Erika Linnander and Leslie Curry engaged with guiding coalitions in three annual workshops that convened representatives of all 10 hospitals participating in LSL. LSL coalitions were encouraged to develop strategies that fit their unique contexts, through both tailoring existing evidence‐based practices and introducing completely novel approaches. The evidence‐based practices include monthly meetings with emergency medical services personnel to review AMI cases, identification of both physician and nurse champions for AMI care, nurses dedicated to the catheterization lab (not cross‐staffing from other units), pharmacist rounding on all inpatients with AMI, and creative problem solving. As noted earlier, the intervention did not prescribe specific approaches to cultivate creativity. Guiding coalitions were also encouraged to foster improvements in hospital culture related to AMI performance, focusing on domains of: learning environment, 38 psychological safety, 39 senior management support, 40 commitment to the organization, 41 and time for improvement efforts. 39

3.3. Data collection

We collected qualitative data about the use of creativity in problem solving in LSL hospitals using in‐depth, in‐person interviews 36 at the start of the LSL intervention, and at 6 months and 18 months into the 2‐year intervention. A team of interviewers who included individuals with backgrounds in qualitative research, health care management, and clinical care conducted interviews with staff involved in the guiding coalition as well as other clinicians and hospital executives, using a standardized interview guide ( Data S1 ). The interview guide asked about implementation of creative problem‐solving strategies as part of a broader set of interview questions examining the hospital's experience with LSL. Amanda Brewster and Leslie Curry were members of the team that conducted interviews. Interview participants were aware of the LSL intervention and aware that research was being conducted to understand the process of implementing the LSL intervention as well as its impact. Interviews took place at the hospitals where participants worked, generally in a quiet room. A total of 197 individuals participated in one or more interviews, with 162 interviews at baseline, 118 at 6 months, and 113 at 18 months into the intervention, for a total of 393 interviews (Table  2 ). The number of individual interviewees per hospital ranged from 15 to 26. Interviews lasted approximately 45 minutes and were audiotaped and professionally transcribed. The research procedures were reviewed and determined to be exempt by the Yale University Institutional Research Board.

Interview participant characteristics

3.4. Data analysis

Interview transcripts were analyzed by a 6‐member multidisciplinary team using the constant comparative method of analysis. 42 The current analysis of creative problem solving focused on content in which participants discussed work processes that they self‐identified as creative or promoting creativity, that is, ideas that were both novel and useful. Participants did not have to use the terms “creative” or “creativity” explicitly. Content could be coded as referring to creative problem solving if participants were providing examples in response to the structured interview questions on creative problem solving strategies, or if participants discussed processes for generating novel and useful ideas in response to other interview questions. We considered that participants would be best positioned to assess whether something was creative in the context of their environments, and therefore relied on participants' own judgements regarding novel and useful elements of the phenomenon. Each transcript was coded independently by at least three analysts, with discrepancies reconciled through negotiated consensus. A hybrid coding approach 43 in which we began with a small number of a priori codes based on key LSL program elements and added new codes as additional themes emerged during coding. Iterative coding and analysis occurred across each wave of data collection, with refinement and review by the full team of six analysts, until a final code structure was established and reapplied to the full dataset. We used Atlas.ti to facilitate coding and organization of data. The analysis team included members with diverse perspectives, representing expertise in health services research, management, organizational theory, social work, nursing, medicine, and anthropology. We sought to generate recurrent themes that characterize essential aspects of creative problem solving in hospital contexts, examining instances in which creativity emerged in uncovering nonobvious problems or finding novel solutions.

Across hospitals, participant descriptions of creativity in problem solving generally entailed the use of three prominent behaviors: (a) collecting new and diverse information, (b) accepting (rather than dismissing) disruptive information, and (c) employing empathy (ie, to understand or feel what another person is experiencing from within their frame of reference, that is, the capacity to place oneself in another's position). Each of the three behaviors appeared at times sufficient to advance creative problem solving by fostering a broad, inclusive new view of AMI care, which we term an “ecological view” (Figure  1 ). The following sections detail the three behaviors, followed by the emergent concept of an ecological view of AMI care.

An external file that holds a picture, illustration, etc.
Object name is LRH2-6-e10283-g001.jpg

Concepts identified as important to creative problem solving. Working from the right‐hand side of the figure, creativity in problem solving was promoted by the assembly of a new, ecological view of AMI care. At least one of three behaviors was typically used by LSL coalitions to foster this ecological view

4.1. Collecting new and diverse information

Collecting new and diverse information was a behavior that routinely contributed to creativity in problem solving for LSL coalitions. Sometimes the new information came from assembling new data or analyzing data in new ways; for example, conducting new analyses of mortality data helped LSL coalitions at several hospitals to expand their conception of their AMI mortality challenges to include non‐STEMI patients (patients with non‐ST segment elevation myocardial infarction). This was a significant shift, as most prior quality improvement efforts had focused exclusively on STEMI patients. As an example, a cardiologist on one hospital's team undertook a close and systematic review of AMI deaths, as part of a root cause analysis recommended in the LSL intervention, and noticed that non‐STEMI care seemed to offer greater opportunities for improvement, explaining:

With STEMI's there was never any waiting… but in non‐STEMIs [there were] delays… STEMI's, they all die after you've revascularized them. You've done everything you could… But the non‐STEMI's are coming in. Somebody thought they were stable, and then they deteriorate which makes you think you've got really more of an opportunity with them. (Hospital J, Physician).

In other cases, new and diverse information came from the LSL coalitions engaging personnel who had not previously been involved in problem solving related to AMI mortality. For example, an emergency medicine physician in one hospital described how input from personnel outside the LSL coalition informed plans for introducing a dedicated cardiology physician assistant (PA) role that would remain on site at all times. After the hospital's LSL coalition coalesced around the idea to add this role, the coalition sought out opinions from different stakeholders elsewhere in the organization, who brought to light a wide range of issues that would need to be worked out in order to successfully implement this solution. A physician on the LSL coalition described:

Then [a senior administrator] presented the other stuff, that I never thought of. Who technically has ownership of that PA?… How does the funding for that position come from everyone, if the revenue goes through one of our different cardiology groups?… I never thought of that. I said, “Give me a body, and have them there 24/7.”…Then the cardiologists say, “Well, it's great. What we do with the PAs when they're not in the cath lab?… That creative problem solving comes from listening to everyone's different opinions, and having the ability to separate me from the project. Taking out my own biases. (Hospital B, Emergency Medicine Physician).

Synthesizing diverse views allowed the team to gain a more accurate understanding of implementation challenges, enhancing the practical utility and likely impact of their ideas.

4.2. Accepting (rather than dismissing) disruptive information

Leveraging new and diverse information sources for creative problem solving typically required a second, distinct behavior: accepting (rather than dismissing) disruptive or unwelcome information. In describing instances where new information contributed to the development of novel and useful solutions, participants routinely described processes to overcome resistance to new information. For example, after the LSL coalition at Hospital J shifted to thinking about non‐STEMI care as a potential problem to address, team members identified another problem: high‐risk non‐STEMIs were difficult to identify. After getting input from other physicians and nurses and reviewing non‐STEMI risk guidelines from the American College of Cardiology, the LSL coalition recommended two major changes to improve care for patients with non‐STEMI AMI: a new protocol to equip nurses to initiate care for inpatients with evolving AMIs, and a new set of algorithms and procedures for attending cardiologists to more consistently review at‐risk cases. These new procedures met with initial resistance from other cardiologists within the hospital, but the opponents “knew that they couldn't just blow it off completely,” according to an LSL coalition member, because the LSL coalition had carefully documented a previously unrecognized pattern of non‐STEMI deaths pointing to the need for change. The LSL coalition helped to engineer this acceptance of information that diverged from prior beliefs by employing data, methodology, and a respected cardiologist as the messenger that would be compelling to the cardiologists.

In other situations, accepting disruptive information involved elevating the weight given to input from frontline personnel lower in the organizational hierarchy. The LSL guiding coalitions included perspectives not traditionally included in hospital process improvement discussions, such as EMS representatives external to the hospital. The perception that these representatives occupied positions that were more peripheral to the hospital and lower in the organizational hierarchy could have set up their perspectives to be dismissed. This risk was exemplified by the concerns of a paramedic on one LSL coalition, who reported initially feeling skeptical about the value he could add to a group that included high status individuals such as cardiovascular surgeons and department heads, who were seen as intimidating. (“I'm like, what's pre‐hospital's role? I mean this is a big, huge hospital system.”) Over time though, this paramedic saw that his perspective was actively accepted, and he was empowered to share his opinions with the group. Intentional emphasis on the importance of EMS by the LSL intervention facilitator aided this effort:

One of the first things [the team facilitator] brought up was the statistics on pre‐hospital, how much they're involved… Then I have [a physician] sitting right next to me, who looks at me and says, “What do you think about it? What can we do to improve the pre‐hospital side of things?” To me that brought me right into the team. (Hospital A, Paramedic).

Although hospital leaders were generally aware of the need to improve pre‐hospital processes, listening to and valuing the input from the EMS representative was key for the LSL coalition at Hospital A to understand the specific problems occurring at the interface of pre‐hospital and hospital care, a situation seen at other LSL hospitals as well. Once the problems had been identified, solutions could be introduced. In the case of Hospital A, the solution was for the hospital to hire an EMS liaison with experience as a paramedic to manage communication between pre‐hospital, emergency department, and other staff from the hospital who need to be activated to care for AMI patients. This solution was so widely recognized as effective in facilitating coordination across these systems that the hospital leadership agreed to fund a second liaison position.

Experience at another hospital illustrated how the hospital's senior management played an important role in getting team members to take new information seriously and thereby spurred creativity in problem solving. As part of the LSL project, this hospital started documenting the wait times for EKG results. These new data showed that slow EKG results routinely delayed AMI care. The EKG wait time measure represented new and disruptive information for the hospital, because EKG wait time had not previously been tracked or understood to delay AMI care. Senior managers within the hospital held firm on the need to substantially reduce EKG wait times, even after multiple barriers to solving this problem were identified: from limitations on which staff could perform EKGs, to transmission of results being slowed by wireless connectivity drops in different parts of the floor, to EKG results being printed in an area where they weren't immediately noticed. The stance of leaders, who were encouraging but very firm about the need to improve on the EKG wait time measure, forced ED teams to develop creative solutions rather than accept the inevitability of delays. The introduction of new, disruptive information about EKG wait times, coupled with active endorsement by multiple managers, represented a departure from previous quality improvement efforts in which teams were seen to resign themselves to the status quo. One manger explained:

[In earlier improvement efforts] I would hear an answer from one team that says, “No. This can't be done.” [Now] I think we have leaders who… are very good at saying, “Why not?” Then when we start looking at “why not,” we often find that, oh yeah, maybe it's possible… If [the leader] says I'm satisfied with, “This can't be done,” then you're not going to have much creative thinking. (Hospital I, Manager).

Taking the data on EKG wait times as a serious indicator of problems led to a variety of creative solutions being implemented in the ED over the course of the LSL project, including training new categories of staff members to perform EKGs, putting existing communication technologies to new uses, establishing a new space where EKGs could be performed when the ED was full, and printing EKGs in a new location, near the physicians who needed to interpret them. The changes were effective: the proportion of at‐risk patients receiving EKGs within the target time of 10 minutes rose from under 30% to 80%.

4.3. Employing empathy

Employing empathy—having problem‐solving staff consciously shift their mindsets to empathize with the experiences of colleagues or patients—was the third behavior regularly observed to foster creative problem solving for LSL coalitions. An example of empathizing with colleagues at referring facilities was reported by participants from Hospital F, which served as a referral center for AMI patients across a large region. As part of the LSL initiative, a nurse from the LSL coalition visited facilities that frequently transferred AMI patients to the hospital and followed the transfer process alongside providers at one referring facilities, which allowed her to experience the frustration of transfers from the referring facility's perspective (ie, empathize). She described the experience as follows:

I got myself involved in [a patient transfer] with their emergency physician, trying to help coordinate the transfer of that patient [from the outlying facility to our hospital]. It was amazing how complicated our system had made it to get a patient transferred. I was able to be that advocate and see it from that view and then experience that frustration from that provider standpoint. (Hospital F, Nurse).

Seeing transfers from the perspective of referring facilities revealed several flaws in the process, which were delaying patient care and led to the development of new approaches to streamline communication with referring facilities.

Another example of empathizing with colleagues was seen at Hospital D, where the director of cardiac services discussed the importance of understanding, in detail, the perspective of EKG technicians in order to address problems with EKG processes. He encouraged his team to go observe the EKG techs at work, to understand “steps to their job” and consider how to help them:

The first part is, don't be afraid to call and say, “I have a problem.” The second part is…go back, and [ask] what does the EKG tech do? They didn't know….[I said] maybe you ought to go with them for a while. You gotta go figure out…what are the steps to their job, and how can we make it more efficient, help them in quality? We learned together. We problem solve together. (Hospital D, Physician).

An example of empathizing with patients motivating creative problem solving was reported by a nurse coordinator explaining what happened when the LSL coalition reviewed the hospital's discharge education materials for patients with AMI. It was clear that the materials were inadequate to help patients effectively discharge (“It was horrid. I can't even believe that's what we were giving patients”). The team knew that improved materials were needed, but felt overwhelmed by the range of options. Ultimately, they took an approach of trying to put themselves in the patient's shoes, which led to the development of a patient education resource that was regarded as the best patient education tool in the hospital:

We just had to sit down and really problem solve and be the patient in the matter. What is going to make a difference? What's going to grab my attention as a patient to better adhere to my discharge instructions and understand them? All the praise goes to [three team members] because they put together the best patient education tools that we have in the hospital. (Hospital F, Nurse).

4.4. Ecological view

While we observed three distinctive behaviors fostering creative problem solving, as described in the sections above, the behaviors tended to accomplish the same thing: the assembly of a broad, inclusive new view of AMI care, which we term an “ecological view.” This ecological view, fostered by teams collecting new and diverse information, accepting (rather than dismissing) disruptive information, and employing empathy, routinely contributed to LSL coalitions creatively uncovering nonobvious problems and finding novel solutions. Figure  1 outlines our concept of how creativity in problem solving was driven by development of an ecological view of the care process.

We adopt the biological metaphor of ecology, which is often used in the study of organizations (Freeman 2006), 44 to connote the development of a shared understanding of AMI care that reflected the relationships among a wide range of different individual care providers, organizational sub‐units, and their environment. Organization scholars commonly analyze populations of organizations in an ecological context. We use the term “ecological view” to describe the emergence of self‐awareness inside the organization of this ecological context, as some of these providers and relationships were previously unknown, or known to only some but not all team members. The ecological view, in turn, infused the problem‐solving process with creativity—allowing team members to see the contours of problems that not previously been identified and to develop novel solutions.

5. DISCUSSION

In instances where creativity emerged during the problem‐solving process within LSL hospitals, a characteristic process was observed in which team members generated an ecological view of the AMI care process, reflecting a more complete understanding of relationships between care providers, organizational sub‐units, and their environment. The ecological view of AMI care sparked teams to define previously unrecognized problems, and to develop novel, tailored solutions. The experiences of the LSL hospitals indicated that identifying nonobvious problems represented an important site of creativity in the problem‐solving process. While our results stem from an initiative to improve AMI mortality, they could apply to initiatives to improve outcomes for other complex conditions involving care that spans disciplines, departments, and organizations, such as stroke, heart failure, and diabetes.

The emergence of the ecological view that supported creativity in problem solving was regularly fostered by at least three different behaviors: collecting new information, accepting disruptive information, and employing empathy. Although the role of the ecological view in creative problem solving was not theorized during the development or delivery of the LSL intervention, several of the LSL intervention components explicitly encouraged behaviors that we observed to promote an ecological view, and could be helpful for other hospitals seeking to promote creativity in problem solving. Specifically, the LSL intervention team facilitated the development of guiding coalitions with diverse membership, advised hospital teams to conduct root cause analyses, which fed the collection of new information, and coached on group processes to promote psychological safety to foster the process of surfacing disruptive information from individuals whose perspectives might not be known. Efforts to encourage empathy were not an intentional component of the LSL intervention although raising awareness of psychological safety could have heightened participants' focus on the feelings of others. Empathy—the exercise of intentionally placing oneself in a new perspective—emerged as an especially powerful tactic to leverage exposure to new information. This is consistent with prior research on problem solving in manufacturing, which identifies advantages of observing, first‐hand, a mechanical part in the situation where it is malfunctioning, as a way of getting richer information. 22 In the context of our study, the immersive quality of exercises in empathy may have provided richer information, and also emotional cues, which enhanced LSL coalition members' motivation to act on novel ideas that would have dissipated in the face of less compelling experiences. Intrinsic motivation has been theorized as an important contributor to individual creativity. 1

The behaviors we identified promoting an ecological view are not new to the quality improvement literature—other commonly used quality improvement models such as Lean and Six Sigma emphasize collection of new data and inclusion of diverse perspectives in understanding variability, waste, and poor performance. 45 , 46 Empathy for end‐users features as a component of the design‐thinking process, which is being used by some health care organizations for quality improvement. 26 Our results, however, provide real‐world examples of how these concepts foster creative problem solving in the context of a quality improvement intervention that targeted an outcome measure influenced by complex processes. While we reported the three behaviors that featured most prominently in participants' descriptions of examples where an ecological view emerged to promote creativity in problem solving during the LSL intervention, it is possible that other behaviors and supporting structures may promote the emergence of an ecological view in different settings. Notably, in the hospitals we studied, these three behaviors depended on support from a critical mass of team members in diverse clinical and managerial roles as well as hospital senior leadership. It is hard to say whether individual clinicians or staff members could enhance their own creative problem‐solving capabilities by applying these behaviors in isolation.

Our results should be interpreted in light of several study limitations. First, with 10 hospitals, our sample was relatively small, although hospitals were selected to be diverse in terms of geography, size, and teaching status, and each hospital tackled several dimensions of AMI care, thus accumulating a larger number of examples of problem solving. Further, the robust, longitudinal qualitative design allowed for deep characterization of the improvement process in each hospital. Second, hospitals in the study were exposed to a leadership development curriculum that encouraged a structured approach to problem solving; the process of creativity in problem solving may proceed differently in hospitals that had not been supported in this way. Third, we were not able to collect data on whether particular interventions introduced by the LSL hospitals were effective, or sustained over time beyond the study period, which prevents us from concluding whether solution quality was improved by creative problem solving in this study. We do know that LSL hospitals reduced AMI RSMR more quickly than the national average over the same time period, 35 suggesting that LSL hospitals did make changes that improved RSMR during the study period.

Our results provide a refined depiction of the creative problem‐solving process based on empirical observations across multiple hospitals. These findings suggest that health systems seeking to promote creative problem solving could encourage the three behaviors we have documented to advance an ecological view of care processes. As exploratory research, these findings point toward several opportunities for further study. First, it would be useful to examine the creative problem‐solving process in a different set of hospitals, working to improve a different outcome, to confirm the generalizability of our findings. A next step could include quantitatively testing the hypothesis that forming an ecological view is indeed constitutive of the creative problem‐solving process, and improves solution quality. Doing this could involve developing a survey‐based measure of the extent to which quality improvement teams have developed an ecological view of their target process, and evaluating the creativity and effectiveness of their solutions.

6. CONCLUSIONS

Creativity is crucial to performance improvement in health care, and evidence from other industries has linked individual traits such as motivation and values, as well as organizational traits such as leadership style, team climate, and decentralized structure to creative performance. 14 , 18 , 47 Seeking to illuminate the process by which creative problem solving occurs in health care, we observed a characteristic process that occurred across different hospitals, in which distinctive patterns of acquiring and processing new information contributed to creativity. These distinctive behaviors can be fostered by health care leaders seeking to improve performance on consequential clinical outcomes, including AMI mortality.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Supporting information

Data S1. Qualitative interview guide

ACKNOWLEDGMENTS

Funding for the Leadership Saves Lives (LSL) collaborative and its evaluation was provided through a research grant to Yale University from The Medicines Company, Parsippany, New Jersey. The authors thank the hospitals and guiding coalition members that participated in LSL for their time and dedication.

Brewster AL, Lee YSH, Linnander EL, Curry LA. Creativity in problem solving to improve complex health outcomes: Insights from hospitals seeking to improve cardiovascular care . Learn Health Sys . 2022; 6 ( 2 ):e10283. 10.1002/lrh2.10283 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Funding information Medicines Company

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Business LibreTexts

3.3: Creative Problem-Solving Process

  • Last updated
  • Save as PDF
  • Page ID 62756

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

LEARNING OBJECTIVES

By the end of this section, you will be able to:

  • Describe the five steps in the creative problem-solving process
  • Identify and describe common creative problem-solving tools

Creativity can be an important trait of an entrepreneur. In that discussion, we learned about creativity’s role in innovation . Here, we will look in more depth at creativity’s role in problem-solving . Let’s first formally define creativity as the development of original ideas to solve an issue. The intent of being an entrepreneur is to break away from practical norms and use imagination to embrace quick and effective solutions to an existing problem, usually outside the corporate environment.

The Steps of the Creative Problem-Solving Process

Training oneself to think like an entrepreneur means learning the steps to evaluating a challenge: clarify, ideate, develop, implement, and evaluate (Figure 3.3.1).

6.2.1 10.05.35 PM.jpeg

Step 1: Clarify

To clarify is the critical step of recognizing the existence of a gap between the current state and a desired state. This can also be thought of as having need awareness , which occurs when the entrepreneur notes a gap between societal or customer needs and actual circumstances. Clarifying the problem by speaking with clients and developing a detailed description of the problem brings the specifics of a problem to light. Failure to identify the specifics of a problem leaves the entrepreneur with the impossible task of solving a ghost problem, a problem that is fully unknown or unseen. To establish and maintain credibility, an entrepreneur must clarify the problem by focusing on solving the problem itself, rather than solving a symptom of the problem.

For example, a farm could have polluted water, but it would not be enough to solve the problem only on that farm. Clarifying would involve identifying the source of the pollution to adequately tackle the problem. After gaining an understanding of a problem, the entrepreneur should begin to formulate plans for eliminating the gap. A fishbone diagram, as shown in Figure 3.3.2, is a tool that can be used to identify the causes of such a problem.

6.2.2.jpeg

In the case of our water pollution example, a fishbone diagram exploring the issue might reveal the items shown in Figure 3.3.3.

6.2.3.jpeg

Step 2: Ideate

To ideate is the step of the creative problem-solving process that involves generating and detailing ideas by the entrepreneur. After collecting all information relevant to the problem, the entrepreneur lists as many causes of the problem as possible. This is the step in which the largest variety of ideas are put forth. Each idea must be evaluated for feasibility and cost as a solution to the problem. If a farm does not have clean water, for example, the entrepreneur must list causes of toxic water and eliminate as many of those causes as possible. The entrepreneur must then move forward investigating solutions to bring the water back to a safe state. If, say, nearby livestock are polluting the water, the livestock should be isolated from the water source.

Step 3: Develop

To develop is the step in which the entrepreneur takes the list of ideas generated and tests each solution for feasibility. The entrepreneur must consider the cost of each idea and the obstacles to implementation. In the preceding example, adding a chemical to the water may not be a feasible solution to the farmer. Not every farmer wants additional chloride or fluoride added to the water due to the effect on both humans and livestock. These tradeoffs should be addressed in the feasibility assessment. The farmer might prefer a filtration system, but the cost of that solution might not be practicable. The entrepreneur should identify and assess alternative solutions to find one that is most cost-effective and feasible to the customer.

Step 4: Implement

To implement is the step in which the solution to the problem is tested and evaluated. The entrepreneur walks through the planned implementation with the client and tests each part of the solution, if a service, or thoroughly tests a developed good. The entrepreneur implements the solution and goes through a structured system of follow-up to ensure the solution remains effective and viable. In the water example, the solution would be reducing runoff from toxic insecticides by adding prairie strips, buffers of grass, and vegetation along banks of streams.

Step 5: Evaluate

To evaluate is the step in which the final solution is assessed. This is a very important step that entrepreneurs often overlook. Any fallacy in the implementation of the product or service is reassessed, and new solutions are implemented. A continual testing process may be needed to find the final solution. The prairie strips, buffers of grass, and vegetation along banks of streams chosen in the farming water example should then be analyzed and tested to ensure the chosen solution changed the content of the water.

ARE YOU READY?

Implementing Creative Problem Solving

Removing waste is a problem, and it can also present an entrepreneurial opportunity. Try to examine ways in which waste products that you usually pay to have hauled away can now generate revenue. Whether it’s recycling aluminum cans or cardboard, or garbage that could be used to feed animals, your task is to come up with solutions to this entrepreneurial-oriented problem.

  • Try following the first step of the creative problem-solving process and clearly identify the problem.
  • Next, gather data and formulate the challenge.
  • Then, explore ideas and come up with solutions.
  • Develop a plan of action.
  • Finally, note how you would evaluate the effectiveness of your solution.

Using Creativity to Solve Problems

Entrepreneurs are faced with solving many problems as they develop their ideas for filling gaps, whether those opportunities involve establishing a new company or starting a new enterprise within an existing company. Some of these problems include staffing, hiring and managing employees, handling legal compliance, funding, marketing, and paying taxes. Beyond the mundane activities listed, the entrepreneur, or the team that the entrepreneur puts in place, is indispensable in maintaining the ongoing creativity behind the product line or service offered. Innovation and creativity in the business are necessary to expand the product line or develop a groundbreaking service.

It is not necessary for the entrepreneur to feel isolated when it comes to finding creative solutions to a problem. There are societies, tools, and new methods available to spur the creativity of the entrepreneur that will further support the success and expansion of a new enterprise. 14 Learning and using entrepreneurial methods to solve problems alleviates the stress many startup owners feel. The entrepreneur’s creativity will increase using collaborative methodologies. Some entrepreneurial collaborative methodologies include crowdsourcing, brainstorming, storyboarding, conducting quick online surveys to test ideas and concepts, and team creativity activities.

Crowdsourcing

Professor Daren Brabham at the University of Southern California has written books on crowdsourcing and touts its potential in for-profit and not-for-profit business sectors. He defines it simply as “an online, distributed problem-solving and production model.” 15 Crowdsourcing involves teams of amateurs and nonexperts working together to form a solution to a problem. 16 The idea, as cbsnews.com’s Jennifer Alsever has put it, is to “tap into the collective intelligence of the public at large to complete business-related tasks that a company would normally either perform itself or outsource to a third-party provider. Yet free labor is only a narrow part of crowdsourcing's appeal. More importantly, it enables managers to expand the size of their talent pool while also gaining deeper insight into what customers really want. The challenge is to take a cautionary approach to the ‘wisdom of the crowd,’ which can lead to a ‘herd’ mentality.” 17

LINK TO LEARNING

Read this article that discusses what crowdsourcing is, how to use it, and its benefits for more information.

This new business prototype, similar to outsourcing, features an enterprise posting a problem online and asking for volunteers to consider the problem and propose solutions. Volunteers earn a reward, such as prize money, promotional materials like a T-shirt, royalties on creative outlets like photos or designs, and in some cases, compensation for their labor. Before proposing the solution, volunteers learn that the solutions become the intellectual property of the startup posting the problem. The solution is then mass-produced for profit by the startup that posted the problem. 18 The process evolves into the crowdsourcing process after the enterprise mass produces and profits from the labor of the volunteers and the team. Entrepreneurs should consider that untapped masses have solutions for many issues for which agendas do not yet exist. Crowdsourcing can exploit those agendas and add to the tools used to stimulate personal creativity. This type of innovation is planned and strategically implemented for profit.

For example, Bombardier held a crowdsourced innovation contest to solicit input on the future of train interiors, including seat design and coach class interior. A corporate jury judged the submissions, with the top ten receiving computers or cash prizes. Companies are often constrained, however, by internal rules limiting open source or external idea sourcing, as they could be accused of “stealing” an idea. While crowdsourcing outside of software can be problematic, some products such as MakerBot’s 3D printers, 3DR’s drones, and Jibo’s Social Robot have used developer kits and “makers” to help build a community and stimulate innovation from the outside.

WORK IT OUT

A Crowdsourced Potato Chip

In an effort to increase sales among millennials, PepsiCo turned to crowdsourcing to get new flavor ideas for their Lay’s potato chips (called Walker’s in the UK). Their 2012 campaign, “Do Us a Flavor,” was so successful that they received over 14 million submissions. The winner was Cheesy Garlic Bread, which increased their potato chip sales by 8 percent during the first three months after the launch.

  • What are some other products that would work well for a crowdsourced campaign contest?
  • What items wouldn’t work well?

Amazon’s Mechanical Turk is an online crowdsourcing platform that allows individuals to post tasks for workers to complete. In many instances, these tasks are compensated, but the payment can be less than one dollar per item completed. Mechanical Turk is one of the largest and most well-known crowdsourcing platforms, but there are a number of other more niche ones as well that would apply to smaller markets. In the case of innovation contests and outsourced tasks from corporations, those tasks may be hosted internally by the corporation.

Brainstorming

Brainstorming is the generation of ideas in an environment free of judgment or dissension with the goal of creating solutions. Brainstorming is meant to stimulate participants into thinking about problem-solving in a new way. Using a multifunctional group, meaning participants come from different departments and with different skill sets, gives entrepreneurs and support teams a genuine chance to suggest and actualize ideas. The group works together to refine and prototype potential solutions to a problem.

Brainstorming is a highly researched and often practiced technique for the development of innovative solutions. One of the more successful proponents of brainstorming is the United Nations Children’s Fund (UNICEF). UNICEF faces unique problems of solving resource problems for mothers and children in underdeveloped nations. See how UNICEF practices brainstorming to solve problems including child survival, gender inclusion, refugee crises, education, and others.

The setting for a brainstorming session should remain as informal and relaxed as possible. The group needs to avoid standard solutions. All ideas are welcome and listed and considered with no censorship and with no regard to administrative restrictions. All team members have an equal voice. The focus of brainstorming is on quantity of ideas rather than on the ideal solution provided in every suggestion. A classic entrepreneurial brainstorming activity, as popularized by business software developer Strategyzer, is known as the “silly cow” exercise. Teams come up with ideas for new business models pertaining to a cow, with the results often outrageous, ranging from sponsored cows to stroking cows for therapeutic release. Participants are asked to identify some aspect of a cow and develop three business models around that concept in a short time period, typically two minutes or fewer. The activity is designed to get creative juices flowing.

Watch this video from ABC’s Nightline that shows how IDEO designed a new shopping cart for an example of a design process that involves brainstorming.

Storyboarding

Storyboarding is the process of presenting an idea in a step-by-step graphic format, as Figure 3.3.4 shows. This tool is useful when the entrepreneur is attempting to visualize a solution to a problem. The steps to the solution of a problem are sketched and hung in graphic format. Once the original graphic is placed, images of steps working toward a solution are added, subtracted, and rearranged on a continual basis, until the ultimate solution emerges in the ultimate graphic format. For many years, entrepreneurs have used this process to create a pre-visual for various media sequences.

6.2.4.jpeg

Team Creativity

Team creativity is the process whereby an entrepreneur works with a team to create an unexpected solution for an issue or challenge. Teams progress through the same creative problem-solving process described already: clarify, ideate, develop, implement, and evaluate. The main advantage of team creativity is the collaboration and support members receive from one another. Great teams trust in other team members, have diverse members with diverse points of view, are cohesive, and have chemistry.

Team members should work in a stress-free and relaxing environment. Reinforcement and expansion of ideas in the team environment motivates the team to continually expand horizons toward problem solution. A small idea in a team may spark the imagination of a team member to an original idea. Mark Zuckerberg, co-founder of Facebook, once said, “The most important thing for you as an entrepreneur trying to build something is, you need to build a really good team. And that’s what I spend all my time on.” 19

ENTREPRENEUR IN ACTION

Taaluma Totes 20

Young entrepreneurs Jack DuFour and Alley Heffern began to notice the beautiful fabrics that came from the different countries they visited. The entrepreneurs thought about what could be done with the fabrics to create employment opportunities both in the country from which the fabric originated and in their home base of Virginia. They decided to test producing totes from the fabrics they found and formed Taaluma Totes (Figure 3.3.5). DuFour and Heffern also wanted to promote the production of these fabrics and help underserved populations in countries where the fabric originated maintain a living or follow a dream.

6.2.6.png

The team continued to test the process and gathered original fabrics, which they sent to Virginia to create totes. They trained individuals with disabilities in Virginia to manufacture the totes, thus serving populations in the United States. The entrepreneurs then decided to take 20 percent of their profits and make microloans to farmers and small business owners in the countries where the fabric originated to create jobs there. Microloans are small loans, below $50,000, which certain lenders offer to enterprising startups. These startups, for various reasons (they are in poor nations, at the poverty level), can’t afford a traditional loan from a major bank. The lenders offer business support to the borrower, which in turn helps the borrower repay the microloan. The microloans from Taaluma are repaid when the borrower is able. Repayments are used to buy more fabric, completing Taaluma’s desire to serve dual populations. If the process proved unsuccessful, the co-owners would revise the process to meet the plan’s requirements.

DuFour and Heffern now have fabrics from dozens of countries from Thailand to Ecuador. The totes are specialized with features to meet individual needs. The product line is innovated regularly and Taaluma Totes serves a dual purpose of employing persons with disabilities in Virginia and creating employment for underserved populations in other countries.

Creative Problem-Solving Process – A Quick History

Team of people doinf creative problem-solving

Posted in Auditing Tips , Blog , Create , Design Thinking , Facilitation , Innovation , Virtual Facilitation by Jo North

History of the creative problem-solving process

What is creative problem-solving.

Creative problem-solving is a step-by-step process designed to spark creative thinking and innovative solutions for purposeful change. It is sometimes abbreviated to “CPS”.

The creative problem-solving process is at the root of other contemporary creativity and innovation processes, such as innovation sprints and design sprints or design thinking . These methods have been adapted and repackaged into the fundamental principles of creative problem-solving.

Here’s a quick overview of how the creative problem-solving process has developed over time.

Creative problem solving: Osborn

The originator of the creative problem-solving process, Alex Osborn , was a founding partner of an American advertising agency. He published a seven-stage creative problem solving-process ( Osborn, 1952 ).

Osborn’s seven-stage process

  • Orientation
  • Preparation
  • Verification

Further publications (Osborn 1953 ; 1957 ; 1967 ) raised general awareness of the method. Osborn also launched the concept of ‘ brainstorming ’ into common practice and language for the first time.

Later, Osborn refined his process to contain only three stages (Osborn, 1967).

Osborn’s three-stage process

  • Fact-finding
  • Idea-finding
  • Solution-finding

Osborn-Parnes process

Osborn met and began to collaborate with Sidney Parnes , who continued to develop Osborn’s work after he died, to create a five-stage process (Parnes, 1967a; 1967b).

This five-step Creative Problem-Solving Process was developed with the educational purpose of enabling students to develop their personal creativity.

This five-stage process was used in a range of education programs in the US, and became known as the Osborn-Parnes Creative Problem-Solving Model (Parnes, 1967a ; 1967b ).

The five steps are:

  • Problem-finding
  • Acceptance-finding

Isaksen and Treffinger creative problem-solving model

Isaksen & Treffinger’s Creative Problem Solving: The basic course (1985) added a specific “Mess-Finding” stage onto the beginning of the Osborn-Parnes CPS principles. The course also included more specific guidelines for the convergent thinking elements of the process.

phenomenon that promotes a creative problem solving process

Through the 1980s and 1990s, Isaksen and Treffinger continued to refine the model:

  • Making it more usable, by breaking the process up into more manageable steps (version 4.0)
  • Taking a more descriptive approach, to make the process and each of its steps clearer. They also improved guidance on planning (version 5.0)
  • Including task appraisal and process planning to form a “Planning Your Approach” stage (versions 6.0 and 6.1)

By 2000, their CPS Version 6.1 ™ system comprised four components and eight stages.

phenomenon that promotes a creative problem solving process

Creative Problem-Solving Thinking Skills Model (TSM)

A more recent development of the creative problem-solving process is the Creative Problem Solving Thinking Skills Model (TSM) by Puccio, Mance & Murdock , 2011.

The Creative Problem-Solving TSM model has three key stages. These are:

  • Clarification
  • Transformation
  • Implementation

phenomenon that promotes a creative problem solving process

It also contains six specific steps:

  • Exploring the vision
  • Formulating challenges
  • Exploring ideas
  • Formulating solutions
  • Exploring acceptance
  • Formulating a plan

Divergent and convergent thinking

Each step includes divergent and convergent thinking phases.

  • Divergent thinking means a broad search for many diverse and novel ideas.
  • Convergent thinking means selecting options through an informed evaluation of alternatives.

There is one executive step, “assessing the situation”, at the heart of the model. “Assessing the situation” guides all the steps. This means that at every stage, it’s a good idea to step into the circle, when you need to, to gather more data and assess the situation.

By implementing the skills incorporated within this model, organizations can develop their teams to deliver more creative and innovative results.

Creative problem-solving journey from The Big Bang Partnership

Over the last 12 years, we have developed our own creative problem-solving journey which we use in our clients’ workshops. We also train facilitators to use our method.

We design and lead workshops online and in-person.

We have built our approach based on academic research and evidence, combined with real experience of working with literally thousands of people in a huge range of diverse organisations around the world.

Our approach is massively facilitator and participant-friendly. It delivers great results every time. It’s also brilliantly flexible because we curate activities for each individual workshop from over 300 creative problem-solving techniques. We have adapted from some of the classic CPS techniques, and invented our own.

We also make sure that we use divergent and convergent thinking activities at just the right time. Plus, we make the whole experience enjoyable as well as productive for everyone.

phenomenon that promotes a creative problem solving process

Need some help with your creative problem-solving workshop?

Here are The Big Bang Partnership we are expert facilitators of creative problem solving workshops. Please do comment or email us if you would like any further tips or advice, or if you’d like to explore having us design a facilitate a workshop for you.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Some of our clients
  • Jo's PhD Research
  • CONTENT STUDIO
  • Idea Time Book
  • Innovation Events
  • Innovation Consulting
  • Creative Facilitation Skills
  • Executive Development

Idea Time

Privacy Policy © The Big Bang Partnership Limited 2023

Privacy Overview

  • Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Papyrology
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Acquisition
  • Language Evolution
  • Language Reference
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Religion
  • Music and Media
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Science
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Strategy
  • Business Ethics
  • Business History
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Systems
  • Economic History
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Theory
  • Politics and Law
  • Public Administration
  • Public Policy
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

Team Creativity and Innovation

  • < Previous chapter
  • Next chapter >

4 Team Creativity: Cognitive Processes Underlying Problem Solving

  • Published: December 2017
  • Cite Icon Cite
  • Permissions Icon Permissions

Creative cognition is a critical aspect of creative problem solving for both teams and individuals, but the cognitive processes underlying creativity have received more attention at the individual than the team level. This chapter focuses on early- and late-stage cognitive processes that have currently received less attention in the team creativity literature: problem construction and idea evaluation and selection. Problem construction aims to clarify problem ambiguity through restating and redefining a problem and identifying goals and parameters for consideration prior to solution generation. Idea evaluation and selection occurs after idea generation and refers to the evaluation of ideas with respect to specific standards, goals, or ideals, and the selection of ideas for pursuit in implementation. Additional research for team problem construction and team idea evaluation and selection is proposed.

Signed in as

Institutional accounts.

  • Google Scholar Indexing
  • GoogleCrawler [DO NOT DELETE]

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code
  • Add your ORCID iD

Institutional access

Sign in with a library card.

  • Sign in with username/password
  • Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Sign in through your institution

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Change Password

Your password must have 8 characters or more and contain 3 of the following:.

  • a lower case character, 
  • an upper case character, 
  • a special character 

Password Changed Successfully

Your password has been changed

  • Sign in / Register

Request Username

Can't sign in? Forgot your username?

Enter your email address below and we will send you your username

If the address matches an existing account you will receive an email with instructions to retrieve your username

Teaching Creativity and Inventive Problem Solving in Science

  • Robert L. DeHaan

Division of Educational Studies, Emory University, Atlanta, GA 30322

Search for more papers by this author

Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known or used. In this essay, I review the evidence that creativity is not a single hard-to-measure property. The creative process can be explained by reference to increasingly well-understood cognitive skills such as cognitive flexibility and inhibitory control that are widely distributed in the population. I explore the relationship between creativity and the higher-order cognitive skills, review assessment methods, and describe several instructional strategies for enhancing creative problem solving in the college classroom. Evidence suggests that instruction to support the development of creativity requires inquiry-based teaching that includes explicit strategies to promote cognitive flexibility. Students need to be repeatedly reminded and shown how to be creative, to integrate material across subject areas, to question their own assumptions, and to imagine other viewpoints and possibilities. Further research is required to determine whether college students' learning will be enhanced by these measures.

INTRODUCTION

Dr. Dunne paces in front of his section of first-year college students, today not as their Bio 110 teacher but in the role of facilitator in their monthly “invention session.” For this meeting, the topic is stem cell therapy in heart disease. Members of each team of four students have primed themselves on the topic by reading selected articles from accessible sources such as Science, Nature, and Scientific American, and searching the World Wide Web, triangulating for up-to-date, accurate, background information. Each team knows that their first goal is to define a set of problems or limitations to overcome within the topic and to begin to think of possible solutions. Dr. Dunne starts the conversation by reminding the group of the few ground rules: one speaker at a time, listen carefully and have respect for others' ideas, question your own and others' assumptions, focus on alternative paths or solutions, maintain an atmosphere of collaboration and mutual support. He then sparks the discussion by asking one of the teams to describe a problem in need of solution.

Science in the United States is widely credited as a major source of discovery and economic development. According to the 2005 TAP Report produced by a prominent group of corporate leaders, “To maintain our country's competitiveness in the twenty-first century, we must cultivate the skilled scientists and engineers needed to create tomorrow's innovations.” ( www.tap2015.org/about/TAP_report2.pdf ). A panel of scientists, engineers, educators, and policy makers convened by the National Research Council (NRC) concurred with this view, reporting that the vitality of the nation “is derived in large part from the productivity of well-trained people and the steady stream of scientific and technical innovations they produce” ( NRC, 2007 ).

For many decades, science education reformers have promoted the idea that learners should be engaged in the excitement of science; they should be helped to discover the value of evidence-based reasoning and higher-order cognitive skills, and be taught to become innovative problem solvers (for reviews, see DeHaan, 2005 ; Hake, 2005 ; Nelson, 2008 ; Perkins and Wieman, 2008 ). But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, are not widely known or used. An invention session such as that led by the fictional Dr. Dunne, described above, may seem fanciful as a means of teaching students to think about science as something more than a body of facts and terms to memorize. In recent years, however, models for promoting creative problem solving were developed for classroom use, as detailed by Treffinger and Isaksen (2005) , and such techniques are often used in the real world of high technology. To promote imaginative thinking, the advertising executive Alex F. Osborn invented brainstorming ( Osborn, 1948 , 1979 ), a technique that has since been successful in stimulating inventiveness among engineers and scientists. Could such strategies be transferred to a class for college students? Could they serve as a supplement to a high-quality, scientific teaching curriculum that helps students learn the facts and conceptual frameworks of science and make progress along the novice–expert continuum? Could brainstorming or other instructional strategies that are specifically designed to promote creativity teach students to be more adaptive in their growing expertise, more innovative in their problem-solving abilities? To begin to answer those questions, we first need to understand what is meant by “creativity.”

What Is Creativity? Big-C versus Mini-C Creativity

How to define creativity is an age-old question. Justice Potter Stewart's famous dictum regarding obscenity “I know it when I see it” has also long been an accepted test of creativity. But this is not an adequate criterion for developing an instructional approach. A scientist colleague of mine recently noted that “Many of us [in the scientific community] rarely give the creative process a second thought, imagining one either ‘has it’ or doesn't.” We often think of inventiveness or creativity in scientific fields as the kind of gift associated with a Michelangelo or Einstein. This is what Kaufman and Beghetto (2008) call big-C creativity, borrowing the term that earlier workers applied to the talents of experts in various fields who were identified as particularly creative by their expert colleagues ( MacKinnon, 1978 ). In this sense, creativity is seen as the ability of individuals to generate new ideas that contribute substantially to an intellectual domain. Howard Gardner defined such a creative person as one who “regularly solves problems, fashions products, or defines new questions in a domain in a way that is initially considered novel but that ultimately comes to be accepted in a particular cultural setting” ( Gardner, 1993 , p. 35).

But there is another level of inventiveness termed by various authors as “little-c” ( Craft, 2000 ) or “mini-c” ( Kaufman and Beghetto, 2008 ) creativity that is widespread among all populations. This would be consistent with the workplace definition of creativity offered by Amabile and her coworkers: “coming up with fresh ideas for changing products, services and processes so as to better achieve the organization's goals” ( Amabile et al. , 2005 ). Mini-c creativity is based on what Craft calls “possibility thinking” ( Craft, 2000 , pp. 3–4), as experienced when a worker suddenly has the insight to visualize a new, improved way to accomplish a task; it is represented by the “aha” moment when a student first sees two previously disparate concepts or facts in a new relationship, an example of what Arthur Koestler identified as bisociation: “perceiving a situation or event in two habitually incompatible associative contexts” ( Koestler, 1964 , p. 95).

In this essay, I maintain that mini-c creativity is not a mysterious, innate endowment of rare individuals. Instead, I argue that creative thinking is a multicomponent process, mediated through social interactions, that can be explained by reference to increasingly well-understood mental abilities such as cognitive flexibility and cognitive control that are widely distributed in the population. Moreover, I explore some of the recent research evidence (though with no effort at a comprehensive literature review) showing that these mental abilities are teachable; like other higher-order cognitive skills (HOCS), they can be enhanced by explicit instruction.

Creativity Is a Multicomponent Process

Efforts to define creativity in psychological terms go back to J. P. Guilford ( Guilford, 1950 ) and E. P. Torrance ( Torrance, 1974 ), both of whom recognized that underlying the construct were other cognitive variables such as ideational fluency, originality of ideas, and sensitivity to missing elements. Many authors since then have extended the argument that a creative act is not a singular event but a process, an interplay among several interactive cognitive and affective elements. In this view, the creative act has two phases, a generative and an exploratory or evaluative phase ( Finke et al. , 1996 ). During the generative process, the creative mind pictures a set of novel mental models as potential solutions to a problem. In the exploratory phase, we evaluate the multiple options and select the best one. Early scholars of creativity, such as J. P. Guilford, characterized the two phases as divergent thinking and convergent thinking ( Guilford, 1950 ). Guilford defined divergent thinking as the ability to produce a broad range of associations to a given stimulus or to arrive at many solutions to a problem (for overviews of the field from different perspectives, see Amabile, 1996 ; Banaji et al. , 2006 ; Sawyer, 2006 ). In neurocognitive terms, divergent thinking is referred to as associative richness ( Gabora, 2002 ; Simonton, 2004 ), which is often measured experimentally by comparing the number of words that an individual generates from memory in response to stimulus words on a word association test. In contrast, convergent thinking refers to the capacity to quickly focus on the one best solution to a problem.

The idea that there are two stages to the creative process is consistent with results from cognition research indicating that there are two distinct modes of thought, associative and analytical ( Neisser, 1963 ; Sloman, 1996 ). In the associative mode, thinking is defocused, suggestive, and intuitive, revealing remote or subtle connections between items that may be correlated, or may not, and are usually not causally related ( Burton, 2008 ). In the analytical mode, thought is focused and evaluative, more conducive to analyzing relationships of cause and effect (for a review of other cognitive aspects of creativity, see Runco, 2004 ). Science educators associate the analytical mode with the upper levels (analysis, synthesis, and evaluation) of Bloom's taxonomy (e.g., Crowe et al. , 2008 ), or with “critical thinking,” the process that underlies the “purposeful, self-regulatory judgment that drives problem-solving and decision-making” ( Quitadamo et al. , 2008 , p. 328). These modes of thinking are under cognitive control through the executive functions of the brain. The core executive functions, which are thought to underlie all planning, problem solving, and reasoning, are defined ( Blair and Razza, 2007 ) as working memory control (mentally holding and retrieving information), cognitive flexibility (considering multiple ideas and seeing different perspectives), and inhibitory control (resisting several thoughts or actions to focus on one). Readers wishing to delve further into the neuroscience of the creative process can refer to the cerebrocerebellar theory of creativity ( Vandervert et al. , 2007 ) in which these mental activities are described neurophysiologically as arising through interactions among different parts of the brain.

The main point from all of these works is that creativity is not some single hard-to-measure property or act. There is ample evidence that the creative process requires both divergent and convergent thinking and that it can be explained by reference to increasingly well-understood underlying mental abilities ( Haring-Smith, 2006 ; Kim, 2006 ; Sawyer, 2006 ; Kaufman and Sternberg, 2007 ) and cognitive processes ( Simonton, 2004 ; Diamond et al. , 2007 ; Vandervert et al. , 2007 ).

Creativity Is Widely Distributed and Occurs in a Social Context

Although it is understandable to speak of an aha moment as a creative act by the person who experiences it, authorities in the field have long recognized (e.g., Simonton, 1975 ) that creative thinking is not so much an individual trait but rather a social phenomenon involving interactions among people within their specific group or cultural settings. “Creativity isn't just a property of individuals, it is also a property of social groups” ( Sawyer, 2006 , p. 305). Indeed, Osborn introduced his brainstorming method because he was convinced that group creativity is always superior to individual creativity. He drew evidence for this conclusion from activities that demand collaborative output, for example, the improvisations of a jazz ensemble. Although each musician is individually creative during a performance, the novelty and inventiveness of each performer's playing is clearly influenced, and often enhanced, by “social and interactional processes” among the musicians ( Sawyer, 2006 , p. 120). Recently, Brophy (2006) offered evidence that for problem solving, the situation may be more nuanced. He confirmed that groups of interacting individuals were better at solving complex, multipart problems than single individuals. However, when dealing with certain kinds of single-issue problems, individual problem solvers produced a greater number of solutions than interacting groups, and those solutions were judged to be more original and useful.

Consistent with the findings of Brophy (2006) , many scholars acknowledge that creative discoveries in the real world such as solving the problems of cutting-edge science—which are usually complex and multipart—are influenced or even stimulated by social interaction among experts. The common image of the lone scientist in the laboratory experiencing a flash of creative inspiration is probably a myth from earlier days. As a case in point, the science historian Mara Beller analyzed the social processes that underlay some of the major discoveries of early twentieth-century quantum physics. Close examination of successive drafts of publications by members of the Copenhagen group revealed a remarkable degree of influence and collaboration among 10 or more colleagues, although many of these papers were published under the name of a single author ( Beller, 1999 ). Sociologists Bruno Latour and Steve Woolgar's study ( Latour and Woolgar, 1986 ) of a neuroendocrinology laboratory at the Salk Institute for Biological Studies make the related point that social interactions among the participating scientists determined to a remarkable degree what discoveries were made and how they were interpreted. In the laboratory, researchers studied the chemical structure of substances released by the brain. By analysis of the Salk scientists' verbalizations of concepts, theories, formulas, and results of their investigations, Latour and Woolgar showed that the structures and interpretations that were agreed upon, that is, the discoveries announced by the laboratory, were mediated by social interactions and power relationships among members of the laboratory group. By studying the discovery process in other fields of the natural sciences, sociologists and anthropologists have provided more cases that further illustrate how social and cultural dimensions affect scientific insights (for a thoughtful review, see Knorr Cetina, 1995 ).

In sum, when an individual experiences an aha moment that feels like a singular creative act, it may rather have resulted from a multicomponent process, under the influence of group interactions and social context. The process that led up to what may be sensed as a sudden insight will probably have included at least three diverse, but testable elements: 1) divergent thinking, including ideational fluency or cognitive flexibility, which is the cognitive executive function that underlies the ability to visualize and accept many ideas related to a problem; 2) convergent thinking or the application of inhibitory control to focus and mentally evaluate ideas; and 3) analogical thinking, the ability to understand a novel idea in terms of one that is already familiar.

LITERATURE REVIEW

What do we know about how to teach creativity.

The possibility of teaching for creative problem solving gained credence in the 1960s with the studies of Jerome Bruner, who argued that children should be encouraged to “treat a task as a problem for which one invents an answer, rather than finding one out there in a book or on the blackboard” ( Bruner, 1965 , pp. 1013–1014). Since that time, educators and psychologists have devised programs of instruction designed to promote creativity and inventiveness in virtually every student population: pre–K, elementary, high school, and college, as well as in disadvantaged students, athletes, and students in a variety of specific disciplines (for review, see Scott et al. , 2004 ). Smith (1998) identified 172 instructional approaches that have been applied at one time or another to develop divergent thinking skills.

Some of the most convincing evidence that elements of creativity can be enhanced by instruction comes from work with young children. Bodrova and Leong (2001) developed the Tools of the Mind (Tools) curriculum to improve all of the three core mental executive functions involved in creative problem solving: cognitive flexibility, working memory, and inhibitory control. In a year-long randomized study of 5-yr-olds from low-income families in 21 preschool classrooms, half of the teachers applied the districts' balanced literacy curriculum (literacy), whereas the experimenters trained the other half to teach the same academic content by using the Tools curriculum ( Diamond et al. , 2007 ). At the end of the year, when the children were tested with a battery of neurocognitive tests including a test for cognitive flexibility ( Durston et al. , 2003 ; Davidson et al. , 2006 ), those exposed to the Tools curriculum outperformed the literacy children by as much as 25% ( Diamond et al. , 2007 ). Although the Tools curriculum and literacy program were similar in academic content and in many other ways, they differed primarily in that Tools teachers spent 80% of their time explicitly reminding the children to think of alternative ways to solve a problem and building their executive function skills.

Teaching older students to be innovative also demands instruction that explicitly promotes creativity but is rigorously content-rich as well. A large body of research on the differences between novice and expert cognition indicates that creative thinking requires at least a minimal level of expertise and fluency within a knowledge domain ( Bransford et al. , 2000 ; Crawford and Brophy, 2006 ). What distinguishes experts from novices, in addition to their deeper knowledge of the subject, is their recognition of patterns in information, their ability to see relationships among disparate facts and concepts, and their capacity for organizing content into conceptual frameworks or schemata ( Bransford et al. , 2000 ; Sawyer, 2005 ).

Such expertise is often lacking in the traditional classroom. For students attempting to grapple with new subject matter, many kinds of problems that are presented in high school or college courses or that arise in the real world can be solved merely by applying newly learned algorithms or procedural knowledge. With practice, problem solving of this kind can become routine and is often considered to represent mastery of a subject, producing what Sternberg refers to as “pseudoexperts” ( Sternberg, 2003 ). But beyond such routine use of content knowledge the instructor's goal must be to produce students who have gained the HOCS needed to apply, analyze, synthesize, and evaluate knowledge ( Crowe et al. , 2008 ). The aim is to produce students who know enough about a field to grasp meaningful patterns of information, who can readily retrieve relevant knowledge from memory, and who can apply such knowledge effectively to novel problems. This condition is referred to as adaptive expertise ( Hatano and Ouro, 2003 ; Schwartz et al. , 2005 ). Instead of applying already mastered procedures, adaptive experts are able to draw on their knowledge to invent or adapt strategies for solving unique or novel problems within a knowledge domain. They are also able, ideally, to transfer conceptual frameworks and schemata from one domain to another (e.g., Schwartz et al. , 2005 ). Such flexible, innovative application of knowledge is what results in inventive or creative solutions to problems ( Crawford and Brophy, 2006 ; Crawford, 2007 ).

Promoting Creative Problem Solving in the College Classroom

In most college courses, instructors teach science primarily through lectures and textbooks that are dominated by facts and algorithmic processing rather than by concepts, principles, and evidence-based ways of thinking. This is despite ample evidence that many students gain little new knowledge from traditional lectures ( Hrepic et al. , 2007 ). Moreover, it is well documented that these methods engender passive learning rather than active engagement, boredom instead of intellectual excitement, and linear thinking rather than cognitive flexibility (e.g., Halpern and Hakel, 2003 ; Nelson, 2008 ; Perkins and Wieman, 2008 ). Cognitive flexibility, as noted, is one of the three core mental executive functions involved in creative problem solving ( Ausubel, 1963 , 2000 ). The capacity to apply ideas creatively in new contexts, referred to as the ability to “transfer” knowledge (see Mestre, 2005 ), requires that learners have opportunities to actively develop their own representations of information to convert it to a usable form. Especially when a knowledge domain is complex and fraught with ill-structured information, as in a typical introductory college biology course, instruction that emphasizes active-learning strategies is demonstrably more effective than traditional linear teaching in reducing failure rates and in promoting learning and transfer (e.g., Freeman et al. , 2007 ). Furthermore, there is already some evidence that inclusion of creativity training as part of a college curriculum can have positive effects. Hunsaker (2005) has reviewed a number of such studies. He cites work by McGregor (2001) , for example, showing that various creativity training programs including brainstorming and creative problem solving increase student scores on tests of creative-thinking abilities.

Model creativity—students develop creativity when instructors model creative thinking and inventiveness.

Repeatedly encourage idea generation—students need to be reminded to generate their own ideas and solutions in an environment free of criticism.

Cross-fertilize ideas—where possible, avoid teaching in subject-area boxes: a math box, a social studies box, etc; students' creative ideas and insights often result from learning to integrate material across subject areas.

Build self-efficacy—all students have the capacity to create and to experience the joy of having new ideas, but they must be helped to believe in their own capacity to be creative.

Constantly question assumptions—make questioning a part of the daily classroom exchange; it is more important for students to learn what questions to ask and how to ask them than to learn the answers.

Imagine other viewpoints—students broaden their perspectives by learning to reflect upon ideas and concepts from different points of view.

How Is Creativity Related to Critical Thinking and the Higher-Order Cognitive Skills?

It is not uncommon to associate creativity and ingenuity with scientific reasoning ( Sawyer, 2005 ; 2006 ). When instructors apply scientific teaching strategies ( Handelsman et al. , 2004 ; DeHaan, 2005 ; Wood, 2009 ) by using instructional methods based on learning research, according to Ebert-May and Hodder ( 2008 ), “we see students actively engaged in the thinking, creativity, rigor, and experimentation we associate with the practice of science—in much the same way we see students learn in the field and in laboratories” (p. 2). Perkins and Wieman (2008) note that “To be successful innovators in science and engineering, students must develop a deep conceptual understanding of the underlying science ideas, an ability to apply these ideas and concepts broadly in different contexts, and a vision to see their relevance and usefulness in real-world applications … An innovator is able to perceive and realize potential connections and opportunities better than others” (pp. 181–182). The results of Scott et al. (2004) suggest that nontraditional courses in science that are based on constructivist principles and that use strategies of scientific teaching to promote the HOCS and enhance content mastery and dexterity in scientific thinking ( Handelsman et al. , 2007 ; Nelson, 2008 ) also should be effective in promoting creativity and cognitive flexibility if students are explicitly guided to learn these skills.

Creativity is an essential element of problem solving ( Mumford et al. , 1991 ; Runco, 2004 ) and of critical thinking ( Abrami et al. , 2008 ). As such, it is common to think of applications of creativity such as inventiveness and ingenuity among the HOCS as defined in Bloom's taxonomy ( Crowe et al. , 2008 ). Thus, it should come as no surprise that creativity, like other elements of the HOCS, can be taught most effectively through inquiry-based instruction, informed by constructivist theory ( Ausubel, 1963 , 2000 ; Duch et al. , 2001 ; Nelson, 2008 ). In a survey of 103 instructors who taught college courses that included creativity instruction, Bull et al. (1995) asked respondents to rate the importance of various course characteristics for enhancing student creativity. Items ranking high on the list were: providing a social climate in which students feels safe, an open classroom environment that promotes tolerance for ambiguity and independence, the use of humor, metaphorical thinking, and problem defining. Many of the responses emphasized the same strategies as those advanced to promote creative problem solving (e.g., Mumford et al. , 1991 ; McFadzean, 2002 ; Treffinger and Isaksen, 2005 ) and critical thinking ( Abrami et al. , 2008 ).

In a careful meta-analysis, Scott et al. (2004) examined 70 instructional interventions designed to enhance and measure creative performance. The results were striking. Courses that stressed techniques such as critical thinking, convergent thinking, and constraint identification produced the largest positive effect sizes. More open techniques that provided less guidance in strategic approaches had less impact on the instructional outcomes. A striking finding was the effectiveness of being explicit; approaches that clearly informed students about the nature of creativity and offered clear strategies for creative thinking were most effective. Approaches such as social modeling, cooperative learning, and case-based (project-based) techniques that required the application of newly acquired knowledge were found to be positively correlated to high effect sizes. The most clear-cut result to emerge from the Scott et al. (2004) study was simply to confirm that creativity instruction can be highly successful in enhancing divergent thinking, problem solving, and imaginative performance. Most importantly, of the various cognitive processes examined, those linked to the generation of new ideas such as problem finding, conceptual combination, and idea generation showed the greatest improvement. The success of creativity instruction, the authors concluded, can be attributed to “developing and providing guidance concerning the application of requisite cognitive capacities … [and] a set of heuristics or strategies for working with already available knowledge” (p. 382).

Many of the scientific teaching practices that have been shown by research to foster content mastery and HOCS, and that are coming more widely into use, also would be consistent with promoting creativity. Wood (2009) has recently reviewed examples of such practices and how to apply them. These include relatively small modifications of the traditional lecture to engender more active learning, such as the use of concept tests and peer instruction ( Mazur, 1996 ), Just-in-Time-Teaching techniques ( Novak et al. , 1999 ), and student response systems known as “clickers” ( Knight and Wood, 2005 ; Crossgrove and Curran, 2008 ), all designed to allow the instructor to frequently and effortlessly elicit and respond to student thinking. Other strategies can transform the lecture hall into a workshop or studio classroom ( Gaffney et al. , 2008 ) where the teaching curriculum may emphasize problem-based (also known as project-based or case-based) learning strategies ( Duch et al. , 2001 ; Ebert-May and Hodder, 2008 ) or “community-based inquiry” in which students engage in research that enhances their critical-thinking skills ( Quitadamo et al. , 2008 ).

Another important approach that could readily subserve explicit creativity instruction is the use of computer-based interactive simulations, or “sims” ( Perkins and Wieman, 2008 ) to facilitate inquiry learning and effective, easy self-assessment. An example in the biological sciences would be Neurons in Action ( http://neuronsinaction.com/home/main ). In such educational environments, students gain conceptual understanding of scientific ideas through interactive engagement with materials (real or virtual), with each other, and with instructors. Following the tenets of scientific teaching, students are encouraged to pose and answer their own questions, to make sense of the materials, and to construct their own understanding. The question I pose here is whether an additional focus—guiding students to meet these challenges in a context that explicitly promotes creativity—would enhance learning and advance students' progress toward adaptive expertise?

Assessment of Creativity

To teach creativity, there must be measurable indicators to judge how much students have gained from instruction. Educational programs intended to teach creativity became popular after the Torrance Tests of Creative Thinking (TTCT) was introduced in the 1960s ( Torrance, 1974 ). But it soon became apparent that there were major problems in devising tests for creativity, both because of the difficulty of defining the construct and because of the number and complexity of elements that underlie it. Tests of intelligence and other personality characteristics on creative individuals revealed a host of related traits such as verbal fluency, metaphorical thinking, flexible decision making, tolerance of ambiguity, willingness to take risks, autonomy, divergent thinking, self-confidence, problem finding, ideational fluency, and belief in oneself as being “creative” ( Barron and Harrington, 1981 ; Tardif and Sternberg, 1988 ; Runco and Nemiro, 1994 ; Snyder et al. , 2004 ). Many of these traits have been the focus of extensive research of recent decades, but, as noted above, creativity is not defined by any one trait; there is now reason to believe that it is the interplay among the cognitive and affective processes that underlie inventiveness and the ability to find novel solutions to a problem.

Although the early creativity researchers recognized that assessing divergent thinking as a measure of creativity required tests for other underlying capacities ( Guilford, 1950 ; Torrance, 1974 ), these workers and their colleagues nonetheless believed that a high score for divergent thinking alone would correlate with real creative output. Unfortunately, no such correlation was shown ( Barron and Harrington, 1981 ). Results produced by many of the instruments initially designed to measure various aspects of creative thinking proved to be highly dependent on the test itself. A review of several hundred early studies showed that an individual's creativity score could be affected by simple test variables, for example, how the verbal pretest instructions were worded ( Barron and Harrington, 1981 , pp. 442–443). Most scholars now agree that divergent thinking, as originally defined, was not an adequate measure of creativity. The process of creative thinking requires a complex combination of elements that include cognitive flexibility, memory control, inhibitory control, and analogical thinking, enabling the mind to free-range and analogize, as well as to focus and test.

More recently, numerous psychometric measures have been developed and empirically tested (see Plucker and Renzulli, 1999 ) that allow more reliable and valid assessment of specific aspects of creativity. For example, the creativity quotient devised by Snyder et al. (2004) tests the ability of individuals to link different ideas and different categories of ideas into a novel synthesis. The Wallach–Kogan creativity test ( Wallach and Kogan, 1965 ) explores the uniqueness of ideas associated with a stimulus. For a more complete list and discussion, see the Creativity Tests website ( www.indiana.edu/∼bobweb/Handout/cretv_6.html ).

The most widely used measure of creativity is the TTCT, which has been modified four times since its original version in 1966 to take into account subsequent research. The TTCT-Verbal and the TTCT-Figural are two versions ( Torrance, 1998 ; see http://ststesting.com/2005giftttct.html ). The TTCT-Verbal consists of five tasks; the “stimulus” for each task is a picture to which the test-taker responds briefly in writing. A sample task that can be viewed from the TTCT Demonstrator website asks, “Suppose that people could transport themselves from place to place with just a wink of the eye or a twitch of the nose. What might be some things that would happen as a result? You have 3 min.” ( www.indiana.edu/∼bobweb/Handout/d3.ttct.htm ).

In the TTCT-Figural, participants are asked to construct a picture from a stimulus in the form of a partial line drawing given on the test sheet (see example below; Figure 1 ). Specific instructions are to “Add lines to the incomplete figures below to make pictures out of them. Try to tell complete stories with your pictures. Give your pictures titles. You have 3 min.” In the introductory materials, test-takers are urged to “… think of a picture or object that no one else will think of. Try to make it tell as complete and as interesting a story as you can …” ( Torrance et al. , 2008 , p. 2).

Figure 1.

Figure 1. Sample figural test item from the TTCT Demonstrator website ( www.indiana.edu/∼bobweb/Handout/d3.ttct.htm ).

How would an instructor in a biology course judge the creativity of students' responses to such an item? To assist in this task, the TTCT has scoring and norming guides ( Torrance, 1998 ; Torrance et al. , 2008 ) with numerous samples and responses representing different levels of creativity. The guides show sample evaluations based upon specific indicators such as fluency, originality, elaboration (or complexity), unusual visualization, extending or breaking boundaries, humor, and imagery. These examples are easy to use and provide a high degree of validity and generalizability to the tests. The TTCT has been more intensively researched and analyzed than any other creativity instrument, and the norming samples have longitudinal validations and high predictive validity over a wide age range. In addition to global creativity scores, the TTCT is designed to provide outcome measures in various domains and thematic areas to allow for more insightful analysis ( Kaufman and Baer, 2006 ). Kim (2006) has examined the characteristics of the TTCT, including norms, reliability, and validity, and concludes that the test is an accurate measure of creativity. When properly used, it has been shown to be fair in terms of gender, race, community status, and language background. According to Kim (2006) and other authorities in the field ( McIntyre et al. , 2003 ; Scott et al. , 2004 ), Torrance's research and the development of the TTCT have provided groundwork for the idea that creative levels can be measured and then increased through instruction and practice.

SCIENTIFIC TEACHING TO PROMOTE CREATIVITY

How could creativity instruction be integrated into scientific teaching.

Guidelines for designing specific course units that emphasize HOCS by using strategies of scientific teaching are now available from the current literature. As an example, Karen Cloud-Hansen and colleagues ( Cloud-Hansen et al. , 2008 ) describe a course titled, “Ciprofloxacin Resistance in Neisseria gonorrhoeae .” They developed this undergraduate seminar to introduce college freshmen to important concepts in biology within a real-world context and to increase their content knowledge and critical-thinking skills. The centerpiece of the unit is a case study in which teams of students are challenged to take the role of a director of a local public health clinic. One of the county commissioners overseeing the clinic is an epidemiologist who wants to know “how you plan to address the emergence of ciprofloxacin resistance in Neisseria gonorrhoeae ” (p. 304). State budget cuts limit availability of expensive antibiotics and some laboratory tests to patients. Student teams are challenged to 1) develop a plan to address the medical, economic, and political questions such a clinic director would face in dealing with ciprofloxacin-resistant N. gonorrhoeae ; 2) provide scientific data to support their conclusions; and 3) describe their clinic plan in a one- to two-page referenced written report.

Throughout the 3-wk unit, in accordance with the principles of problem-based instruction ( Duch et al. , 2001 ), course instructors encourage students to seek, interpret, and synthesize their own information to the extent possible. Students have access to a variety of instructional formats, and active-learning experiences are incorporated throughout the unit. These activities are interspersed among minilectures and give the students opportunities to apply new information to their existing base of knowledge. The active-learning activities emphasize the key concepts of the minilectures and directly confront common misconceptions about antibiotic resistance, gene expression, and evolution. Weekly classes include question/answer/discussion sessions to address student misconceptions and 20-min minilectures on such topics as antibiotic resistance, evolution, and the central dogma of molecular biology. Students gather information about antibiotic resistance in N. gonorrhoeae , epidemiology of gonorrhea, and treatment options for the disease, and each team is expected to formulate a plan to address ciprofloxacin resistance in N. gonorrhoeae .

In this project, the authors assessed student gains in terms of content knowledge regarding topics covered such as the role of evolution in antibiotic resistance, mechanisms of gene expression, and the role of oncogenes in human disease. They also measured HOCS as gains in problem solving, according to a rubric that assessed self-reported abilities to communicate ideas logically, solve difficult problems about microbiology, propose hypotheses, analyze data, and draw conclusions. Comparing the pre- and posttests, students reported significant learning of scientific content. Among the thinking skill categories, students demonstrated measurable gains in their ability to solve problems about microbiology but the unit seemed to have little impact on their more general perceived problem-solving skills ( Cloud-Hansen et al. , 2008 ).

What would such a class look like with the addition of explicit creativity-promoting approaches? Would the gains in problem-solving abilities have been greater if during the minilectures and other activities, students had been introduced explicitly to elements of creative thinking from the Sternberg and Williams (1998) list described above? Would the students have reported greater gains if their instructors had encouraged idea generation with weekly brainstorming sessions; if they had reminded students to cross-fertilize ideas by integrating material across subject areas; built self-efficacy by helping students believe in their own capacity to be creative; helped students question their own assumptions; and encouraged students to imagine other viewpoints and possibilities? Of most relevance, could the authors have been more explicit in assessing the originality of the student plans? In an experiment that required college students to develop plans of a different, but comparable, type, Osborn and Mumford (2006) created an originality rubric ( Figure 2 ) that could apply equally to assist instructors in judging student plans in any course. With such modifications, would student gains in problem-solving abilities or other HOCS have been greater? Would their plans have been measurably more imaginative?

Figure 2.

Figure 2. Originality rubric (adapted from Osburn and Mumford, 2006 , p. 183).

Answers to these questions can only be obtained when a course like that described by Cloud-Hansen et al. (2008) is taught with explicit instruction in creativity of the type I described above. But, such answers could be based upon more than subjective impressions of the course instructors. For example, students could be pretested with items from the TTCT-Verbal or TTCT-Figural like those shown. If, during minilectures and at every contact with instructors, students were repeatedly reminded and shown how to be as creative as possible, to integrate material across subject areas, to question their own assumptions and imagine other viewpoints and possibilities, would their scores on TTCT posttest items improve? Would the plans they formulated to address ciprofloxacin resistance become more imaginative?

Recall that in their meta-analysis, Scott et al. (2004) found that explicitly informing students about the nature of creativity and offering strategies for creative thinking were the most effective components of instruction. From their careful examination of 70 experimental studies, they concluded that approaches such as social modeling, cooperative learning, and case-based (project-based) techniques that required the application of newly acquired knowledge were positively correlated with high effect sizes. The study was clear in confirming that explicit creativity instruction can be successful in enhancing divergent thinking and problem solving. Would the same strategies work for courses in ecology and environmental biology, as detailed by Ebert-May and Hodder (2008) , or for a unit elaborated by Knight and Wood (2005) that applies classroom response clickers?

Finally, I return to my opening question with the fictional Dr. Dunne. Could a weekly brainstorming “invention session” included in a course like those described here serve as the site where students are introduced to concepts and strategies of creative problem solving? As frequently applied in schools of engineering ( Paulus and Nijstad, 2003 ), brainstorming provides an opportunity for the instructor to pose a problem and to ask the students to suggest as many solutions as possible in a brief period, thus enhancing ideational fluency. Here, students can be encouraged explicitly to build on the ideas of others and to think flexibly. Would brainstorming enhance students' divergent thinking or creative abilities as measured by TTCT items or an originality rubric? Many studies have demonstrated that group interactions such as brainstorming, under the right conditions, can indeed enhance creativity ( Paulus and Nijstad, 2003 ; Scott et al. , 2004 ), but there is little information from an undergraduate science classroom setting. Intellectual Ventures, a firm founded by Nathan Myhrvold, the creator of Microsoft's Research Division, has gathered groups of engineers and scientists around a table for day-long sessions to brainstorm about a prearranged topic. Here, the method seems to work. Since it was founded in 2000, Intellectual Ventures has filed hundreds of patent applications in more than 30 technology areas, applying the “invention session” strategy ( Gladwell, 2008 ). Currently, the company ranks among the top 50 worldwide in number of patent applications filed annually. Whether such a technique could be applied successfully in a college science course will only be revealed by future research.

  • Abrami P. C., Bernard R. M., Borokhovski E., Wadem A., Surkes M. A., Tamim R., Zhang D. ( 2008 ). Instructional interventions affecting critical thinking skills and dispositions: a stage 1 meta-analysis . Rev. Educ. Res 78 , 1102-1134. Google Scholar
  • Amabile T. M. ( 1996 ). Creativity in Context , Boulder, CO: Westview Press. Google Scholar
  • Amabile T. M., Barsade S. G., Mueller J. S., Staw B. M. ( 2005 ). Affect and creativity at work . Admin. Sci. Q 50 , 367-403. Google Scholar
  • Ausubel D. ( 1963 ). The Psychology of Meaningful Verbal Learning , New York: Grune and Stratton. Google Scholar
  • Ausubel B. ( 2000 ). The Acquisition and Retention of Knowledge: A Cognitive View , Boston, MA: Kluwer Academic Publishers. Google Scholar
  • Banaji S., Burn A., Buckingham D. ( 2006 ). The Rhetorics of Creativity: A Review of the Literature , accessed 29 December 2008 London: Centre for the Study of Children, Youth and Media, www.creativepartnerships.com/data/files/rhetorics-of-creativity-12.pdf . Google Scholar
  • Barron F., Harrington D. M. ( 1981 ). Creativity, intelligence and personality . Ann. Rev. Psychol 32 , 439-476. Google Scholar
  • Beller M. ( 1999 ). Quantum Dialogue: The Making of a Revolution , Chicago, IL: University of Chicago Press. Google Scholar
  • Blair C., Razza R. P. ( 2007 ). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten . Child Dev 78 , 647-663. Medline ,  Google Scholar
  • Bodrova E., Leong D. J. ( 2001 ). The Tool of the Mind: a case study of implementing the Vygotskian approach In: American Early Childhood and Primary Classrooms , Geneva, Switzerland: UNESCO International Bureau of Education. Google Scholar
  • Bransford J. D.Brown A. L.Cocking R. R. ( 2000 ). How People Learn: Brain, Mind, Experience, and School , Washington, DC: National Academies Press. Google Scholar
  • Brophy D. R. ( 2006 ). A comparison of individual and group efforts to creatively solve contrasting types of problems . Creativity Res. J 18 , 293-315. Google Scholar
  • Bruner J. ( 1965 ). The growth of mind . Am. Psychol 20 , 1007-1017. Medline ,  Google Scholar
  • Bull K. S., Montgomery D., Baloche L. ( 1995 ). Teaching creativity at the college level: a synthesis of curricular components perceived as important by instructors . Creativity Res. J 8 , 83-90. Google Scholar
  • Burton R. ( 2008 ). On Being Certain: Believing You Are Right Even When You're Not , New York: St. Martin's Press. Google Scholar
  • Cloud-Hanson K. A., Kuehner J. N., Tong L., Miller S., Handelsman J. ( 2008 ). Money, sex and drugs: a case study to teach the genetics of antibiotic resistance . CBE Life Sci. Educ 7 , 302-309. Medline ,  Google Scholar
  • Craft A. ( 2000 ). Teaching Creativity: Philosophy and Practice , New York: Routledge. Google Scholar
  • Crawford V. M. ( 2007 ). Adaptive expertise as knowledge building in science teachers' problem solving accessed 1 July 2008 Proceedings of the Second European Cognitive Science Conference Delphi, Greece http://ctl.sri.com/publications/downloads/Crawford_EuroCogSci07Proceedings.pdf . Google Scholar
  • Crawford V. M., Brophy S. ( 2006 ). Adaptive Expertise: Theory, Methods, Findings, and Emerging Issues; September 2006 In: accessed 1 July 2008 Menlo Park, CA: SRI International, http://ctl.sri.com/publications/downloads/AESymposiumReportOct06.pdf . Google Scholar
  • Crossgrove K., Curran K. L. ( 2008 ). Using clickers in nonmajors- and majors-level biology courses: student opinion, learning, and long-term retention of course material . CBE Life Sci. Educ 7 , 146-154. Link ,  Google Scholar
  • Crowe A., Dirks C., Wenderoth M. P. ( 2008 ). Biology in bloom: implementing Bloom's taxonomy to enhance student learning in biology . CBE Life Sci. Educ 7 , 368-381. Link ,  Google Scholar
  • Davidson M. C., Amso D., Anderson L. C., Diamond A. ( 2006 ). Development of cognitive control and executive functions from 4–13 years: evidence from manipulations of memory, inhibition, and task switching . Neuropsychologia 44 , 2037-2078. Medline ,  Google Scholar
  • DeHaan R. L. ( 2005 ). The impending revolution in undergraduate science education . J. Sci. Educ. Technol 14 , 253-270. Google Scholar
  • Diamond A., Barnett W. S., Thomas J., Munro S. ( 2007 ). Preschool program improves cognitive control . Science 318 , 1387-1388. Medline ,  Google Scholar
  • Duch B. J., Groh S. E., Allen D. E. ( 2001 ). The Power of Problem-based Learning , Sterling, VA: Stylus Publishers. Google Scholar
  • Durston S., Davidson M. C., Thomas K. M., Worden M. S., Tottenham N., Martinez A., Watts R., Ulug A. M., Caseya B. J. ( 2003 ). Parametric manipulation of conflict and response competition using rapid mixed-trial event-related fMRI . Neuroimage 20 , 2135-2141. Medline ,  Google Scholar
  • Ebert-May D., Hodder J. ( 2008 ). Pathways to Scientific Teaching , Sunderland, MA: Sinauer. Google Scholar
  • Finke R. A., Ward T. B., Smith S. M. ( 1996 ). Creative Cognition: Theory, Research and Applications , Boston, MA: MIT Press. Google Scholar
  • Freeman S., O'Connor E., Parks J. W., Cunningham M., Hurley D., Haak D., Dirks C., Wenderoth M. P. ( 2007 ). Prescribed active learning increases performance in introductory biology . CBE Life Sci. Educ 6 , 132-139. Link ,  Google Scholar
  • Gabora L. ( 2002 ). Hewett T.Kavanagh E. Cognitive mechanisms underlying the creative process Proceedings of the Fourth International Conference on Creativity and Cognition 2002 October 13–16 Loughborough University, United Kingdom 126-133. Google Scholar
  • Gaffney J.D.H., Richards E., Kustusch M. B., Ding L., Beichner R. ( 2008 ). Scaling up education reform . J. Coll. Sci. Teach 37 , 48-53. Google Scholar
  • Gardner H. ( 1993 ). Creating Minds: An Anatomy of Creativity Seen through the Lives of Freud, Einstein, Picasso, Stravinsky, Eliot, Graham, and Ghandi In: New York: Harper Collins. Google Scholar
  • Gladwell M. ( 2008 ). In the air; who says big ideas are rare? The New Yorker accessed 19 May 2008 www.newyorker.com/reporting/2008/05/12/080512fa_fact_gladwell . Google Scholar
  • Guilford J. P. ( 1950 ). Creativity . Am. Psychol 5 , 444-454. Medline ,  Google Scholar
  • Hake R. ( 2005 ). The physics education reform effort: a possible model for higher education . Natl. Teach. Learn. Forum 15 , 1-6. Google Scholar
  • Halpern D. E., Hakel M. D. ( 2003 ). Applying the science of learning to the university and beyond . Change 35 , 36-42. Google Scholar
  • Handelsman J. ( 2004 ). Scientific teaching . Science 304 , 521-522. Medline ,  Google Scholar
  • Handelsman J, Miller S., Pfund C. ( 2007 ). Scientific Teaching , New York: W. H. Freeman and Co. Google Scholar
  • Haring-Smith T. ( 2006 ). Creativity research review: some lessons for higher education. Association of American Colleges and Universities . Peer Rev 8 , 23-27. Google Scholar
  • Hatano G., Ouro Y. ( 2003 ). Commentary: reconceptualizing school learning using insight from expertise research . Educ. Res 32 , 26-29. Google Scholar
  • Hrepic Z., Zollman D. A., Rebello N. S. ( 2007 ). Comparing students' and experts' understanding of the content of a lecture . J. Sci. Educ. Technol 16 , 213-224. Google Scholar
  • Hunsaker S. L. ( 2005 ). Outcomes of creativity training programs . Gifted Child Q 49 , 292-298. Google Scholar
  • Kaufman J. C., Baer J. ( 2006 ). Intelligent testing with Torrance . Creativity Res. J 18 , 99-102. Google Scholar
  • Kaufman J. C., Beghetto R. A. ( 2008 , Ed. R. L. DeHaanK.M.V. Narayan , Exploring mini-C: creativity across cultures In: Education for Innovation: Implications for India, China and America , Rotterdam, The Netherlands: Sense Publishers, 165-180. Google Scholar
  • Kaufman J. C., Sternberg R. J. ( 2007 ). Creativity . Change 39 , 55-58. Google Scholar
  • Kim K. H. ( 2006 ). Can we trust creativity tests: a review of the Torrance Tests of Creative Thinking (TTCT) . Creativity Res. J 18 , 3-14. Google Scholar
  • Knight J. K., Wood W. B. ( 2005 ). Teaching more by lecturing less . Cell Biol. Educ 4 , 298-310. Link ,  Google Scholar
  • Cetina Knorr K. ( 1995 , Ed. S. JasanoffG. MarkleJ. PetersenT. Pinch , Laboratory studies: the cultural approach to the study of science In: Handbook of Science and Technology Studies , Thousand Oaks, CA: Sage Publications, 140-166. Google Scholar
  • Koestler A. ( 1964 ). The Act of Creation , New York: Macmillan. Google Scholar
  • Latour B., Woolgar S. ( 1986 ). Laboratory Life: The Construction of Scientific Facts , Princeton, NJ: Princeton University Press. Google Scholar
  • MacKinnon D. W. ( 1978 , Ed. D. W. MacKinnon , What makes a person creative? In: In Search of Human Effectiveness , New York: Universe Books, 178-186. Google Scholar
  • Martindale C. ( 1999 , Ed. R. J. Sternberg , Biological basis of creativity In: Handbook of Creativity , Cambridge, United Kingdom: Cambridge University Press, 137-152. Google Scholar
  • Mazur E. ( 1996 ). Peer Instruction: A User's Manual , Upper Saddle River, NJ: Prentice Hall. Google Scholar
  • McFadzean E. ( 2002 ). Developing and supporting creative problem-solving teams: Part 1—a conceptual model . Manage. Decis 40 , 463-475. Google Scholar
  • McGregor G. D. ( 2001 ). Creative thinking instruction for a college study skills program: a case study. . Dissert Abstr. Intl 62 , 3293A UMI No. AAT 3027933. Google Scholar
  • McIntyre F. S., Hite R. E., Rickard M. K. ( 2003 ). Individual characteristics and creativity in the marketing classroom: exploratory insights . J. Mark. Educ 25 , 143-149. Google Scholar
  • Mestre J. P. ( 2005 ). Transfer of Learning: From a Modern Multidisciplinary Perspective , Greenwich, CT: Information Age Publishing. Google Scholar
  • Mumford M. D., Mobley M. I., Uhlman C. E., Reiter-Palmon R., Doares L. M. ( 1991 ). Process analytic models of creative capacities . Creativity Res. J 4 , 91-122. Google Scholar
  • National Research Council ( 2007 ). Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future, Committee on Science, Engineering and Public Policy In: Washington, DC: National Academies Press. Google Scholar
  • Neisser U. ( 1963 ). The multiplicity of thought . Br. J. Psychol 54 , 1-14. Medline ,  Google Scholar
  • Nelson C. E. ( 2008 ). Teaching evolution (and all of biology) more effectively: strategies for engagement, critical reasoning, and confronting misconceptions Integrative and Comparative Biology Advance Access accessed 15 September 2008 http://icb.oxfordjournals.org/cgi/reprint/icn027v1.pdf . Google Scholar
  • Novak G, Gavrin A., Christian W, Patterson E. ( 1999 ). Just-in-Time Teaching: Blending Active Learning with Web Technology , San Francisco, CA: Pearson Benjamin Cummings. Google Scholar
  • Osborn A. F. ( 1948 ). Your Creative Power , New York: Scribner. Google Scholar
  • Osborn A. F. ( 1979 ). Applied Imagination , New York: Scribner. Google Scholar
  • Osburn H. K., Mumford M. D. ( 2006 ). Creativity and planning: training interventions to develop creative problem-solving skills . Creativity Res. J 18 , 173-190. Google Scholar
  • Paulus P. B., Nijstad B. A. ( 2003 ). Group Creativity: Innovation through Collaboration , New York: Oxford University Press. Google Scholar
  • Perkins K. K., Wieman C. E. ( 2008 , Ed. R. L. DeHaanK.M.V. Narayan , Innovative teaching to promote innovative thinking In: Education for Innovation: Implications for India, China and America , Rotterdam, The Netherlands: Sense Publishers, 181-210. Google Scholar
  • Plucker J. A., Renzulli J. S. ( 1999 , Ed. R. J. Sternberg , Psychometric approaches to the study of human creativity In: Handbook of Creativity , Cambridge, United Kingdom: Cambridge University Press, 35-61. Google Scholar
  • Quitadamo I. J., Faiola C. L., Johnson J. E., Kurtz M. J. ( 2008 ). Community-based inquiry improves critical thinking in general education biology . CBE Life Sci. Educ 7 , 327-337. Link ,  Google Scholar
  • Runco M. A. ( 2004 ). Creativity . Annu. Rev. Psychol 55 , 657-687. Medline ,  Google Scholar
  • Runco M. A., Nemiro J. ( 1994 ). Problem finding, creativity, and giftedness . Roeper Rev 16 , 235-241. Google Scholar
  • Sawyer R. K. ( 2005 ). Educating for Innovation Thinking Skills Creativity accessed 13 August 2008 1 41-48 www.artsci.wustl.edu/∼ksawyer/PDFs/Thinkjournal.pdf . Google Scholar
  • Sawyer R. K. ( 2006 ). Explaining Creativity: The Science of Human Innovation , New York: Oxford University Press. Google Scholar
  • Schwartz D. L., Bransford J. D., Sears D. ( 2005 , Ed. J. P. Mestre , Efficiency and innovation in transfer In: Transfer of Learning from a Modern Multidisciplinary Perspective , Greenwich, CT: Information Age Publishing, 1-51. Google Scholar
  • Scott G., Leritz L. E., Mumford M. D. ( 2004 ). The effectiveness of creativity training: a quantitative review . Creativity Res. J 16 , 361-388. Google Scholar
  • Simonton D. K. ( 1975 ). Sociocultural context of individual creativity: a transhistorical time-series analysis . J. Pers. Soc. Psychol 32 , 1119-1133. Medline ,  Google Scholar
  • Simonton D. K. ( 2004 ). Creativity in Science: Chance, Logic, Genius, and Zeitgeist , Oxford, United Kingdom: Cambridge University Press. Google Scholar
  • Sloman S. ( 1996 ). The empirical case for two systems of reasoning . Psychol. Bull 9 , 3-22. Google Scholar
  • Smith G. F. ( 1998 ). Idea generation techniques: a formulary of active ingredients . J. Creative Behav 32 , 107-134. Google Scholar
  • Snyder A., Mitchell J., Bossomaier T., Pallier G. ( 2004 ). The creativity quotient: an objective scoring of ideational fluency . Creativity Res. J 16 , 415-420. Google Scholar
  • Sternberg R. J. ( 2003 ). What is an “expert student?” . Educ. Res. 32 , 5-9. Google Scholar
  • Sternberg R., Williams W. M. ( 1998 ). Teaching for creativity: two dozen tips accessed 25 March 2008 www.cdl.org/resource-library/articles/teaching_creativity.php . Google Scholar
  • Tardif T. Z., Sternberg R. J. ( 1988 , Ed. R. J. Sternberg , What do we know about creativity? In: The Nature of Creativity , New York: Cambridge University Press, 429-440. Google Scholar
  • Torrance E. P. ( 1974 ). Norms and Technical Manual for the Torrance Tests of Creative Thinking , Bensenville, IL: Scholastic Testing Service. Google Scholar
  • Torrance E. P. ( 1998 ). The Torrance Tests of Creative Thinking Norms—Technical Manual Figural (Streamlined) Forms A and B , Bensenville, IL: Scholastic Testing Service. Google Scholar
  • Torrance E. P., Ball O. E., Safter H. T. ( 2008 ). Torrance Tests of Creative Thinking: Streamlined Scoring Guide for Figural Forms A and B , Bensenville, IL: Scholastic Testing Service. Google Scholar
  • Treffinger D. J., Isaksen S. G. ( 2005 ). Creative problem solving: the history, development, and implications for gifted education and talent development . Gifted Child Q 49 , 342-357. Google Scholar
  • Vandervert L. R., Schimpf P. H., Liu H. ( 2007 ). How working memory and the cerebellum collaborate to produce creativity and innovation . Creativity Res. J 9 , 1-18. Google Scholar
  • Wallach M. A., Kogan N. ( 1965 ). Modes of Thinking in Young Children: A Study of the Creativity-Intelligence Distinction , New York: Holt, Rinehart and Winston. Google Scholar
  • Wood W. B. ( 2009 ). Innovations in undergraduate biology teaching and why we need them . Annu. Rev. Cell Dev. Biol in press. Medline ,  Google Scholar
  • ChatGPT improves creative problem-solving performance in university students: An experimental study Computers & Education, Vol. 215
  • Are we teaching novice instructional designers to be creative? A qualitative case study 16 January 2024 | Instructional Science, Vol. 52, No. 3
  • Educators as agents of breadth-biased learning: using social reconstructionism as rationale for embracing media multitasking and enhancing teaching practices in higher education 3 April 2024 | Frontiers in Psychology, Vol. 15
  • Searching for creativity: How people search to generate new ideas 1 December 2023 | Journal of the Association for Information Science and Technology, Vol. 75, No. 4
  • Fostering creativity in low-engagement students through socratic dialogue: An experiment in an operations class The International Journal of Management Education, Vol. 22, No. 1
  • Cognitive flexibility and academic performance: Individual and cross-national patterns among adolescents in 57 countries Personality and Individual Differences, Vol. 217
  • What's in a word? Student beliefs and understanding about green chemistry 1 January 2024 | Chemistry Education Research and Practice, Vol. 25, No. 1
  • Preservice Physical Education Teachers’ Resistance to Change: The Importance of Occupational Socialization Experiences 26 October 2023 | Trends in Higher Education, Vol. 2, No. 4
  • How can we measure metacognition in creative problem-solving? Standardization of the MCPS scale Thinking Skills and Creativity, Vol. 49
  • TOWARDS ENHANCING CREATIVITY AND INNOVATION IN EDUCATION SYSTEM FOR YOUTH IN HAIL REGION 1 August 2023 | Advanced Education, Vol. 10, No. 22
  • Investigating the impact of innovation competence instruction in higher engineering education 12 June 2023 | European Journal of Engineering Education, Vol. 10
  • Regaining creativity in science: insights from conversation 17 May 2023 | Royal Society Open Science, Vol. 10, No. 5
  • How transdisciplinary integration, creativity and student motivation interact in three STEAM projects for gifted education? 29 March 2023 | Gifted Education International, Vol. 39, No. 2
  • Does creative coursework predict educational, career, and community engagement outcomes for arts alumni? 15 November 2022 | Creativity Research Journal, Vol. 35, No. 2
  • Make science disruptive again 27 March 2023 | Nature Biotechnology, Vol. 41, No. 4
  • Promoting Creativity in Undergraduate Recreation and Leisure Services Classrooms: An Overview 19 March 2021 | SCHOLE: A Journal of Leisure Studies and Recreation Education, Vol. 38, No. 1
  • A Positive Association between Working Memory Capacity and Human Creativity: A Meta-Analytic Evidence 13 January 2023 | Journal of Intelligence, Vol. 11, No. 1
  • Students Creativity Through Digital Mind Map 26 July 2023
  • Pedagogical and School Practices to Foster Key Competences and Domain-General Literacy 23 August 2023
  • Coping with Challenges and Uncertainty in Scientific Research Asia-Pacific Science Education, Vol. 8, No. 2
  • Teaching design thinking as a tool to address complex public health challenges in public health students: a case study 12 April 2022 | BMC Medical Education, Vol. 22, No. 1
  • ‘Allowing them to dream’: fostering creativity in mathematics undergraduates 26 May 2022 | Journal of Further and Higher Education, Vol. 46, No. 10
  • Interaction with metaphors enhances creative potential 1 July 2022 | Journal of Poetry Therapy, Vol. 35, No. 4
  • Creative problem solving in knowledge-rich contexts Trends in Cognitive Sciences, Vol. 26, No. 10
  • Teaching Protein–Ligand Interactions Using a Case Study on Tau in Alzheimer’s Disease 1 July 2022 | Journal of Chemical Education, Vol. 99, No. 8
  • The Effectiveness of Collaborative Learning on Critical Thinking, Creative Thinking, and Metacognitive Skill Ability: Meta-Analysis on Biological Learning 15 July 2022 | European Journal of Educational Research, Vol. volume-11-2022, No. volume-11-issue-3-july-2022
  • Student approaches to creative processes when participating in an open-ended project in science 30 June 2022 | International Journal of Science Education, Vol. 44, No. 10
  • Arts, Machines, and Creative Education
  • Perceived Learning Effectiveness and Student Satisfaction
  • A Contribution to Scientific Creativity: A Validation Study Measuring Divergent Problem Solving Ability 3 September 2021 | Creativity Research Journal, Vol. 34, No. 2
  • Problem Solving and Digital Transformation: Acquiring Skills through Pretend Play in Kindergarten 28 January 2022 | Education Sciences, Vol. 12, No. 2
  • Growing Innovation and Collaboration Through Assessment and Feedback: A Toolkit for Assessing and Developing Students’ Soft Skills in Biological Experimentation 12 May 2022
  • The Role of Creativity in Teaching Mathematics Online 1 December 2022
  • Breathing Life Into Marketing Scholarship Through Creativity Learning and Teaching
  • Mobilizing Research-Based Learning (RBL) in Higher Education
  • Trends and opportunities by fostering creativity in science and engineering: a systematic review 2 September 2021 | European Journal of Engineering Education, Vol. 46, No. 6
  • The effect of a scientific board game on improving creative problem solving skills Thinking Skills and Creativity, Vol. 41
  • Create Teaching Creativity through Training Management, Effectiveness Training, and Teacher Quality in the Covid-19 Pandemic 6 August 2021 | Journal of Ethnic and Cultural Studies, Vol. 8, No. 4
  • Creativity and technology in teaching and learning: a literature review of the uneasy space of implementation  11 January 2021 | Educational Technology Research and Development, Vol. 69, No. 4
  • Üstün Yetenekli Öğrencilerin Bilimsel Yaratıcılık ve Bilimsel Problem Çözme ile İlgili Öz Değerlendirmeleri 15 July 2021 | Yuzunci Yil Universitesi Egitim Fakultesi Dergisi
  • Cultivating creative thinking in engineering student teams: Can a computer‐mediated virtual laboratory help? 23 November 2020 | Journal of Computer Assisted Learning, Vol. 37, No. 2
  • Entrepreneurial competencies of undergraduate students: The case of universities in Nigeria The International Journal of Management Education, Vol. 19, No. 1
  • Promoting Creativity in General Education Mathematics Courses 5 August 2019 | PRIMUS, Vol. 31, No. 1
  • Methodological Considerations for Understanding Students’ Problem Solving Processes and Affective Trajectories During Game-Based Learning: A Data Fusion Approach 3 July 2021
  • The main trends in the process of building the creative potential of engineering students 18 June 2021 | E3S Web of Conferences, Vol. 274
  • Research on the Present Situation and Countermeasures of Cultivating Graduate Students’ Innovation Ability under Cooperative Innovation Environment Creative Education Studies, Vol. 09, No. 02
  • Innovation Centers and the Information Schools: The Influence of LIS Faculty Journal of Education for Library and Information Science, Vol. 61, No. 4
  • Biomimetics: teaching the tools of the trade 28 September 2020 | FEBS Open Bio, Vol. 10, No. 11
  • STEM academic teachers’ experiences of undertaking authentic assessment-led reform: a mixed method approach 21 March 2019 | Studies in Higher Education, Vol. 45, No. 9
  • Problems of forming marketing competencies in the digital economy IOP Conference Series: Materials Science and Engineering, Vol. 940, No. 1
  • Culturally Responsive Assessment of Physical Science Skills and Abilities: Development, Field Testing, Implementation, and Results 2 June 2020 | Journal of Advanced Academics, Vol. 31, No. 3
  • Culturally Responsive Assessment of Life Science Skills and Abilities: Development, Field Testing, Implementation, and Results 3 June 2020 | Journal of Advanced Academics, Vol. 31, No. 3
  • Curriculum Differentiation’s Capacity to Extend Gifted Students in Secondary Mixed-ability Science Classes 27 June 2020 | Talent, Vol. 10, No. 1
  • Student Motivation from and Resistance to Active Learning Rooted in Essential Science Practices 23 December 2017 | Research in Science Education, Vol. 50, No. 1
  • Integrating Entrepreneurship and Art to Improve Creative Problem Solving in Fisheries Education 27 February 2020 | Fisheries, Vol. 45, No. 2
  • Concepts Re-imagined: Relational Signs Beyond Definitional Rigidity 15 August 2020
  • Promoting Student Creativity and Inventiveness in Science and Engineering 24 October 2020
  • Teaching for Leadership, Innovation, and Creativity
  • Problem Çözme Becerileri Eğitim Programının Çocukların Karar Verme Becerileri Üzerindeki Etkisi 30 December 2019 | Erzincan Üniversitesi Eğitim Fakültesi Dergisi, Vol. 21, No. 3
  • Mento’s change model in teaching competency-based medical education 27 December 2019 | BMC Medical Education, Vol. 19, No. 1
  • The Effects of Individual Preparations on Group Creativity 21 January 2020
  • The Value of Creativity for Enhancing Translational Ecologies, Insights, and Discoveries 9 July 2019 | Frontiers in Psychology, Vol. 10
  • Using the International Classification of Functioning, Disability, and Health to Guide Students' Clinical Approach to Aging With Pathology Topics in Geriatric Rehabilitation, Vol. 35, No. 3
  • Impact of Brainstorming Strategy in Dealing With Knowledge Retention Skill: An Insight Into Special Learners' Needs In Saudi Arabia 1 January 2021 | MIER Journal of Educational Studies Trends & Practices
  • The potential of students’ creative disposition as a perspective to develop creative teaching and learning for senior high school biological science 12 March 2019 | Journal of Physics: Conference Series, Vol. 1157
  • Evaluating Remote Experiment from a Divergent Thinking Point of View 25 July 2018
  • Exploring Creative Education Practices and Implications: A Case study of National Chengchi University, Taiwan 4 April 2022 | Journal of Business and Economic Analysis, Vol. 02, No. 02
  • Exploring Creative Education Practices and Implications: A Case study of National Chengchi University, Taiwan 1 January 2020 | Journal of Business and Economic Analysis, Vol. 02, No. 02
  • Diverging from the Dogma: A Call to Train Creative Thinkers in Science 14 September 2018 | The Bulletin of the Ecological Society of America, Vol. 100, No. 1
  • Comparison of German and Japanese student teachers’ views on creativity in chemistry class 16 May 2018 | Asia-Pacific Science Education, Vol. 4, No. 1
  • The use of humour during a collaborative inquiry 27 August 2018 | International Journal of Science Education, Vol. 40, No. 14
  • Connecting creative coursework exposure and college student engagement across academic disciplines 29 August 2019 | Gifted and Talented International, Vol. 33, No. 1-2
  • Views of German chemistry teachers on creativity in chemistry classes and in general 1 January 2018 | Chemistry Education Research and Practice, Vol. 19, No. 3
  • Embedding Critical and Creative Thinking in Chemical Engineering Practice
  • Introducing storytelling to educational robotic activities
  • Investigating Undergraduates’ Perceptions of Science in Courses Taught Using the CREATE Strategy Journal of Microbiology & Biology Education, Vol. 19, No. 1
  • Teachers’ learning on the workshop of STS approach as a way of enhancing inventive thinking skills
  • Creativity Development Through Inquiry-Based Learning in Biomedical Sciences
  • The right tool for the right task: Structured techniques prove less effective on an ill-defined problem finding task Thinking Skills and Creativity, Vol. 26
  • The influential factors and hierarchical structure of college students’ creative capabilities—An empirical study in Taiwan Thinking Skills and Creativity, Vol. 26
  • Teacher perceptions of professional role and innovative teaching at elementary schools in Taiwan 10 November 2017 | Educational Research and Reviews, Vol. 12, No. 21
  • Evaluation of creative problem-solving abilities in undergraduate structural engineers through interdisciplinary problem-based learning 28 July 2016 | European Journal of Engineering Education, Vol. 42, No. 6
  • What Shall I Write Next? 19 September 2017
  • Inquiry-based Laboratory Activities on Drugs Analysis for High School Chemistry Learning 3 October 2017 | Journal of Physics: Conference Series, Vol. 895
  • BARRIERS TO STUDENTS’ CREATIVE EVALUATION OF UNEXPECTED EXPERIMENTAL FINDINGS 25 June 2017 | Journal of Baltic Science Education, Vol. 16, No. 3
  • Kyle J. Frantz ,
  • Melissa K. Demetrikopoulos ,
  • Shari L. Britner ,
  • Laura L. Carruth ,
  • Brian A. Williams ,
  • John L. Pecore ,
  • Robert L. DeHaan , and
  • Christopher T. Goode
  • Elizabeth Ambos, Monitoring Editor
  • A present absence: undergraduate course outlines and the development of student creativity across disciplines 3 October 2016 | Teaching in Higher Education, Vol. 22, No. 2
  • Exploring differences in creativity across academic majors for high-ability college students 16 February 2018 | Gifted and Talented International, Vol. 32, No. 1
  • Creativity in chemistry class and in general – German student teachers’ views 1 January 2017 | Chemistry Education Research and Practice, Vol. 18, No. 2
  • IMPORTANCE OF CREATIVITY IN ENTREPRENEURSHIP 1 January 2017
  • Accessing the Finest Minds
  • Science and Innovative Thinking for Technical and Organizational Development
  • Learning High School Biology in a Social Context Creative Education, Vol. 08, No. 15
  • Possibilities and limitations of integrating peer instruction into technical creativity education 6 September 2016 | Instructional Science, Vol. 44, No. 6
  • Creative Cognitive Processes in Higher Education 20 November 2014 | The Journal of Creative Behavior, Vol. 50, No. 4
  • An Evidence-Based Review of Creative Problem Solving Tools 6 April 2016 | Human Resource Development Review, Vol. 15, No. 2
  • Case-based exams for learning and assessment: Experiences in an information systems course
  • Case exams for assessing higher order learning: A comparative social media analytics usage exam
  • Beyond belief: Structured techniques prove more effective than a placebo intervention in a problem construction task Thinking Skills and Creativity, Vol. 19
  • A Belief System at the Core of Learning Science
  • Student Research Work and Modeled Situations in Order to Bridge the Gap between Basic Science Concepts and Those from Preventive and Clinical Practice. Meaningful Learning and Informed beneficience Creative Education, Vol. 07, No. 07
  • FOSTERING FIFTH GRADERS’ SCIENTIFIC CREATIVITY THROUGH PROBLEM-BASED LEARNING 25 October 2015 | Journal of Baltic Science Education, Vol. 14, No. 5
  • Scaffolding for Creative Product Possibilities in a Design-Based STEM Activity 16 November 2014 | Research in Science Education, Vol. 45, No. 5
  • Intuition and insight: two concepts that illuminate the tacit in science education 18 June 2015 | Studies in Science Education, Vol. 51, No. 2
  • Arts and crafts as adjuncts to STEM education to foster creativity in gifted and talented students 28 March 2015 | Asia Pacific Education Review, Vol. 16, No. 2
  • Initiatives Towards an Education for Creativity Procedia - Social and Behavioral Sciences, Vol. 180
  • Brian A. Couch ,
  • Tanya L. Brown ,
  • Tyler J. Schelpat ,
  • Mark J. Graham , and
  • Jennifer K. Knight
  • Michèle Shuster, Monitoring Editor
  • Kim Quillin , and
  • Stephen Thomas
  • Mary Lee Ledbetter, Monitoring Editor
  • The Design of IdeaWorks: Applying Social Learning Networks to Support Tertiary Education 21 July 2015
  • Video Games and Malevolent Creativity
  • Modelling a Laboratory for Ideas as a New Tool for Fostering Engineering Creativity Procedia Engineering, Vol. 100
  • “Development of Thinking Skills” Course: Teaching TRIZ in Academic Setting Procedia Engineering, Vol. 131
  • Leadership in the Future Experts’ Creativity Development with Scientific Research Activities 4 November 2014
  • Developing Deaf Children's Conceptual Understanding and Scientific Argumentation Skills: A Literature Review 3 January 2014 | Deafness & Education International, Vol. 16, No. 3
  • Leslie M. Stevens , and
  • Sally G. Hoskins
  • Nancy Pelaez, Monitoring Editor
  • Cortex, Vol. 51
  • A Sociotechnological Theory of Discursive Change and Entrepreneurial Capacity: Novelty and Networks SSRN Electronic Journal, Vol. 3
  • GEOverse: An Undergraduate Research Journal: Research Dissemination Within and Beyond the Curriculum 1 August 2013
  • Learning by Practice, High-Pressure Student Ateliers 2 August 2013
  • Relating Inter-Individual Differences in Verbal Creative Thinking to Cerebral Structures: An Optimal Voxel-Based Morphometry Study 5 November 2013 | PLoS ONE, Vol. 8, No. 11
  • 21st Century Biology: An Interdisciplinary Approach of Biology, Technology, Engineering and Mathematics Education Procedia - Social and Behavioral Sciences, Vol. 102
  • Reclaiming creativity in the era of impact: exploring ideas about creative research in science and engineering Studies in Higher Education, Vol. 38, No. 9
  • An Evaluation of Alternative Ways of Computing the Creativity Quotient in a Design School Sample Creativity Research Journal, Vol. 25, No. 3
  • A.-M. Hoskinson ,
  • M. D. Caballero , and
  • J. K. Knight
  • Eric Brewe, Monitoring Editor
  • Understanding, attitude and environment International Journal for Researcher Development, Vol. 4, No. 1
  • Promoting Student Creativity and Inventiveness in Science and Engineering
  • Building creative thinking in the classroom: From research to practice International Journal of Educational Research, Vol. 62
  • A Demonstration of a Mastery Goal Driven Learning Environment to Foster Creativity in Engineering Design SSRN Electronic Journal, Vol. 111
  • The development of creative cognition across adolescence: distinct trajectories for insight and divergent thinking 8 October 2012 | Developmental Science, Vol. 16, No. 1
  • A CROSS-NATIONAL STUDY OF PROSPECTIVE ELEMENTARY AND SCIENCE TEACHERS’ CREATIVITY STYLES 10 September 2012 | Journal of Baltic Science Education, Vol. 11, No. 3
  • Evaluation of fostering students' creativity in preparing aided recalls for revision courses using electronic revision and recapitulation tools 2.0 Behaviour & Information Technology, Vol. 31, No. 8
  • Scientific Creativity: The Missing Ingredient in Slovenian Science Education 15 April 2012 | European Journal of Educational Research, Vol. volume-1-2012, No. volume1-issue2.html
  • Could the ‘evolution’ from biology to life sciences prevent ‘extinction’ of the subject field? 6 March 2012 | Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie, Vol. 31, No. 1
  • Mobile innovations, executive functions, and educational developments in conflict zones: a case study from Palestine 1 October 2011 | Educational Technology Research and Development, Vol. 60, No. 1
  • Informing Pedagogy Through the Brain-Targeted Teaching Model Journal of Microbiology & Biology Education, Vol. 13, No. 1
  • Teaching Creative Science Thinking Science, Vol. 334, No. 6062
  • Sally G. Hoskins ,
  • David Lopatto , and
  • Leslie M. Stevens
  • Diane K. O'Dowd, Monitoring Editor
  • Embedding Research-Based Learning Early in the Undergraduate Geography Curriculum Journal of Geography in Higher Education, Vol. 35, No. 3
  • Jared L. Taylor ,
  • Karen M. Smith ,
  • Adrian P. van Stolk , and
  • George B. Spiegelman
  • Debra Tomanek, Monitoring Editor
  • IFAC Proceedings Volumes, Vol. 43, No. 17
  • Critical and Creative Thinking Activities for Engaged Learning in Graphics and Visualization Course
  • Creativity Development through Inquiry-Based Learning in Biomedical Sciences

Submitted: 31 December 2008 Revised: 14 May 2009 Accepted: 28 May 2009

© 2009 by The American Society for Cell Biology

IMAGES

  1. what are the steps in creative problem solving

    phenomenon that promotes a creative problem solving process

  2. Creative Problem Solving Framework

    phenomenon that promotes a creative problem solving process

  3. 5 step creative problem solving process

    phenomenon that promotes a creative problem solving process

  4. Creative Problem Solving To Be Innovative

    phenomenon that promotes a creative problem solving process

  5. Creative Problem Solving Process Stock Illustration

    phenomenon that promotes a creative problem solving process

  6. Creative Problem Solving Process

    phenomenon that promotes a creative problem solving process

VIDEO

  1. How Canned Water Became a Phenomenon

  2. Revealed! The Secret Behind the Brain Test 99% Fail Mystery #maths

  3. A story to depict -How Activity based homework shapes the personality of kids

  4. "Natural phenomenon" ShortRiddle

  5. Satisfying video Sand art Navratri rangoli designs Diwali rangoli #shorts

  6. Are you harming your brain by immediately googling solutions?

COMMENTS

  1. What Is Creative Problem-Solving & Why Is It Important?

    Creative problem-solving primarily operates in the ideate phase of design thinking but can be applied to others. This is because design thinking is an iterative process that moves between the stages as ideas are generated and pursued. This is normal and encouraged, as innovation requires exploring multiple ideas.

  2. Creative Problem Solving

    Key Points. Creative problem solving (CPS) is a way of using your creativity to develop new ideas and solutions to problems. The process is based on separating divergent and convergent thinking styles, so that you can focus your mind on creating at the first stage, and then evaluating at the second stage.

  3. 6.2 Creative Problem-Solving Process

    Step 2: Ideate. To ideate is the step of the creative problem-solving process that involves generating and detailing ideas by the entrepreneur. After collecting all information relevant to the problem, the entrepreneur lists as many causes of the problem as possible. This is the step in which the largest variety of ideas are put forth.

  4. Creative Problem Solving Process

    The simplest form of the creative problem solving process involves four steps: Clarify - define the objectives, the problem, the facts, and the opportunity to achieve. Ideate - brainstorm many possible solutions or approaches. Develop - further develop your ideas by turning them into experiments. Implement - create a plan and move ...

  5. Creative problem solving: process, techniques, examples

    7 Ways to improve your creative problem-solving skills. 1. Play brain games. It's considered that brain games are an excellent way to stimulate human brain function. They develop a lot of thinking skills that are crucial for creative problem-solving. You can solve puzzles or play math games, for example.

  6. Creative Problem-Solving

    Humans are innate creative problem-solvers. Since early humans developed the first stone tools to crack open fruit and nuts more than 2 million years ago, the application of creative thinking to solve problems has been a distinct competitive advantage for our species (Puccio 2017).Originally used to solve problems related to survival, the tendency toward the use of creative problem-solving to ...

  7. PDF Creative Problem Solving

    CPS is a comprehensive system built on our own natural thinking processes that deliberately ignites creative thinking and produces innovative solutions. Through alternating phases of divergent and convergent thinking, CPS provides a process for managing thinking and action, while avoiding premature or inappropriate judgment. It is built upon a ...

  8. Creative problem-solving

    Creative problem-solving (CPS) is the mental process of searching for an original and previously unknown solution to a problem. To qualify, the solution must be novel and reached independently. The creative problem-solving process was originally developed by Alex Osborn and Sid Parnes.Creative problem solving (CPS) is a way of using creativity to develop new ideas and solutions to problems.

  9. Creative Problem-Solving

    The creative problem-solving process Footnote 1 is a systematic approach to problem-solving that was first proposed by Alex Osborn in 1953 in his landmark book Applied Imagination.The approach went through several refinements over a period of five years. Osborn began with a seven-step model that reflected the creative process (orientation, preparation, analysis, hypothesis, incubation ...

  10. Creative Thinking Processes: Managing Innovative Efforts

    Although many variables influence people's ability to provide creative problem solutions, it is assumed the ways in which people work with or process knowledge provides the basis for successful creative problem-solving efforts. Additionally, there has been evidence bearing on the processing activities that contribute to creative problem solving.

  11. What Is Creative Problem Solving

    In various fields like business, education, science, and arts, creative problem solving is often the key to overcoming challenges and driving innovation. Each sector uses field-specific strategies to address its unique issues. For instance, in business, you might use mind mapping or brainstorming sessions.

  12. Creative problem-solving: the 4 principles of creative problem-solving

    Creative problem-solving takes imagination through to action through the mental process of searching for an innovative solution to a problem. Creative problem-solving is often most effective through teamwork and brainstorming making it fun, imaginative and collaborative. ... Let's look at our top 5 eBooks that promote and improve creative ...

  13. Creative Problem Solving: 5 Tips for Creative Problem-Solving

    Creative Problem Solving: 5 Tips for Creative Problem-Solving. Written by MasterClass. Last updated: Apr 20, 2022 • 3 min read. The creative problem-solving process is a brainstorming technique that promotes creative thinking and idea generation to find previously unknown solutions to complex problems.

  14. Creativity in problem solving to improve complex health outcomes

    Our results provide a refined depiction of the creative problem‐solving process based on empirical observations across multiple hospitals. These findings suggest that health systems seeking to promote creative problem solving could encourage the three behaviors we have documented to advance an ecological view of care processes.

  15. 3.3: Creative Problem-Solving Process

    The Steps of the Creative Problem-Solving Process. Training oneself to think like an entrepreneur means learning the steps to evaluating a challenge: clarify, ideate, develop, implement, and evaluate (Figure 3.3.1). Figure 3.3.1 3.3. 1: The process of creativity is not random; it is a specific and logical process that includes evaluation.

  16. Creative Problem-Solving Process

    Creative problem-solving is a step-by-step process designed to spark creative thinking and innovative solutions for purposeful change. It is sometimes abbreviated to "CPS". The creative problem-solving process is at the root of other contemporary creativity and innovation processes, such as innovation sprints and design sprints or design ...

  17. Developing Creative Potential: The Power of Process, People, and Place

    Abstract. Creativity is increasingly seen as a key human capability that can be deliberately developed. Correspondently, a proliferation of tools, techniques, and methods are available in the academic and popular literatures. Creative problem-solving (CPS) is one framework among these, and has a 70-year history of research and development.

  18. Team Creativity: Cognitive Processes Underlying Problem Solving

    Creative cognition—the processes underlying the generation of a creative idea—is a critical aspect of creative problem solving for both teams and individuals. Currently, the cognitive processes underlying creativity have received more attention at the individual than the team level (Shalley & Perry-Smith, 2008).

  19. Teaching Creativity and Inventive Problem Solving in Science

    Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known ...

  20. Full article: Determinants of creative thinking: the effect of task

    Creative problem solving, similar to other types of problem solving, can be conceptualised as a process of search. During problem solving, individuals will first encode the problem and generate an initial problem space consisting of concepts related to the problem, e.g., prior knowledge on solving similar problems.

  21. Creative problem solving in knowledge-rich contexts

    Highlights. Creative problem solving (CPS) relies on the reorganization of existing knowledge to serve new, problem-relevant functions. Extant creativity research, especially brain-based research, largely does not reflect the knowledge-rich contexts in which the application of previously-acquired knowledge is critical, as is frequently the case ...

  22. Identify the phenomenon that promotes a creative problem solving

    The phenomenon that promotes a creative problem-solving process and incorporates design, practice, and theory is known as Design Thinking. Design Thinking is a human-centered

  23. Solved QUESTION 1 (Short answers) 1.1. Identify the

    QUESTION 1 (Short answers) 1.1. Identify the phenomenon that promotes a creative problem-solving process and incorporate design, practice, and theory (2) 1.2. Determine the approach that promotes learning through doing instead of merely being instructed what to do. (2) 1.3. Outline the time period associated with the development of the ...