youtube logo

The Future of AI Research: 20 Thesis Ideas for Undergraduate Students in Machine Learning and Deep Learning for 2023!

A comprehensive guide for crafting an original and innovative thesis in the field of ai..

By Aarafat Islam on 2023-01-11

“The beauty of machine learning is that it can be applied to any problem you want to solve, as long as you can provide the computer with enough examples.” — Andrew Ng

This article provides a list of 20 potential thesis ideas for an undergraduate program in machine learning and deep learning in 2023. Each thesis idea includes an  introduction , which presents a brief overview of the topic and the  research objectives . The ideas provided are related to different areas of machine learning and deep learning, such as computer vision, natural language processing, robotics, finance, drug discovery, and more. The article also includes explanations, examples, and conclusions for each thesis idea, which can help guide the research and provide a clear understanding of the potential contributions and outcomes of the proposed research. The article also emphasized the importance of originality and the need for proper citation in order to avoid plagiarism.

1. Investigating the use of Generative Adversarial Networks (GANs) in medical imaging:  A deep learning approach to improve the accuracy of medical diagnoses.

Introduction:  Medical imaging is an important tool in the diagnosis and treatment of various medical conditions. However, accurately interpreting medical images can be challenging, especially for less experienced doctors. This thesis aims to explore the use of GANs in medical imaging, in order to improve the accuracy of medical diagnoses.

2. Exploring the use of deep learning in natural language generation (NLG): An analysis of the current state-of-the-art and future potential.

Introduction:  Natural language generation is an important field in natural language processing (NLP) that deals with creating human-like text automatically. Deep learning has shown promising results in NLP tasks such as machine translation, sentiment analysis, and question-answering. This thesis aims to explore the use of deep learning in NLG and analyze the current state-of-the-art models, as well as potential future developments.

3. Development and evaluation of deep reinforcement learning (RL) for robotic navigation and control.

Introduction:  Robotic navigation and control are challenging tasks, which require a high degree of intelligence and adaptability. Deep RL has shown promising results in various robotics tasks, such as robotic arm control, autonomous navigation, and manipulation. This thesis aims to develop and evaluate a deep RL-based approach for robotic navigation and control and evaluate its performance in various environments and tasks.

4. Investigating the use of deep learning for drug discovery and development.

Introduction:  Drug discovery and development is a time-consuming and expensive process, which often involves high failure rates. Deep learning has been used to improve various tasks in bioinformatics and biotechnology, such as protein structure prediction and gene expression analysis. This thesis aims to investigate the use of deep learning for drug discovery and development and examine its potential to improve the efficiency and accuracy of the drug development process.

5. Comparison of deep learning and traditional machine learning methods for anomaly detection in time series data.

Introduction:  Anomaly detection in time series data is a challenging task, which is important in various fields such as finance, healthcare, and manufacturing. Deep learning methods have been used to improve anomaly detection in time series data, while traditional machine learning methods have been widely used as well. This thesis aims to compare deep learning and traditional machine learning methods for anomaly detection in time series data and examine their respective strengths and weaknesses.

machine learning thesis topics

Photo by  Joanna Kosinska  on  Unsplash

6. Use of deep transfer learning in speech recognition and synthesis.

Introduction:  Speech recognition and synthesis are areas of natural language processing that focus on converting spoken language to text and vice versa. Transfer learning has been widely used in deep learning-based speech recognition and synthesis systems to improve their performance by reusing the features learned from other tasks. This thesis aims to investigate the use of transfer learning in speech recognition and synthesis and how it improves the performance of the system in comparison to traditional methods.

7. The use of deep learning for financial prediction.

Introduction:  Financial prediction is a challenging task that requires a high degree of intelligence and adaptability, especially in the field of stock market prediction. Deep learning has shown promising results in various financial prediction tasks, such as stock price prediction and credit risk analysis. This thesis aims to investigate the use of deep learning for financial prediction and examine its potential to improve the accuracy of financial forecasting.

8. Investigating the use of deep learning for computer vision in agriculture.

Introduction:  Computer vision has the potential to revolutionize the field of agriculture by improving crop monitoring, precision farming, and yield prediction. Deep learning has been used to improve various computer vision tasks, such as object detection, semantic segmentation, and image classification. This thesis aims to investigate the use of deep learning for computer vision in agriculture and examine its potential to improve the efficiency and accuracy of crop monitoring and precision farming.

9. Development and evaluation of deep learning models for generative design in engineering and architecture.

Introduction:  Generative design is a powerful tool in engineering and architecture that can help optimize designs and reduce human error. Deep learning has been used to improve various generative design tasks, such as design optimization and form generation. This thesis aims to develop and evaluate deep learning models for generative design in engineering and architecture and examine their potential to improve the efficiency and accuracy of the design process.

10. Investigating the use of deep learning for natural language understanding.

Introduction:  Natural language understanding is a complex task of natural language processing that involves extracting meaning from text. Deep learning has been used to improve various NLP tasks, such as machine translation, sentiment analysis, and question-answering. This thesis aims to investigate the use of deep learning for natural language understanding and examine its potential to improve the efficiency and accuracy of natural language understanding systems.

machine learning thesis topics

Photo by  UX Indonesia  on  Unsplash

11. Comparing deep learning and traditional machine learning methods for image compression.

Introduction:  Image compression is an important task in image processing and computer vision. It enables faster data transmission and storage of image files. Deep learning methods have been used to improve image compression, while traditional machine learning methods have been widely used as well. This thesis aims to compare deep learning and traditional machine learning methods for image compression and examine their respective strengths and weaknesses.

12. Using deep learning for sentiment analysis in social media.

Introduction:  Sentiment analysis in social media is an important task that can help businesses and organizations understand their customers’ opinions and feedback. Deep learning has been used to improve sentiment analysis in social media, by training models on large datasets of social media text. This thesis aims to use deep learning for sentiment analysis in social media, and evaluate its performance against traditional machine learning methods.

13. Investigating the use of deep learning for image generation.

Introduction:  Image generation is a task in computer vision that involves creating new images from scratch or modifying existing images. Deep learning has been used to improve various image generation tasks, such as super-resolution, style transfer, and face generation. This thesis aims to investigate the use of deep learning for image generation and examine its potential to improve the quality and diversity of generated images.

14. Development and evaluation of deep learning models for anomaly detection in cybersecurity.

Introduction:  Anomaly detection in cybersecurity is an important task that can help detect and prevent cyber-attacks. Deep learning has been used to improve various anomaly detection tasks, such as intrusion detection and malware detection. This thesis aims to develop and evaluate deep learning models for anomaly detection in cybersecurity and examine their potential to improve the efficiency and accuracy of cybersecurity systems.

15. Investigating the use of deep learning for natural language summarization.

Introduction:  Natural language summarization is an important task in natural language processing that involves creating a condensed version of a text that preserves its main meaning. Deep learning has been used to improve various natural language summarization tasks, such as document summarization and headline generation. This thesis aims to investigate the use of deep learning for natural language summarization and examine its potential to improve the efficiency and accuracy of natural language summarization systems.

machine learning thesis topics

Photo by  Windows  on  Unsplash

16. Development and evaluation of deep learning models for facial expression recognition.

Introduction:  Facial expression recognition is an important task in computer vision and has many practical applications, such as human-computer interaction, emotion recognition, and psychological studies. Deep learning has been used to improve facial expression recognition, by training models on large datasets of images. This thesis aims to develop and evaluate deep learning models for facial expression recognition and examine their performance against traditional machine learning methods.

17. Investigating the use of deep learning for generative models in music and audio.

Introduction:  Music and audio synthesis is an important task in audio processing, which has many practical applications, such as music generation and speech synthesis. Deep learning has been used to improve generative models for music and audio, by training models on large datasets of audio data. This thesis aims to investigate the use of deep learning for generative models in music and audio and examine its potential to improve the quality and diversity of generated audio.

18. Study the comparison of deep learning models with traditional algorithms for anomaly detection in network traffic.

Introduction:  Anomaly detection in network traffic is an important task that can help detect and prevent cyber-attacks. Deep learning models have been used for this task, and traditional methods such as clustering and rule-based systems are widely used as well. This thesis aims to compare deep learning models with traditional algorithms for anomaly detection in network traffic and analyze the trade-offs between the models in terms of accuracy and scalability.

19. Investigating the use of deep learning for improving recommender systems.

Introduction:  Recommender systems are widely used in many applications such as online shopping, music streaming, and movie streaming. Deep learning has been used to improve the performance of recommender systems, by training models on large datasets of user-item interactions. This thesis aims to investigate the use of deep learning for improving recommender systems and compare its performance with traditional content-based and collaborative filtering approaches.

20. Development and evaluation of deep learning models for multi-modal data analysis.

Introduction:  Multi-modal data analysis is the task of analyzing and understanding data from multiple sources such as text, images, and audio. Deep learning has been used to improve multi-modal data analysis, by training models on large datasets of multi-modal data. This thesis aims to develop and evaluate deep learning models for multi-modal data analysis and analyze their potential to improve performance in comparison to single-modal models.

I hope that this article has provided you with a useful guide for your thesis research in machine learning and deep learning. Remember to conduct a thorough literature review and to include proper citations in your work, as well as to be original in your research to avoid plagiarism. I wish you all the best of luck with your thesis and your research endeavors!

Continue Learning

Are we building ai systems that learned to lie to us.

DeepFakes = DeepLearning + Fake

Generative AI vs. Discriminative AI

Breaking Down the Difference Between Generative AI and Discriminative AI and How Industry LLM Giants Cohere and OpenAI are Changing the Game in Generative AI

Znote AI: The perfect sandbox for prototyping and deploying code

Is ai-generated content grounds for plagiarism, how ai is revolutionizing fraud prevention in the digital age, top 5 open-source image super-resolution projects to boost your image processing tasks.

Grad Coach

Research Topics & Ideas

Artifical Intelligence (AI) and Machine Learning (ML)

Research topics and ideas about AI and machine learning

If you’re just starting out exploring AI-related research topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research topic ideation process by providing a hearty list of research topics and ideas , including examples from past studies.

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . To develop a suitable research topic, you’ll need to identify a clear and convincing research gap , and a viable plan  to fill that gap.

If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, if you’d like hands-on help, consider our 1-on-1 coaching service .

Research topic idea mega list

AI-Related Research Topics & Ideas

Below you’ll find a list of AI and machine learning-related research topics ideas. These are intentionally broad and generic , so keep in mind that you will need to refine them a little. Nevertheless, they should inspire some ideas for your project.

  • Developing AI algorithms for early detection of chronic diseases using patient data.
  • The use of deep learning in enhancing the accuracy of weather prediction models.
  • Machine learning techniques for real-time language translation in social media platforms.
  • AI-driven approaches to improve cybersecurity in financial transactions.
  • The role of AI in optimizing supply chain logistics for e-commerce.
  • Investigating the impact of machine learning in personalized education systems.
  • The use of AI in predictive maintenance for industrial machinery.
  • Developing ethical frameworks for AI decision-making in healthcare.
  • The application of ML algorithms in autonomous vehicle navigation systems.
  • AI in agricultural technology: Optimizing crop yield predictions.
  • Machine learning techniques for enhancing image recognition in security systems.
  • AI-powered chatbots: Improving customer service efficiency in retail.
  • The impact of AI on enhancing energy efficiency in smart buildings.
  • Deep learning in drug discovery and pharmaceutical research.
  • The use of AI in detecting and combating online misinformation.
  • Machine learning models for real-time traffic prediction and management.
  • AI applications in facial recognition: Privacy and ethical considerations.
  • The effectiveness of ML in financial market prediction and analysis.
  • Developing AI tools for real-time monitoring of environmental pollution.
  • Machine learning for automated content moderation on social platforms.
  • The role of AI in enhancing the accuracy of medical diagnostics.
  • AI in space exploration: Automated data analysis and interpretation.
  • Machine learning techniques in identifying genetic markers for diseases.
  • AI-driven personal finance management tools.
  • The use of AI in developing adaptive learning technologies for disabled students.

Research topic evaluator

AI & ML Research Topic Ideas (Continued)

  • Machine learning in cybersecurity threat detection and response.
  • AI applications in virtual reality and augmented reality experiences.
  • Developing ethical AI systems for recruitment and hiring processes.
  • Machine learning for sentiment analysis in customer feedback.
  • AI in sports analytics for performance enhancement and injury prevention.
  • The role of AI in improving urban planning and smart city initiatives.
  • Machine learning models for predicting consumer behaviour trends.
  • AI and ML in artistic creation: Music, visual arts, and literature.
  • The use of AI in automated drone navigation for delivery services.
  • Developing AI algorithms for effective waste management and recycling.
  • Machine learning in seismology for earthquake prediction.
  • AI-powered tools for enhancing online privacy and data protection.
  • The application of ML in enhancing speech recognition technologies.
  • Investigating the role of AI in mental health assessment and therapy.
  • Machine learning for optimization of renewable energy systems.
  • AI in fashion: Predicting trends and personalizing customer experiences.
  • The impact of AI on legal research and case analysis.
  • Developing AI systems for real-time language interpretation for the deaf and hard of hearing.
  • Machine learning in genomic data analysis for personalized medicine.
  • AI-driven algorithms for credit scoring in microfinance.
  • The use of AI in enhancing public safety and emergency response systems.
  • Machine learning for improving water quality monitoring and management.
  • AI applications in wildlife conservation and habitat monitoring.
  • The role of AI in streamlining manufacturing processes.
  • Investigating the use of AI in enhancing the accessibility of digital content for visually impaired users.

Recent AI & ML-Related Studies

While the ideas we’ve presented above are a decent starting point for finding a research topic in AI, they are fairly generic and non-specific. So, it helps to look at actual studies in the AI and machine learning space to see how this all comes together in practice.

Below, we’ve included a selection of AI-related studies to help refine your thinking. These are actual studies,  so they can provide some useful insight as to what a research topic looks like in practice.

  • An overview of artificial intelligence in diabetic retinopathy and other ocular diseases (Sheng et al., 2022)
  • HOW DOES ARTIFICIAL INTELLIGENCE HELP ASTRONOMY? A REVIEW (Patel, 2022)
  • Editorial: Artificial Intelligence in Bioinformatics and Drug Repurposing: Methods and Applications (Zheng et al., 2022)
  • Review of Artificial Intelligence and Machine Learning Technologies: Classification, Restrictions, Opportunities, and Challenges (Mukhamediev et al., 2022)
  • Will digitization, big data, and artificial intelligence – and deep learning–based algorithm govern the practice of medicine? (Goh, 2022)
  • Flower Classifier Web App Using Ml & Flask Web Framework (Singh et al., 2022)
  • Object-based Classification of Natural Scenes Using Machine Learning Methods (Jasim & Younis, 2023)
  • Automated Training Data Construction using Measurements for High-Level Learning-Based FPGA Power Modeling (Richa et al., 2022)
  • Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare (Manickam et al., 2022)
  • Critical Review of Air Quality Prediction using Machine Learning Techniques (Sharma et al., 2022)
  • Artificial Intelligence: New Frontiers in Real–Time Inverse Scattering and Electromagnetic Imaging (Salucci et al., 2022)
  • Machine learning alternative to systems biology should not solely depend on data (Yeo & Selvarajoo, 2022)
  • Measurement-While-Drilling Based Estimation of Dynamic Penetrometer Values Using Decision Trees and Random Forests (García et al., 2022).
  • Artificial Intelligence in the Diagnosis of Oral Diseases: Applications and Pitfalls (Patil et al., 2022).
  • Automated Machine Learning on High Dimensional Big Data for Prediction Tasks (Jayanthi & Devi, 2022)
  • Breakdown of Machine Learning Algorithms (Meena & Sehrawat, 2022)
  • Technology-Enabled, Evidence-Driven, and Patient-Centered: The Way Forward for Regulating Software as a Medical Device (Carolan et al., 2021)
  • Machine Learning in Tourism (Rugge, 2022)
  • Towards a training data model for artificial intelligence in earth observation (Yue et al., 2022)
  • Classification of Music Generality using ANN, CNN and RNN-LSTM (Tripathy & Patel, 2022)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, in order for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

Topic Kickstarter: Research topics in education

can one come up with their own tppic and get a search

can one come up with their own title and get a search

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

CodeAvail

Exploring 250+ Machine Learning Research Topics

machine learning research topics

In recent years, machine learning has become super popular and grown very quickly. This happened because technology got better, and there’s a lot more data available. Because of this, we’ve seen lots of new and amazing things happen in different areas. Machine learning research is what makes all these cool things possible. In this blog, we’ll talk about machine learning research topics, why they’re important, how you can pick one, what areas are popular to study, what’s new and exciting, the tough problems, and where you can find help if you want to be a researcher.

Why Does Machine Learning Research Matter?

Table of Contents

Machine learning research is at the heart of the AI revolution. It underpins the development of intelligent systems capable of making predictions, automating tasks, and improving decision-making across industries. The importance of this research can be summarized as follows:

Advancements in Technology

The growth of machine learning research has led to the development of powerful algorithms, tools, and frameworks. Numerous industries, including healthcare, banking, autonomous cars, and natural language processing, have found use for these technology.

As researchers continue to push the boundaries of what’s possible, we can expect even more transformative technologies to emerge.

Real-world Applications

Machine learning research has brought about tangible changes in our daily lives. Voice assistants like Siri and Alexa, recommendation systems on streaming platforms, and personalized healthcare diagnostics are just a few examples of how this research impacts our world. 

By working on new research topics, scientists can further refine these applications and create new ones.

Economic and Industrial Impacts

The economic implications of machine learning research are substantial. Companies that harness the power of machine learning gain a competitive edge in the market. 

This creates a demand for skilled machine learning researchers, driving job opportunities and contributing to economic growth.

How to Choose the Machine Learning Research Topics?

Selecting the right machine learning research topics is crucial for your success as a machine learning researcher. Here’s a guide to help you make an informed decision:

  • Understanding Your Interests

Start by considering your personal interests. Machine learning is a broad field with applications in virtually every sector. By choosing a topic that aligns with your passions, you’ll stay motivated and engaged throughout your research journey.

  • Reviewing Current Trends

Stay updated on the latest trends in machine learning. Attend conferences, read research papers, and engage with the community to identify emerging research topics. Current trends often lead to exciting breakthroughs.

  • Identifying Gaps in Existing Research

Sometimes, the most promising research topics involve addressing gaps in existing knowledge. These gaps may become evident through your own experiences, discussions with peers, or in the course of your studies.

  • Collaborating with Experts

Collaboration is key in research. Working with experts in the field can help you refine your research topic and gain valuable insights. Seek mentors and collaborators who can guide you.

250+ Machine Learning Research Topics: Category-wise

Supervised learning.

  • Explainable AI for Decision Support
  • Few-shot Learning Methods
  • Time Series Forecasting with Deep Learning
  • Handling Imbalanced Datasets in Classification
  • Regression Techniques for Non-linear Data
  • Transfer Learning in Supervised Settings
  • Multi-label Classification Strategies
  • Semi-Supervised Learning Approaches
  • Novel Feature Selection Methods
  • Anomaly Detection in Supervised Scenarios
  • Federated Learning for Distributed Supervised Models
  • Ensemble Learning for Improved Accuracy
  • Automated Hyperparameter Tuning
  • Ethical Implications in Supervised Models
  • Interpretability of Deep Neural Networks.

Unsupervised Learning

  • Unsupervised Clustering of High-dimensional Data
  • Semi-Supervised Clustering Approaches
  • Density Estimation in Unsupervised Learning
  • Anomaly Detection in Unsupervised Settings
  • Transfer Learning for Unsupervised Tasks
  • Representation Learning in Unsupervised Learning
  • Outlier Detection Techniques
  • Generative Models for Data Synthesis
  • Manifold Learning in High-dimensional Spaces
  • Unsupervised Feature Selection
  • Privacy-Preserving Unsupervised Learning
  • Community Detection in Complex Networks
  • Clustering Interpretability and Visualization
  • Unsupervised Learning for Image Segmentation
  • Autoencoders for Dimensionality Reduction.

Reinforcement Learning

  • Deep Reinforcement Learning in Real-world Applications
  • Safe Reinforcement Learning for Autonomous Systems
  • Transfer Learning in Reinforcement Learning
  • Imitation Learning and Apprenticeship Learning
  • Multi-agent Reinforcement Learning
  • Explainable Reinforcement Learning Policies
  • Hierarchical Reinforcement Learning
  • Model-based Reinforcement Learning
  • Curriculum Learning in Reinforcement Learning
  • Reinforcement Learning in Robotics
  • Exploration vs. Exploitation Strategies
  • Reward Function Design and Ethical Considerations
  • Reinforcement Learning in Healthcare
  • Continuous Action Spaces in RL
  • Reinforcement Learning for Resource Management.

Natural Language Processing (NLP)

  • Multilingual and Cross-lingual NLP
  • Contextualized Word Embeddings
  • Bias Detection and Mitigation in NLP
  • Named Entity Recognition for Low-resource Languages
  • Sentiment Analysis in Social Media Text
  • Dialogue Systems for Improved Customer Service
  • Text Summarization for News Articles
  • Low-resource Machine Translation
  • Explainable NLP Models
  • Coreference Resolution in NLP
  • Question Answering in Specific Domains
  • Detecting Fake News and Misinformation
  • NLP for Healthcare: Clinical Document Understanding
  • Emotion Analysis in Text
  • Text Generation with Controlled Attributes.

Computer Vision

  • Video Action Recognition and Event Detection
  • Object Detection in Challenging Conditions (e.g., low light)
  • Explainable Computer Vision Models
  • Image Captioning for Accessibility
  • Large-scale Image Retrieval
  • Domain Adaptation in Computer Vision
  • Fine-grained Image Classification
  • Facial Expression Recognition
  • Visual Question Answering
  • Self-supervised Learning for Visual Representations
  • Weakly Supervised Object Localization
  • Human Pose Estimation in 3D
  • Scene Understanding in Autonomous Vehicles
  • Image Super-resolution
  • Gaze Estimation for Human-Computer Interaction.

Deep Learning

  • Neural Architecture Search for Efficient Models
  • Self-attention Mechanisms and Transformers
  • Interpretability in Deep Learning Models
  • Robustness of Deep Neural Networks
  • Generative Adversarial Networks (GANs) for Data Augmentation
  • Neural Style Transfer in Art and Design
  • Adversarial Attacks and Defenses
  • Neural Networks for Audio and Speech Processing
  • Explainable AI for Healthcare Diagnosis
  • Automated Machine Learning (AutoML)
  • Reinforcement Learning with Deep Neural Networks
  • Model Compression and Quantization
  • Lifelong Learning with Deep Learning Models
  • Multimodal Learning with Vision and Language
  • Federated Learning for Privacy-preserving Deep Learning.

Explainable AI

  • Visualizing Model Decision Boundaries
  • Saliency Maps and Feature Attribution
  • Rule-based Explanations for Black-box Models
  • Contrastive Explanations for Model Interpretability
  • Counterfactual Explanations and What-if Analysis
  • Human-centered AI for Explainable Healthcare
  • Ethics and Fairness in Explainable AI
  • Explanation Generation for Natural Language Processing
  • Explainable AI in Financial Risk Assessment
  • User-friendly Interfaces for Model Interpretability
  • Scalability and Efficiency in Explainable Models
  • Hybrid Models for Combined Accuracy and Explainability
  • Post-hoc vs. Intrinsic Explanations
  • Evaluation Metrics for Explanation Quality
  • Explainable AI for Autonomous Vehicles.

Transfer Learning

  • Zero-shot Learning and Few-shot Learning
  • Cross-domain Transfer Learning
  • Domain Adaptation for Improved Generalization
  • Multilingual Transfer Learning in NLP
  • Pretraining and Fine-tuning Techniques
  • Lifelong Learning and Continual Learning
  • Domain-specific Transfer Learning Applications
  • Model Distillation for Knowledge Transfer
  • Contrastive Learning for Transfer Learning
  • Self-training and Pseudo-labeling
  • Dynamic Adaption of Pretrained Models
  • Privacy-Preserving Transfer Learning
  • Unsupervised Domain Adaptation
  • Negative Transfer Avoidance in Transfer Learning.

Federated Learning

  • Secure Aggregation in Federated Learning
  • Communication-efficient Federated Learning
  • Privacy-preserving Techniques in Federated Learning
  • Federated Transfer Learning
  • Heterogeneous Federated Learning
  • Real-world Applications of Federated Learning
  • Federated Learning for Edge Devices
  • Federated Learning for Healthcare Data
  • Differential Privacy in Federated Learning
  • Byzantine-robust Federated Learning
  • Federated Learning with Non-IID Data
  • Model Selection in Federated Learning
  • Scalable Federated Learning for Large Datasets
  • Client Selection and Sampling Strategies
  • Global Model Update Synchronization in Federated Learning.

Quantum Machine Learning

  • Quantum Neural Networks and Quantum Circuit Learning
  • Quantum-enhanced Optimization for Machine Learning
  • Quantum Data Compression and Quantum Principal Component Analysis
  • Quantum Kernels and Quantum Feature Maps
  • Quantum Variational Autoencoders
  • Quantum Transfer Learning
  • Quantum-inspired Classical Algorithms for ML
  • Hybrid Quantum-Classical Models
  • Quantum Machine Learning on Near-term Quantum Devices
  • Quantum-inspired Reinforcement Learning
  • Quantum Computing for Quantum Chemistry and Drug Discovery
  • Quantum Machine Learning for Finance
  • Quantum Data Structures and Quantum Databases
  • Quantum-enhanced Cryptography in Machine Learning
  • Quantum Generative Models and Quantum GANs.

Ethical AI and Bias Mitigation

  • Fairness-aware Machine Learning Algorithms
  • Bias Detection and Mitigation in Real-world Data
  • Explainable AI for Ethical Decision Support
  • Algorithmic Accountability and Transparency
  • Privacy-preserving AI and Data Governance
  • Ethical Considerations in AI for Healthcare
  • Fairness in Recommender Systems
  • Bias and Fairness in NLP Models
  • Auditing AI Systems for Bias
  • Societal Implications of AI in Criminal Justice
  • Ethical AI Education and Training
  • Bias Mitigation in Autonomous Vehicles
  • Fair AI in Financial and Hiring Decisions
  • Case Studies in Ethical AI Failures
  • Legal and Policy Frameworks for Ethical AI.

Meta-Learning and AutoML

  • Neural Architecture Search (NAS) for Efficient Models
  • Transfer Learning in NAS
  • Reinforcement Learning for NAS
  • Multi-objective NAS
  • Automated Data Augmentation
  • Neural Architecture Optimization for Edge Devices
  • Bayesian Optimization for AutoML
  • Model Compression and Quantization in AutoML
  • AutoML for Federated Learning
  • AutoML in Healthcare Diagnostics
  • Explainable AutoML
  • Cost-sensitive Learning in AutoML
  • AutoML for Small Data
  • Human-in-the-Loop AutoML.

AI for Healthcare and Medicine

  • Disease Prediction and Early Diagnosis
  • Medical Image Analysis with Deep Learning
  • Drug Discovery and Molecular Modeling
  • Electronic Health Record Analysis
  • Predictive Analytics in Healthcare
  • Personalized Treatment Planning
  • Healthcare Fraud Detection
  • Telemedicine and Remote Patient Monitoring
  • AI in Radiology and Pathology
  • AI in Drug Repurposing
  • AI for Medical Robotics and Surgery
  • Genomic Data Analysis
  • AI-powered Mental Health Assessment
  • Explainable AI in Healthcare Decision Support
  • AI in Epidemiology and Outbreak Prediction.

AI in Finance and Investment

  • Algorithmic Trading and High-frequency Trading
  • Credit Scoring and Risk Assessment
  • Fraud Detection and Anti-money Laundering
  • Portfolio Optimization with AI
  • Financial Market Prediction
  • Sentiment Analysis in Financial News
  • Explainable AI in Financial Decision-making
  • Algorithmic Pricing and Dynamic Pricing Strategies
  • AI in Cryptocurrency and Blockchain
  • Customer Behavior Analysis in Banking
  • Explainable AI in Credit Decisioning
  • AI in Regulatory Compliance
  • Ethical AI in Financial Services
  • AI for Real Estate Investment
  • Automated Financial Reporting.

AI in Climate Change and Sustainability

  • Climate Modeling and Prediction
  • Renewable Energy Forecasting
  • Smart Grid Optimization
  • Energy Consumption Forecasting
  • Carbon Emission Reduction with AI
  • Ecosystem Monitoring and Preservation
  • Precision Agriculture with AI
  • AI for Wildlife Conservation
  • Natural Disaster Prediction and Management
  • Water Resource Management with AI
  • Sustainable Transportation and Urban Planning
  • Climate Change Mitigation Strategies with AI
  • Environmental Impact Assessment with Machine Learning
  • Eco-friendly Supply Chain Optimization
  • Ethical AI in Climate-related Decision Support.

Data Privacy and Security

  • Differential Privacy Mechanisms
  • Federated Learning for Privacy-preserving AI
  • Secure Multi-Party Computation
  • Privacy-enhancing Technologies in Machine Learning
  • Homomorphic Encryption for Machine Learning
  • Ethical Considerations in Data Privacy
  • Privacy-preserving AI in Healthcare
  • AI for Secure Authentication and Access Control
  • Blockchain and AI for Data Security
  • Explainable Privacy in Machine Learning
  • Privacy-preserving AI in Government and Public Services
  • Privacy-compliant AI for IoT and Edge Devices
  • Secure AI Models Sharing and Deployment
  • Privacy-preserving AI in Financial Transactions
  • AI in the Legal Frameworks of Data Privacy.

Global Collaboration in Research

  • International Research Partnerships and Collaboration Models
  • Multilingual and Cross-cultural AI Research
  • Addressing Global Healthcare Challenges with AI
  • Ethical Considerations in International AI Collaborations
  • Interdisciplinary AI Research in Global Challenges
  • AI Ethics and Human Rights in Global Research
  • Data Sharing and Data Access in Global AI Research
  • Cross-border Research Regulations and Compliance
  • AI Innovation Hubs and International Research Centers
  • AI Education and Training for Global Communities
  • Humanitarian AI and AI for Sustainable Development Goals
  • AI for Cultural Preservation and Heritage Protection
  • Collaboration in AI-related Global Crises
  • AI in Cross-cultural Communication and Understanding
  • Global AI for Environmental Sustainability and Conservation.

Emerging Trends and Hot Topics in Machine Learning Research

The landscape of machine learning research topics is constantly evolving. Here are some of the emerging trends and hot topics that are shaping the field:

As AI systems become more prevalent, addressing ethical concerns and mitigating bias in algorithms are critical research areas.

Interpretable and Explainable Models

Understanding why machine learning models make specific decisions is crucial for their adoption in sensitive areas, such as healthcare and finance.

Meta-learning algorithms are designed to enable machines to learn how to learn, while AutoML aims to automate the machine learning process itself.

Machine learning is revolutionizing the healthcare sector, from diagnostic tools to drug discovery and patient care.

Algorithmic trading, risk assessment, and fraud detection are just a few applications of AI in finance, creating a wealth of research opportunities.

Machine learning research is crucial in analyzing and mitigating the impacts of climate change and promoting sustainable practices.

Challenges and Future Directions

While machine learning research has made tremendous strides, it also faces several challenges:

  • Data Privacy and Security: As machine learning models require vast amounts of data, protecting individual privacy and data security are paramount concerns.
  • Scalability and Efficiency: Developing efficient algorithms that can handle increasingly large datasets and complex computations remains a challenge.
  • Ensuring Fairness and Transparency: Addressing bias in machine learning models and making their decisions transparent is essential for equitable AI systems.
  • Quantum Computing and Machine Learning: The integration of quantum computing and machine learning has the potential to revolutionize the field, but it also presents unique challenges.
  • Global Collaboration in Research: Machine learning research benefits from collaboration on a global scale. Ensuring that researchers from diverse backgrounds work together is vital for progress.

Resources for Machine Learning Researchers

If you’re looking to embark on a journey in machine learning research topics, there are various resources at your disposal:

  • Journals and Conferences

Journals such as the “Journal of Machine Learning Research” and conferences like NeurIPS and ICML provide a platform for publishing and discussing research findings.

  • Online Communities and Forums

Platforms like Stack Overflow, GitHub, and dedicated forums for machine learning provide spaces for collaboration and problem-solving.

  • Datasets and Tools

Open-source datasets and tools like TensorFlow and PyTorch simplify the research process by providing access to data and pre-built models.

  • Research Grants and Funding Opportunities

Many organizations and government agencies offer research grants and funding for machine learning projects. Seek out these opportunities to support your research.

Machine learning research is like a superhero in the world of technology. To be a part of this exciting journey, it’s important to choose the right machine learning research topics and keep up with the latest trends.

Machine learning research makes our lives better. It powers things like smart assistants and life-saving medical tools. It’s like the force driving the future of technology and society.

But, there are challenges too. We need to work together and be ethical in our research. Everyone should benefit from this technology. The future of machine learning research is incredibly bright. If you want to be a part of it, get ready for an exciting adventure. You can help create new solutions and make a big impact on the world.

Related Posts

Tips on How To Tackle A Machine Learning Project As A Beginner

Tips on How To Tackle A Machine Learning Project As A Beginner

Here in this blog, CodeAvail experts will explain to you tips on how to tackle a machine learning project as a beginner step by step…

Artificial Intelligence and Machine Learning Basics for Beginners

Artificial Intelligence and Machine Learning Basics for Beginners

Here in this blog, CodeAvail experts will explain to you Artificial Intelligence and Machine Learning basics for beginners in detail step by step. What is…

Available Master's thesis topics in machine learning

Main content.

Here we list topics that are available. You may also be interested in our list of completed Master's theses .

Learning and inference with large Bayesian networks

Most learning and inference tasks with Bayesian networks are NP-hard. Therefore, one often resorts to using different heuristics that do not give any quality guarantees.

Task: Evaluate quality of large-scale learning or inference algorithms empirically.

Advisor: Pekka Parviainen

Sum-product networks

Traditionally, probabilistic graphical models use a graph structure to represent dependencies and independencies between random variables. Sum-product networks are a relatively new type of a graphical model where the graphical structure models computations and not the relationships between variables. The benefit of this representation is that inference (computing conditional probabilities) can be done in linear time with respect to the size of the network.

Potential thesis topics in this area: a) Compare inference speed with sum-product networks and Bayesian networks. Characterize situations when one model is better than the other. b) Learning the sum-product networks is done using heuristic algorithms. What is the effect of approximation in practice?

Bayesian Bayesian networks

The naming of Bayesian networks is somewhat misleading because there is nothing Bayesian in them per se; A Bayesian network is just a representation of a joint probability distribution. One can, of course, use a Bayesian network while doing Bayesian inference. One can also learn Bayesian networks in a Bayesian way. That is, instead of finding an optimal network one computes the posterior distribution over networks.

Task: Develop algorithms for Bayesian learning of Bayesian networks (e.g., MCMC, variational inference, EM)

Large-scale (probabilistic) matrix factorization

The idea behind matrix factorization is to represent a large data matrix as a product of two or more smaller matrices.They are often used in, for example, dimensionality reduction and recommendation systems. Probabilistic matrix factorization methods can be used to quantify uncertainty in recommendations. However, large-scale (probabilistic) matrix factorization is computationally challenging.

Potential thesis topics in this area: a) Develop scalable methods for large-scale matrix factorization (non-probabilistic or probabilistic), b) Develop probabilistic methods for implicit feedback (e.g., recommmendation engine when there are no rankings but only knowledge whether a customer has bought an item)

Bayesian deep learning

Standard deep neural networks do not quantify uncertainty in predictions. On the other hand, Bayesian methods provide a principled way to handle uncertainty. Combining these approaches leads to Bayesian neural networks. The challenge is that Bayesian neural networks can be cumbersome to use and difficult to learn.

The task is to analyze Bayesian neural networks and different inference algorithms in some simple setting.

Deep learning for combinatorial problems

Deep learning is usually applied in regression or classification problems. However, there has been some recent work on using deep learning to develop heuristics for combinatorial optimization problems; see, e.g., [1] and [2].

Task: Choose a combinatorial problem (or several related problems) and develop deep learning methods to solve them.

References: [1] Vinyals, Fortunato and Jaitly: Pointer networks. NIPS 2015. [2] Dai, Khalil, Zhang, Dilkina and Song: Learning Combinatorial Optimization Algorithms over Graphs. NIPS 2017.

Advisors: Pekka Parviainen, Ahmad Hemmati

Estimating the number of modes of an unknown function

Mode seeking considers estimating the number of local maxima of a function f. Sometimes one can find modes by, e.g., looking for points where the derivative of the function is zero. However, often the function is unknown and we have only access to some (possibly noisy) values of the function. 

In topological data analysis,  we can analyze topological structures using persistent homologies. For 1-dimensional signals, this can translate into looking at the birth/death persistence diagram, i.e. the birth and death of connected topological components as we expand the space around each point where we have observed our function. These observations turn out to be closely related to the modes (local maxima) of the function. A recent paper [1] proposed an efficient method for mode seeking.

In this project, the task is to extend the ideas from [1] to get a probabilistic estimate on the number of modes. To this end, one has to use probabilistic methods such as Gaussian processes.

[1] U. Bauer, A. Munk, H. Sieling, and M. Wardetzky. Persistence barcodes versus Kolmogorov signatures: Detecting modes of one-dimensional signals. Foundations of computational mathematics17:1 - 33, 2017.

Advisors:  Pekka Parviainen ,  Nello Blaser

Causal Abstraction Learning

We naturally make sense of the world around us by working out causal relationships between objects and by representing in our minds these objects with different degrees of approximation and detail. Both processes are essential to our understanding of reality, and likely to be fundamental for developing artificial intelligence. The first process may be expressed using the formalism of structural causal models, while the second can be grounded in the theory of causal abstraction.        

This project will consider the problem of learning an abstraction between two given structural causal models. The primary goal will be the development of efficient algorithms able to learn a meaningful abstraction between the given causal models.

Advisor: Fabio Massimo Zennaro

Causal Bandits

"Multi-armed bandit" is an informal name for slot machines, and the formal name of a large class of problems where an agent has to choose an action among a range of possibilities without knowing the ensuing rewards. Multi-armed bandit problems are one of the most essential reinforcement learning problems where an agent is directly faced with an exploitation-exploration trade-off.

This project will consider a class of multi-armed bandits where an agent, upon taking an action, interacts with a causal system. The primary goal will be the development of learning strategies that takes advantage of the underlying causal system in order to learn optimal policies in a shortest amount of time.

Causal Modelling for Battery Manufacturing

Lithium-ion batteries are poised to be one of the most important sources of energy in the near future. Yet, the process of manufacturing these batteries is very hard to model and control. Optimizing the different phases of production to maximize the lifetime of the batteries is a non-trivial challenge since physical models are limited in scope and collecting experimental data is extremely expensive and time-consuming.        

This project will consider the problem of aggregating and analyzing data regarding a few stages in the process of battery manufacturing. The primary goal will be the development of algorithms for transporting and integrating data collected in different contexts, as well as the use of explainable algorithms to interpret them.

Reinforcement Learning for Computer Security

The field of computer security presents a wide variety of challenging problems for artificial intelligence and autonomous agents. Guaranteeing the security of a system against attacks and penetrations by malicious hackers has always been a central concern of this field, and machine learning could now offer a substantial contribution. Security capture-the-flag simulations are particularly well-suited as a testbed for the application and development of reinforcement learning algorithms.

This project will consider the use of reinforcement learning for the preventive purpose of testing systems and discovering vulnerabilities before they can be exploited. The primary goal will be the modelling of capture-the-flag challenges of interest and the development of reinforcement learning algorithms that can solve them.

Approaches to AI Safety

The world and the Internet are more and more populated by artificial autonomous agents carrying out tasks on our behalf. Many of these agents are provided with an objective and they learn their behaviour trying to achieve their objective as best as they can. However, this approach can not guarantee that an agent, while learning its behaviour, will not undertake actions that may have unforeseen and undesirable effects. Research in AI safety tries to design autonomous agent that will behave in a predictable and safe way. 

This project will consider specific problems and novel solution in the domain of AI safety and reinforcement learning. The primary goal will be the development of innovative algorithms and their implementation withing established frameworks.

Reinforcement Learning for Super-modelling

Super-modelling [1] is a technique designed for combining together complex dynamical models: pre-trained models are aggregated with messages and information being exchanged in order synchronize the behavior  of the different modles and produce more accurate and reliable predictions. Super-models are used, for instance, in weather or climate science, where pre-existing models are ensembled together and their states dynamically aggregated to generate more realistic simulations. 

This project will consider how reinforcement learning algorithms may be used to solve the coordination problem among the individual models forming a super-model. The primary goal will be the formulation of the super-modelling problem within the reinforcement learning framework and the study of custom RL algorithms to improve the overall performance of super-models.

[1] Schevenhoven, Francine, et al. "Supermodeling: improving predictions with an ensemble of interacting models." Bulletin of the American Meteorological Society 104.9 (2023): E1670-E1686.

Advisor: Fabio Massimo Zennaro ,  Francine Janneke Schevenhoven

The Topology of Flight Paths

Air traffic data tells us the position, direction, and speed of an aircraft at a given time. In other words, if we restrict our focus to a single aircraft, we are looking at a multivariate time-series. We can visualize the flight path as a curve above earth's surface quite geometrically. Topological data analysis (TDA) provides different methods for analysing the shape of data. Consequently, TDA may help us to extract meaningful features from the air traffic data. Although the typical flight path shapes may not be particularly intriguing, we can attempt to identify more intriguing patterns or “abnormal” manoeuvres, such as aborted landings, go-arounds, or diverts.

Advisor:  Odin Hoff Gardå , Nello Blaser

Automatic hyperparameter selection for isomap

Isomap is a non-linear dimensionality reduction method with two free hyperparameters (number of nearest neighbors and neighborhood radius). Different hyperparameters result in dramatically different embeddings. Previous methods for selecting hyperparameters focused on choosing one optimal hyperparameter. In this project, you will explore the use of persistent homology to find parameter ranges that result in stable embeddings. The project has theoretic and computational aspects.

Advisor: Nello Blaser

Validate persistent homology

Persistent homology is a generalization of hierarchical clustering to find more structure than just the clusters. Traditionally, hierarchical clustering has been evaluated using resampling methods and assessing stability properties. In this project you will generalize these resampling methods to develop novel stability properties that can be used to assess persistent homology. This project has theoretic and computational aspects.

Topological Ancombs quartet

This topic is based on the classical Ancombs quartet and families of point sets with identical 1D persistence ( https://arxiv.org/abs/2202.00577 ). The goal is to generate more interesting datasets using the simulated annealing methods presented in ( http://library.usc.edu.ph/ACM/CHI%202017/1proc/p1290.pdf ). This project is mostly computational.

Persistent homology vectorization with cycle location

There are many methods of vectorizing persistence diagrams, such as persistence landscapes, persistence images, PersLay and statistical summaries. Recently we have designed algorithms to in some cases efficiently detect the location of persistence cycles. In this project, you will vectorize not just the persistence diagram, but additional information such as the location of these cycles. This project is mostly computational with some theoretic aspects.

Divisive covers

Divisive covers are a divisive technique for generating filtered simplicial complexes. They original used a naive way of dividing data into a cover. In this project, you will explore different methods of dividing space, based on principle component analysis, support vector machines and k-means clustering. In addition, you will explore methods of using divisive covers for classification. This project will be mostly computational.

Learning Acquisition Functions for Cost-aware Bayesian Optimization

This is a follow-up project of an earlier Master thesis that developed a novel method for learning Acquisition Functions in Bayesian Optimization through the use of Reinforcement Learning. The goal of this project is to further generalize this method (more general input, learned cost-functions) and apply it to hyperparameter optimization for neural networks.

Advisors: Nello Blaser , Audun Ljone Henriksen

Stable updates

This is a follow-up project of an earlier Master thesis that introduced and studied empirical stability in the context of tree-based models. The goal of this project is to develop stable update methods for deep learning models. You will design sevaral stable methods and empirically compare them (in terms of loss and stability) with a baseline and with one another.

Advisors:  Morten Blørstad , Nello Blaser

Multimodality in Bayesian neural network ensembles

One method to assess uncertainty in neural network predictions is to use dropout or noise generators at prediction time and run every prediction many times. This leads to a distribution of predictions. Informatively summarizing such probability distributions is a non-trivial task and the commonly used means and standard deviations result in the loss of crucial information, especially in the case of multimodal distributions with distinct likely outcomes. In this project, you will analyze such multimodal distributions with mixture models and develop ways to exploit such multimodality to improve training. This project can have theoretical, computational and applied aspects.

Learning a hierarchical metric

Often, labels have defined relationships to each other, for instance in a hierarchical taxonomy. E.g. ImageNet labels are derived from the WordNet graph, and biological species are taxonomically related, and can have similarities depending on life stage, sex, or other properties.

ArcFace is an alternative loss function that aims for an embedding that is more generally useful than softmax. It is commonly used in metric learning/few shot learning cases.

Here, we will develop a metric learning method that learns from data with hierarchical labels. Using multiple ArcFace heads, we will simultaneously learn to place representations to optimize the leaf label as well as intermediate labels on the path from leaf to root of the label tree. Using taxonomically classified plankton image data, we will measure performance as a function of ArcFace parameters (sharpness/temperature and margins -- class-wise or level-wise), and compare the results to existing methods.

Advisor: Ketil Malde ( [email protected] )

Self-supervised object detection in video

One challenge with learning object detection is that in many scenes that stretch off into the distance, annotating small, far-off, or blurred objects is difficult. It is therefore desirable to learn from incompletely annotated scenes, and one-shot object detectors may suffer from incompletely annotated training data.

To address this, we will use a region-propsal algorithm (e.g. SelectiveSearch) to extract potential crops from each frame. Classification will be based on two approaches: a) training based on annotated fish vs random similarly-sized crops without annotations, and b) using a self-supervised method to build a representation for crops, and building a classifier for the extracted regions. The method will be evaluated against one-shot detectors and other training regimes.

If successful, the method will be applied to fish detection and tracking in videos from baited and unbaited underwater traps, and used to estimate abundance of various fish species.

See also: Benettino (2016): https://link.springer.com/chapter/10.1007/978-3-319-48881-3_56

Representation learning for object detection

While traditional classifiers work well with data that is labeled with disjoint classes and reasonably balanced class abundances, reality is often less clean. An alternative is to learn a vectors space embedding that reflects semantic relationships between objects, and deriving classes from this representation. This is especially useful for few-shot classification (ie. very few examples in the training data).

The task here is to extend a modern object detector (e.g. Yolo v8) to output an embedding of the identified object. Instead of a softmax classifier, we can learn the embedding either in a supervised manner (using annotations on frames) by attaching an ArcFace or other supervised metric learning head. Alternatively, the representation can be learned from tracked detections over time using e.g. a contrastive loss function to keep the representation for an object (approximately) constant over time. The performance of the resulting object detector will be measured on underwater videos, targeting species detection and/or indiviual recognition (re-ID).

Time-domain object detection

Object detectors for video are normally trained on still frames, but it is evident (from human experience) that using time domain information is more effective. I.e., it can be hard to identify far-off or occluded objects in still images, but movement in time often reveals them.

Here we will extend a state of the art object detector (e.g. yolo v8) with time domain data. Instead of using a single frame as input, the model will be modified to take a set of frames surrounding the annotated frame as input. Performance will be compared to using single-frame detection.

Large-scale visualization of acoustic data

The Institute of Marine Research has decades of acoustic data collected in various surveys. These data are in the process of being converted to data formats that can be processed and analyzed more easily using packages like Xarray and Dask.

The objective is to make these data more accessible to regular users by providing a visual front end. The user should be able to quickly zoom in and out, perform selection, export subsets, apply various filters and classifiers, and overlay annotations and other relevant auxiliary data.

Learning acoustic target classification from simulation

Broadband echosounders emit a complex signal that spans a large frequency band. Different targets will reflect, absorb, and generate resonance at different amplitudes and frequencies, and it is therefore possible to classify targets at much higher resolution and accuracy than before. Due to the complexity of the received signals, deriving effective profiles that can be used to identify targets is difficult.

Here we will use simulated frequency spectra from geometric objects with various shapes, orientation, and other properties. We will train ML models to estimate (recover) the geometric and material properties of objects based on these spectra. The resulting model will be applied to read broadband data, and compared to traditional classification methods.

Online learning in real-time systems

Build a model for the drilling process by using the Virtual simulator OpenLab ( https://openlab.app/ ) for real-time data generation and online learning techniques. The student will also do a short survey of existing online learning techniques and learn how to cope with errors and delays in the data.

Advisor: Rodica Mihai

Building a finite state automaton for the drilling process by using queries and counterexamples

Datasets will be generated by using the Virtual simulator OpenLab ( https://openlab.app/ ). The student will study the datasets and decide upon a good setting to extract a finite state automaton for the drilling process. The student will also do a short survey of existing techniques for extracting finite state automata from process data. We present a novel algorithm that uses exact learning and abstraction to extract a deterministic finite automaton describing the state dynamics of a given trained RNN. We do this using Angluin's L*algorithm as a learner and the trained RNN as an oracle. Our technique efficiently extracts accurate automata from trained RNNs, even when the state vectors are large and require fine differentiation.arxiv.org

Scaling Laws for Language Models in Generative AI

Large Language Models (LLM) power today's most prominent language technologies in Generative AI like ChatGPT, which, in turn, are changing the way that people access information and solve tasks of many kinds.

A recent interest on scaling laws for LLMs has shown trends on understanding how well they perform in terms of factors like the how much training data is used, how powerful the models are, or how much computational cost is allocated. (See, for example, Kaplan et al. - "Scaling Laws for Neural Language Models”, 2020.)

In this project, the task will consider to study scaling laws for different language models and with respect with one or multiple modeling factors.

Advisor: Dario Garigliotti

Applications of causal inference methods to omics data

Many hard problems in machine learning are directly linked to causality [1]. The graphical causal inference framework developed by Judea Pearl can be traced back to pioneering work by Sewall Wright on path analysis in genetics and has inspired research in artificial intelligence (AI) [1].

The Michoel group has developed the open-source tool Findr [2] which provides efficient implementations of mediation and instrumental variable methods for applications to large sets of omics data (genomics, transcriptomics, etc.). Findr works well on a recent data set for yeast [3].

We encourage students to explore promising connections between the fiels of causal inference and machine learning. Feel free to contact us to discuss projects related to causal inference. Possible topics include: a) improving methods based on structural causal models, b) evaluating causal inference methods on data for model organisms, c) comparing methods based on causal models and neural network approaches.

References:

1. Schölkopf B, Causality for Machine Learning, arXiv (2019):  https://arxiv.org/abs/1911.10500

2. Wang L and Michoel T. Efficient and accurate causal inference with hidden confounders from genome-transcriptome variation data. PLoS Computational Biology 13:e1005703 (2017).  https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005703

3. Ludl A and and Michoel T. Comparison between instrumental variable and mediation-based methods for reconstructing causal gene networks in yeast. arXiv:2010.07417  https://arxiv.org/abs/2010.07417

Advisors: Adriaan Ludl ,  Tom Michoel

Space-Time Linkage of Fish Distribution to Environmental Conditions

Conditions in the marine environment, such as, temperature and currents, influence the spatial distribution and migration patterns of marine species. Hence, understanding the link between environmental factors and fish behavior is crucial in predicting, e.g., how fish populations may respond to climate change.   Deriving this link is challenging because it requires analysis of two types of datasets (i) large environmental (currents, temperature) datasets that vary in space and time, and (ii) sparse and sporadic spatial observations of fish populations.

Project goal   

The primary goal of the project is to develop a methodology that helps predict how spatial distribution of two fish stocks (capelin and mackerel) change in response to variability in the physical marine environment (ocean currents and temperature).  The information can also be used to optimize data collection by minimizing time spent in spatial sampling of the populations.

The project will focus on the use of machine learning and/or causal inference algorithms.  As a first step, we use synthetic (fish and environmental) data from analytic models that couple the two data sources.  Because the ‘truth’ is known, we can judge the efficiency and error margins of the methodologies. We then apply the methodologies to real world (empirical) observations.

Advisors:  Tom Michoel , Sam Subbey . 

Towards precision medicine for cancer patient stratification

On average, a drug or a treatment is effective in only about half of patients who take it. This means patients need to try several until they find one that is effective at the cost of side effects associated with every treatment. The ultimate goal of precision medicine is to provide a treatment best suited for every individual. Sequencing technologies have now made genomics data available in abundance to be used towards this goal.

In this project we will specifically focus on cancer. Most cancer patients get a particular treatment based on the cancer type and the stage, though different individuals will react differently to a treatment. It is now well established that genetic mutations cause cancer growth and spreading and importantly, these mutations are different in individual patients. The aim of this project is use genomic data allow to better stratification of cancer patients, to predict the treatment most likely to work. Specifically, the project will use machine learning approach to integrate genomic data and build a classifier for stratification of cancer patients.

Advisor: Anagha Joshi

Unraveling gene regulation from single cell data

Multi-cellularity is achieved by precise control of gene expression during development and differentiation and aberrations of this process leads to disease. A key regulatory process in gene regulation is at the transcriptional level where epigenetic and transcriptional regulators control the spatial and temporal expression of the target genes in response to environmental, developmental, and physiological cues obtained from a signalling cascade. The rapid advances in sequencing technology has now made it feasible to study this process by understanding the genomewide patterns of diverse epigenetic and transcription factors as well as at a single cell level.

Single cell RNA sequencing is highly important, particularly in cancer as it allows exploration of heterogenous tumor sample, obstructing therapeutic targeting which leads to poor survival. Despite huge clinical relevance and potential, analysis of single cell RNA-seq data is challenging. In this project, we will develop strategies to infer gene regulatory networks using network inference approaches (both supervised and un-supervised). It will be primarily tested on the single cell datasets in the context of cancer.

Developing a Stress Granule Classifier

To carry out the multitude of functions 'expected' from a human cell, the cell employs a strategy of division of labour, whereby sub-cellular organelles carry out distinct functions. Thus we traditionally understand organelles as distinct units defined both functionally and physically with a distinct shape and size range. More recently a new class of organelles have been discovered that are assembled and dissolved on demand and are composed of liquid droplets or 'granules'. Granules show many properties characteristic of liquids, such as flow and wetting, but they can also assume many shapes and indeed also fluctuate in shape. One such liquid organelle is a stress granule (SG). 

Stress granules are pro-survival organelles that assemble in response to cellular stress and important in cancer and neurodegenerative diseases like Alzheimer's. They are liquid or gel-like and can assume varying sizes and shapes depending on their cellular composition. 

In a given experiment we are able to image the entire cell over a time series of 1000 frames; from which we extract a rough estimation of the size and shape of each granule. Our current method is susceptible to noise and a granule may be falsely rejected if the boundary is drawn poorly in a small majority of frames. Ideally, we would also like to identify potentially interesting features, such as voids, in the accepted granules.

We are interested in applying a machine learning approach to develop a descriptor for a 'classic' granule and furthermore classify them into different functional groups based on disease status of the cell. This method would be applied across thousands of granules imaged from control and disease cells. We are a multi-disciplinary group consisting of biologists, computational scientists and physicists. 

Advisors: Sushma Grellscheid , Carl Jones

Machine Learning based Hyperheuristic algorithm

Develop a Machine Learning based Hyper-heuristic algorithm to solve a pickup and delivery problem. A hyper-heuristic is a heuristics that choose heuristics automatically. Hyper-heuristic seeks to automate the process of selecting, combining, generating or adapting several simpler heuristics to efficiently solve computational search problems [Handbook of Metaheuristics]. There might be multiple heuristics for solving a problem. Heuristics have their own strength and weakness. In this project, we want to use machine-learning techniques to learn the strength and weakness of each heuristic while we are using them in an iterative search for finding high quality solutions and then use them intelligently for the rest of the search. Once a new information is gathered during the search the hyper-heuristic algorithm automatically adjusts the heuristics.

Advisor: Ahmad Hemmati

Machine learning for solving satisfiability problems and applications in cryptanalysis

Advisor: Igor Semaev

Hybrid modeling approaches for well drilling with Sintef

Several topics are available.

"Flow models" are first-principles models simulating the flow, temperature and pressure in a well being drilled. Our project is exploring "hybrid approaches" where these models are combined with machine learning models that either learn from time series data from flow model runs or from real-world measurements during drilling. The goal is to better detect drilling problems such as hole cleaning, make more accurate predictions and correctly learn from and interpret real-word data.

The "surrogate model" refers to  a ML model which learns to mimic the flow model by learning from the model inputs and outputs. Use cases for surrogate models include model predictions where speed is favoured over accuracy and exploration of parameter space.

Surrogate models with active Learning

While it is possible to produce a nearly unlimited amount of training data by running the flow model, the surrogate model may still perform poorly if it lacks training data in the part of the parameter space it operates in or if it "forgets" areas of the parameter space by being fed too much data from a narrow range of parameters.

The goal of this thesis is to build a surrogate model (with any architecture) for some restricted parameter range and implement an active learning approach where the ML requests more model runs from the flow model in the parts of the parameter space where it is needed the most. The end result should be a surrogate model that is quick and performs acceptably well over the whole defined parameter range.

Surrogate models trained via adversarial learning

How best to train surrogate models from runs of the flow model is an open question. This master thesis would use the adversarial learning approach to build a surrogate model which to its "adversary" becomes indistinguishable from the output of an actual flow model run.

GPU-based Surrogate models for parameter search

While CPU speed largely stalled 20 years ago in terms of working frequency on single cores, multi-core CPUs and especially GPUs took off and delivered increases in computational power by parallelizing computations.

Modern machine learning such as deep learning takes advantage this boom in computing power by running on GPUs.

The SINTEF flow models in contrast, are software programs that runs on a CPU and does not happen to utilize multi-core CPU functionality. The model runs advance time-step by time-step and each time step relies on the results from the previous time step. The flow models are therefore fundamentally sequential and not well suited to massive parallelization.

It is however of interest to run different model runs in parallel, to explore parameter spaces. The use cases for this includes model calibration, problem detection and hypothesis generation and testing.

The task of this thesis is to implement an ML-based surrogate model in such a way that many surrogate model outputs can be produced at the same time using a single GPU. This will likely entail some trade off with model size and maybe some coding tricks.

Uncertainty estimates of hybrid predictions (Lots of room for creativity, might need to steer it more, needs good background literature)

When using predictions from a ML model trained on time series data, it is useful to know if it's accurate or should be trusted. The student is challenged to develop hybrid approaches that incorporates estimates of uncertainty. Components could include reporting variance from ML ensembles trained on a diversity of time series data, implementation of conformal predictions, analysis of training data parameter ranges vs current input, etc. The output should be a "traffic light signal" roughly indicating the accuracy of the predictions.

Transfer learning approaches

We're assuming an ML model is to be used for time series prediction

It is possible to train an ML on a wide range of scenarios in the flow models, but we expect that to perform well, the model also needs to see model runs representative of the type of well and drilling operation it will be used in. In this thesis the student implements a transfer learning approach, where the model is trained on general model runs and fine-tuned on a most representative data set.

(Bonus1: implementing one-shot learning, Bonus2: Using real-world data in the fine-tuning stage)

ML capable of reframing situations

When a human oversees an operation like well drilling, she has a mental model of the situation and new data such as pressure readings from the well is interpreted in light of this model. This is referred to as "framing" and is the normal mode of work. However, when a problem occurs, it becomes harder to reconcile the data with the mental model. The human then goes into "reframing", building a new mental model that includes the ongoing problem. This can be seen as a process of hypothesis generation and testing.

A computer model however, lacks re-framing. A flow model will keep making predictions under the assumption of no problems and a separate alarm system will use the deviation between the model predictions and reality to raise an alarm. This is in a sense how all alarm systems work, but it means that the human must discard the computer model as a tool at the same time as she's handling a crisis.

The student is given access to a flow model and a surrogate model which can learn from model runs both with and without hole cleaning and is challenged to develop a hybrid approach where the ML+flow model continuously performs hypothesis generation and testing and is able to "switch" into predictions of  a hole cleaning problem and different remediations of this.

Advisor: Philippe Nivlet at Sintef together with advisor from UiB

Explainable AI at Equinor

In the project Machine Teaching for XAI (see  https://xai.w.uib.no ) a master thesis in collaboration between UiB and Equinor.

Advisor: One of Pekka Parviainen/Jan Arne Telle/Emmanuel Arrighi + Bjarte Johansen from Equinor.

Explainable AI at Eviny

In the project Machine Teaching for XAI (see  https://xai.w.uib.no ) a master thesis in collaboration between UiB and Eviny.

Advisor: One of Pekka Parviainen/Jan Arne Telle/Emmanuel Arrighi + Kristian Flikka from Eviny.

If you want to suggest your own topic, please contact Pekka Parviainen ,  Fabio Massimo Zennaro or Nello Blaser .

Graph

Machine Learning - CMU

PhD Dissertations

PhD Dissertations

[all are .pdf files].

Learning Models that Match Jacob Tyo, 2024

Improving Human Integration across the Machine Learning Pipeline Charvi Rastogi, 2024

Reliable and Practical Machine Learning for Dynamic Healthcare Settings Helen Zhou, 2023

Automatic customization of large-scale spiking network models to neuronal population activity (unavailable) Shenghao Wu, 2023

Estimation of BVk functions from scattered data (unavailable) Addison J. Hu, 2023

Rethinking object categorization in computer vision (unavailable) Jayanth Koushik, 2023

Advances in Statistical Gene Networks Jinjin Tian, 2023 Post-hoc calibration without distributional assumptions Chirag Gupta, 2023

The Role of Noise, Proxies, and Dynamics in Algorithmic Fairness Nil-Jana Akpinar, 2023

Collaborative learning by leveraging siloed data Sebastian Caldas, 2023

Modeling Epidemiological Time Series Aaron Rumack, 2023

Human-Centered Machine Learning: A Statistical and Algorithmic Perspective Leqi Liu, 2023

Uncertainty Quantification under Distribution Shifts Aleksandr Podkopaev, 2023

Probabilistic Reinforcement Learning: Using Data to Define Desired Outcomes, and Inferring How to Get There Benjamin Eysenbach, 2023

Comparing Forecasters and Abstaining Classifiers Yo Joong Choe, 2023

Using Task Driven Methods to Uncover Representations of Human Vision and Semantics Aria Yuan Wang, 2023

Data-driven Decisions - An Anomaly Detection Perspective Shubhranshu Shekhar, 2023

Applied Mathematics of the Future Kin G. Olivares, 2023

METHODS AND APPLICATIONS OF EXPLAINABLE MACHINE LEARNING Joon Sik Kim, 2023

NEURAL REASONING FOR QUESTION ANSWERING Haitian Sun, 2023

Principled Machine Learning for Societally Consequential Decision Making Amanda Coston, 2023

Long term brain dynamics extend cognitive neuroscience to timescales relevant for health and physiology Maxwell B. Wang, 2023

Long term brain dynamics extend cognitive neuroscience to timescales relevant for health and physiology Darby M. Losey, 2023

Calibrated Conditional Density Models and Predictive Inference via Local Diagnostics David Zhao, 2023

Towards an Application-based Pipeline for Explainability Gregory Plumb, 2022

Objective Criteria for Explainable Machine Learning Chih-Kuan Yeh, 2022

Making Scientific Peer Review Scientific Ivan Stelmakh, 2022

Facets of regularization in high-dimensional learning: Cross-validation, risk monotonization, and model complexity Pratik Patil, 2022

Active Robot Perception using Programmable Light Curtains Siddharth Ancha, 2022

Strategies for Black-Box and Multi-Objective Optimization Biswajit Paria, 2022

Unifying State and Policy-Level Explanations for Reinforcement Learning Nicholay Topin, 2022

Sensor Fusion Frameworks for Nowcasting Maria Jahja, 2022

Equilibrium Approaches to Modern Deep Learning Shaojie Bai, 2022

Towards General Natural Language Understanding with Probabilistic Worldbuilding Abulhair Saparov, 2022

Applications of Point Process Modeling to Spiking Neurons (Unavailable) Yu Chen, 2021

Neural variability: structure, sources, control, and data augmentation Akash Umakantha, 2021

Structure and time course of neural population activity during learning Jay Hennig, 2021

Cross-view Learning with Limited Supervision Yao-Hung Hubert Tsai, 2021

Meta Reinforcement Learning through Memory Emilio Parisotto, 2021

Learning Embodied Agents with Scalably-Supervised Reinforcement Learning Lisa Lee, 2021

Learning to Predict and Make Decisions under Distribution Shift Yifan Wu, 2021

Statistical Game Theory Arun Sai Suggala, 2021

Towards Knowledge-capable AI: Agents that See, Speak, Act and Know Kenneth Marino, 2021

Learning and Reasoning with Fast Semidefinite Programming and Mixing Methods Po-Wei Wang, 2021

Bridging Language in Machines with Language in the Brain Mariya Toneva, 2021

Curriculum Learning Otilia Stretcu, 2021

Principles of Learning in Multitask Settings: A Probabilistic Perspective Maruan Al-Shedivat, 2021

Towards Robust and Resilient Machine Learning Adarsh Prasad, 2021

Towards Training AI Agents with All Types of Experiences: A Unified ML Formalism Zhiting Hu, 2021

Building Intelligent Autonomous Navigation Agents Devendra Chaplot, 2021

Learning to See by Moving: Self-supervising 3D Scene Representations for Perception, Control, and Visual Reasoning Hsiao-Yu Fish Tung, 2021

Statistical Astrophysics: From Extrasolar Planets to the Large-scale Structure of the Universe Collin Politsch, 2020

Causal Inference with Complex Data Structures and Non-Standard Effects Kwhangho Kim, 2020

Networks, Point Processes, and Networks of Point Processes Neil Spencer, 2020

Dissecting neural variability using population recordings, network models, and neurofeedback (Unavailable) Ryan Williamson, 2020

Predicting Health and Safety: Essays in Machine Learning for Decision Support in the Public Sector Dylan Fitzpatrick, 2020

Towards a Unified Framework for Learning and Reasoning Han Zhao, 2020

Learning DAGs with Continuous Optimization Xun Zheng, 2020

Machine Learning and Multiagent Preferences Ritesh Noothigattu, 2020

Learning and Decision Making from Diverse Forms of Information Yichong Xu, 2020

Towards Data-Efficient Machine Learning Qizhe Xie, 2020

Change modeling for understanding our world and the counterfactual one(s) William Herlands, 2020

Machine Learning in High-Stakes Settings: Risks and Opportunities Maria De-Arteaga, 2020

Data Decomposition for Constrained Visual Learning Calvin Murdock, 2020

Structured Sparse Regression Methods for Learning from High-Dimensional Genomic Data Micol Marchetti-Bowick, 2020

Towards Efficient Automated Machine Learning Liam Li, 2020

LEARNING COLLECTIONS OF FUNCTIONS Emmanouil Antonios Platanios, 2020

Provable, structured, and efficient methods for robustness of deep networks to adversarial examples Eric Wong , 2020

Reconstructing and Mining Signals: Algorithms and Applications Hyun Ah Song, 2020

Probabilistic Single Cell Lineage Tracing Chieh Lin, 2020

Graphical network modeling of phase coupling in brain activity (unavailable) Josue Orellana, 2019

Strategic Exploration in Reinforcement Learning - New Algorithms and Learning Guarantees Christoph Dann, 2019 Learning Generative Models using Transformations Chun-Liang Li, 2019

Estimating Probability Distributions and their Properties Shashank Singh, 2019

Post-Inference Methods for Scalable Probabilistic Modeling and Sequential Decision Making Willie Neiswanger, 2019

Accelerating Text-as-Data Research in Computational Social Science Dallas Card, 2019

Multi-view Relationships for Analytics and Inference Eric Lei, 2019

Information flow in networks based on nonstationary multivariate neural recordings Natalie Klein, 2019

Competitive Analysis for Machine Learning & Data Science Michael Spece, 2019

The When, Where and Why of Human Memory Retrieval Qiong Zhang, 2019

Towards Effective and Efficient Learning at Scale Adams Wei Yu, 2019

Towards Literate Artificial Intelligence Mrinmaya Sachan, 2019

Learning Gene Networks Underlying Clinical Phenotypes Under SNP Perturbations From Genome-Wide Data Calvin McCarter, 2019

Unified Models for Dynamical Systems Carlton Downey, 2019

Anytime Prediction and Learning for the Balance between Computation and Accuracy Hanzhang Hu, 2019

Statistical and Computational Properties of Some "User-Friendly" Methods for High-Dimensional Estimation Alnur Ali, 2019

Nonparametric Methods with Total Variation Type Regularization Veeranjaneyulu Sadhanala, 2019

New Advances in Sparse Learning, Deep Networks, and Adversarial Learning: Theory and Applications Hongyang Zhang, 2019

Gradient Descent for Non-convex Problems in Modern Machine Learning Simon Shaolei Du, 2019

Selective Data Acquisition in Learning and Decision Making Problems Yining Wang, 2019

Anomaly Detection in Graphs and Time Series: Algorithms and Applications Bryan Hooi, 2019

Neural dynamics and interactions in the human ventral visual pathway Yuanning Li, 2018

Tuning Hyperparameters without Grad Students: Scaling up Bandit Optimisation Kirthevasan Kandasamy, 2018

Teaching Machines to Classify from Natural Language Interactions Shashank Srivastava, 2018

Statistical Inference for Geometric Data Jisu Kim, 2018

Representation Learning @ Scale Manzil Zaheer, 2018

Diversity-promoting and Large-scale Machine Learning for Healthcare Pengtao Xie, 2018

Distribution and Histogram (DIsH) Learning Junier Oliva, 2018

Stress Detection for Keystroke Dynamics Shing-Hon Lau, 2018

Sublinear-Time Learning and Inference for High-Dimensional Models Enxu Yan, 2018

Neural population activity in the visual cortex: Statistical methods and application Benjamin Cowley, 2018

Efficient Methods for Prediction and Control in Partially Observable Environments Ahmed Hefny, 2018

Learning with Staleness Wei Dai, 2018

Statistical Approach for Functionally Validating Transcription Factor Bindings Using Population SNP and Gene Expression Data Jing Xiang, 2017

New Paradigms and Optimality Guarantees in Statistical Learning and Estimation Yu-Xiang Wang, 2017

Dynamic Question Ordering: Obtaining Useful Information While Reducing User Burden Kirstin Early, 2017

New Optimization Methods for Modern Machine Learning Sashank J. Reddi, 2017

Active Search with Complex Actions and Rewards Yifei Ma, 2017

Why Machine Learning Works George D. Montañez , 2017

Source-Space Analyses in MEG/EEG and Applications to Explore Spatio-temporal Neural Dynamics in Human Vision Ying Yang , 2017

Computational Tools for Identification and Analysis of Neuronal Population Activity Pengcheng Zhou, 2016

Expressive Collaborative Music Performance via Machine Learning Gus (Guangyu) Xia, 2016

Supervision Beyond Manual Annotations for Learning Visual Representations Carl Doersch, 2016

Exploring Weakly Labeled Data Across the Noise-Bias Spectrum Robert W. H. Fisher, 2016

Optimizing Optimization: Scalable Convex Programming with Proximal Operators Matt Wytock, 2016

Combining Neural Population Recordings: Theory and Application William Bishop, 2015

Discovering Compact and Informative Structures through Data Partitioning Madalina Fiterau-Brostean, 2015

Machine Learning in Space and Time Seth R. Flaxman, 2015

The Time and Location of Natural Reading Processes in the Brain Leila Wehbe, 2015

Shape-Constrained Estimation in High Dimensions Min Xu, 2015

Spectral Probabilistic Modeling and Applications to Natural Language Processing Ankur Parikh, 2015 Computational and Statistical Advances in Testing and Learning Aaditya Kumar Ramdas, 2015

Corpora and Cognition: The Semantic Composition of Adjectives and Nouns in the Human Brain Alona Fyshe, 2015

Learning Statistical Features of Scene Images Wooyoung Lee, 2014

Towards Scalable Analysis of Images and Videos Bin Zhao, 2014

Statistical Text Analysis for Social Science Brendan T. O'Connor, 2014

Modeling Large Social Networks in Context Qirong Ho, 2014

Semi-Cooperative Learning in Smart Grid Agents Prashant P. Reddy, 2013

On Learning from Collective Data Liang Xiong, 2013

Exploiting Non-sequence Data in Dynamic Model Learning Tzu-Kuo Huang, 2013

Mathematical Theories of Interaction with Oracles Liu Yang, 2013

Short-Sighted Probabilistic Planning Felipe W. Trevizan, 2013

Statistical Models and Algorithms for Studying Hand and Finger Kinematics and their Neural Mechanisms Lucia Castellanos, 2013

Approximation Algorithms and New Models for Clustering and Learning Pranjal Awasthi, 2013

Uncovering Structure in High-Dimensions: Networks and Multi-task Learning Problems Mladen Kolar, 2013

Learning with Sparsity: Structures, Optimization and Applications Xi Chen, 2013

GraphLab: A Distributed Abstraction for Large Scale Machine Learning Yucheng Low, 2013

Graph Structured Normal Means Inference James Sharpnack, 2013 (Joint Statistics & ML PhD)

Probabilistic Models for Collecting, Analyzing, and Modeling Expression Data Hai-Son Phuoc Le, 2013

Learning Large-Scale Conditional Random Fields Joseph K. Bradley, 2013

New Statistical Applications for Differential Privacy Rob Hall, 2013 (Joint Statistics & ML PhD)

Parallel and Distributed Systems for Probabilistic Reasoning Joseph Gonzalez, 2012

Spectral Approaches to Learning Predictive Representations Byron Boots, 2012

Attribute Learning using Joint Human and Machine Computation Edith L. M. Law, 2012

Statistical Methods for Studying Genetic Variation in Populations Suyash Shringarpure, 2012

Data Mining Meets HCI: Making Sense of Large Graphs Duen Horng (Polo) Chau, 2012

Learning with Limited Supervision by Input and Output Coding Yi Zhang, 2012

Target Sequence Clustering Benjamin Shih, 2011

Nonparametric Learning in High Dimensions Han Liu, 2010 (Joint Statistics & ML PhD)

Structural Analysis of Large Networks: Observations and Applications Mary McGlohon, 2010

Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy Brian D. Ziebart, 2010

Tractable Algorithms for Proximity Search on Large Graphs Purnamrita Sarkar, 2010

Rare Category Analysis Jingrui He, 2010

Coupled Semi-Supervised Learning Andrew Carlson, 2010

Fast Algorithms for Querying and Mining Large Graphs Hanghang Tong, 2009

Efficient Matrix Models for Relational Learning Ajit Paul Singh, 2009

Exploiting Domain and Task Regularities for Robust Named Entity Recognition Andrew O. Arnold, 2009

Theoretical Foundations of Active Learning Steve Hanneke, 2009

Generalized Learning Factors Analysis: Improving Cognitive Models with Machine Learning Hao Cen, 2009

Detecting Patterns of Anomalies Kaustav Das, 2009

Dynamics of Large Networks Jurij Leskovec, 2008

Computational Methods for Analyzing and Modeling Gene Regulation Dynamics Jason Ernst, 2008

Stacked Graphical Learning Zhenzhen Kou, 2007

Actively Learning Specific Function Properties with Applications to Statistical Inference Brent Bryan, 2007

Approximate Inference, Structure Learning and Feature Estimation in Markov Random Fields Pradeep Ravikumar, 2007

Scalable Graphical Models for Social Networks Anna Goldenberg, 2007

Measure Concentration of Strongly Mixing Processes with Applications Leonid Kontorovich, 2007

Tools for Graph Mining Deepayan Chakrabarti, 2005

Automatic Discovery of Latent Variable Models Ricardo Silva, 2005

machine learning thesis topics

  • Warning : Invalid argument supplied for foreach() in /home/customer/www/opendatascience.com/public_html/wp-includes/nav-menu.php on line 95 Warning : array_merge(): Expected parameter 2 to be an array, null given in /home/customer/www/opendatascience.com/public_html/wp-includes/nav-menu.php on line 102
  • ODSC EUROPE
  • AI+ Training
  • Speak at ODSC

machine learning thesis topics

  • Data Analytics
  • Data Engineering
  • Data Visualization
  • Deep Learning
  • Generative AI
  • Machine Learning
  • NLP and LLMs
  • Business & Use Cases
  • Career Advice
  • Write for us
  • ODSC Community Slack Channel
  • Upcoming Webinars

10 Compelling Machine Learning Ph.D. Dissertations for 2020

10 Compelling Machine Learning Ph.D. Dissertations for 2020

Machine Learning Modeling Research posted by Daniel Gutierrez, ODSC August 19, 2020 Daniel Gutierrez, ODSC

As a data scientist, an integral part of my work in the field revolves around keeping current with research coming out of academia. I frequently scour arXiv.org for late-breaking papers that show trends and reveal fertile areas of research. Other sources of valuable research developments are in the form of Ph.D. dissertations, the culmination of a doctoral candidate’s work to confer his/her degree. Ph.D. candidates are highly motivated to choose research topics that establish new and creative paths toward discovery in their field of study. Their dissertations are highly focused on a specific problem. If you can find a dissertation that aligns with your areas of interest, consuming the research is an excellent way to do a deep dive into the technology. After reviewing hundreds of recent theses from universities all over the country, I present 10 machine learning dissertations that I found compelling in terms of my own areas of interest.

[Related article: Introduction to Bayesian Deep Learning ]

I hope you’ll find several that match your own fields of inquiry. Each thesis may take a while to consume but will result in hours of satisfying summer reading. Enjoy!

1. Bayesian Modeling and Variable Selection for Complex Data

As we routinely encounter high-throughput data sets in complex biological and environmental research, developing novel models and methods for variable selection has received widespread attention. This dissertation addresses a few key challenges in Bayesian modeling and variable selection for high-dimensional data with complex spatial structures. 

2. Topics in Statistical Learning with a Focus on Large Scale Data

Big data vary in shape and call for different approaches. One type of big data is the tall data, i.e., a very large number of samples but not too many features. This dissertation describes a general communication-efficient algorithm for distributed statistical learning on this type of big data. The algorithm distributes the samples uniformly to multiple machines, and uses a common reference data to improve the performance of local estimates. The algorithm enables potentially much faster analysis, at a small cost to statistical performance.

Another type of big data is the wide data, i.e., too many features but a limited number of samples. It is also called high-dimensional data, to which many classical statistical methods are not applicable. 

This dissertation discusses a method of dimensionality reduction for high-dimensional classification. The method partitions features into independent communities and splits the original classification problem into separate smaller ones. It enables parallel computing and produces more interpretable results.

3. Sets as Measures: Optimization and Machine Learning

The purpose of this machine learning dissertation is to address the following simple question:

How do we design efficient algorithms to solve optimization or machine learning problems where the decision variable (or target label) is a set of unknown cardinality?

Optimization and machine learning have proved remarkably successful in applications requiring the choice of single vectors. Some tasks, in particular many inverse problems, call for the design, or estimation, of sets of objects. When the size of these sets is a priori unknown, directly applying optimization or machine learning techniques designed for single vectors appears difficult. The work in this dissertation shows that a very old idea for transforming sets into elements of a vector space (namely, a space of measures), a common trick in theoretical analysis, generates effective practical algorithms.

4. A Geometric Perspective on Some Topics in Statistical Learning

Modern science and engineering often generate data sets with a large sample size and a comparably large dimension which puts classic asymptotic theory into question in many ways. Therefore, the main focus of this dissertation is to develop a fundamental understanding of statistical procedures for estimation and hypothesis testing from a non-asymptotic point of view, where both the sample size and problem dimension grow hand in hand. A range of different problems are explored in this thesis, including work on the geometry of hypothesis testing, adaptivity to local structure in estimation, effective methods for shape-constrained problems, and early stopping with boosting algorithms. The treatment of these different problems shares the common theme of emphasizing the underlying geometric structure.

5. Essays on Random Forest Ensembles

A random forest is a popular machine learning ensemble method that has proven successful in solving a wide range of classification problems. While other successful classifiers, such as boosting algorithms or neural networks, admit natural interpretations as maximum likelihood, a suitable statistical interpretation is much more elusive for a random forest. The first part of this dissertation demonstrates that a random forest is a fruitful framework in which to study AdaBoost and deep neural networks. The work explores the concept and utility of interpolation, the ability of a classifier to perfectly fit its training data. The second part of this dissertation places a random forest on more sound statistical footing by framing it as kernel regression with the proximity kernel. The work then analyzes the parameters that control the bandwidth of this kernel and discuss useful generalizations.

6. Marginally Interpretable Generalized Linear Mixed Models

A popular approach for relating correlated measurements of a non-Gaussian response variable to a set of predictors is to introduce latent random variables and fit a generalized linear mixed model. The conventional strategy for specifying such a model leads to parameter estimates that must be interpreted conditional on the latent variables. In many cases, interest lies not in these conditional parameters, but rather in marginal parameters that summarize the average effect of the predictors across the entire population. Due to the structure of the generalized linear mixed model, the average effect across all individuals in a population is generally not the same as the effect for an average individual. Further complicating matters, obtaining marginal summaries from a generalized linear mixed model often requires evaluation of an analytically intractable integral or use of an approximation. Another popular approach in this setting is to fit a marginal model using generalized estimating equations. This strategy is effective for estimating marginal parameters, but leaves one without a formal model for the data with which to assess quality of fit or make predictions for future observations. Thus, there exists a need for a better approach.

This dissertation defines a class of marginally interpretable generalized linear mixed models that leads to parameter estimates with a marginal interpretation while maintaining the desirable statistical properties of a conditionally specified model. The distinguishing feature of these models is an additive adjustment that accounts for the curvature of the link function and thereby preserves a specific form for the marginal mean after integrating out the latent random variables. 

7. On the Detection of Hate Speech, Hate Speakers and Polarized Groups in Online Social Media

The objective of this dissertation is to explore the use of machine learning algorithms in understanding and detecting hate speech, hate speakers and polarized groups in online social media. Beginning with a unique typology for detecting abusive language, the work outlines the distinctions and similarities of different abusive language subtasks (offensive language, hate speech, cyberbullying and trolling) and how we might benefit from the progress made in each area. Specifically, the work suggests that each subtask can be categorized based on whether or not the abusive language being studied 1) is directed at a specific individual, or targets a generalized “Other” and 2) the extent to which the language is explicit versus implicit. The work then uses knowledge gained from this typology to tackle the “problem of offensive language” in hate speech detection. 

8. Lasso Guarantees for Dependent Data

Serially correlated high dimensional data are prevalent in the big data era. In order to predict and learn the complex relationship among the multiple time series, high dimensional modeling has gained importance in various fields such as control theory, statistics, economics, finance, genetics and neuroscience. This dissertation studies a number of high dimensional statistical problems involving different classes of mixing processes. 

9. Random forest robustness, variable importance, and tree aggregation

Random forest methodology is a nonparametric, machine learning approach capable of strong performance in regression and classification problems involving complex data sets. In addition to making predictions, random forests can be used to assess the relative importance of feature variables. This dissertation explores three topics related to random forests: tree aggregation, variable importance, and robustness. 

10. Climate Data Computing: Optimal Interpolation, Averaging, Visualization and Delivery

This dissertation solves two important problems in the modern analysis of big climate data. The first is the efficient visualization and fast delivery of big climate data, and the second is a computationally extensive principal component analysis (PCA) using spherical harmonics on the Earth’s surface. The second problem creates a way to supply the data for the technology developed in the first. These two problems are computationally difficult, such as the representation of higher order spherical harmonics Y400, which is critical for upscaling weather data to almost infinitely fine spatial resolution.

I hope you enjoyed learning about these compelling machine learning dissertations.

Editor’s note: Interested in more data science research? Check out the Research Frontiers track at ODSC Europe this September 17-19 or the ODSC West Research Frontiers track this October 27-30.

machine learning thesis topics

Daniel Gutierrez, ODSC

Daniel D. Gutierrez is a practicing data scientist who’s been working with data long before the field came in vogue. As a technology journalist, he enjoys keeping a pulse on this fast-paced industry. Daniel is also an educator having taught data science, machine learning and R classes at the university level. He has authored four computer industry books on database and data science technology, including his most recent title, “Machine Learning and Data Science: An Introduction to Statistical Learning Methods with R.” Daniel holds a BS in Mathematics and Computer Science from UCLA.

eu square

NASA Appoints David Salvagnini as First Chief AI Officer

AI and Data Science News posted by ODSC Team May 13, 2024 NASA Administrator Bill Nelson announced on Monday that David Salvagnini has been named the agency’s first...

Podcast: DBRX and Open Source Mixture of Experts LLMs with Hagay Lupesko

Podcast: DBRX and Open Source Mixture of Experts LLMs with Hagay Lupesko

Podcast Modeling posted by ODSC Team May 13, 2024 Learn about cutting-edge developments in AI and Data Science from the experts who know them best...

ODSC East 2024 Recap in Pictures

ODSC East 2024 Recap in Pictures

East 2024 Conferences posted by ODSC Team May 13, 2024 ODSC East is now a part of our history books, and we couldn’t be happier with...

AI weekly square

Google Custom Search

Wir verwenden Google für unsere Suche. Mit Klick auf „Suche aktivieren“ aktivieren Sie das Suchfeld und akzeptieren die Nutzungsbedingungen.

Hinweise zum Einsatz der Google Suche

Technical University of Munich

  • Data Analytics and Machine Learning Group
  • TUM School of Computation, Information and Technology
  • Technical University of Munich

Technical University of Munich

Open Topics

We offer multiple Bachelor/Master theses, Guided Research projects and IDPs in the area of data mining/machine learning. A  non-exhaustive list of open topics is listed below.

If you are interested in a thesis or a guided research project, please send your CV and transcript of records to Prof. Stephan Günnemann via email and we will arrange a meeting to talk about the potential topics.

Graph Neural Networks for Spatial Transcriptomics

Type:  Master's Thesis

Prerequisites:

  • Strong machine learning knowledge
  • Proficiency with Python and deep learning frameworks (PyTorch, TensorFlow, JAX)
  • Knowledge of graph neural networks (e.g., GCN, MPNN)
  • Optional: Knowledge of bioinformatics and genomics

Description:

Spatial transcriptomics is a cutting-edge field at the intersection of genomics and spatial analysis, aiming to understand gene expression patterns within the context of tissue architecture. Our project focuses on leveraging graph neural networks (GNNs) to unlock the full potential of spatial transcriptomic data. Unlike traditional methods, GNNs can effectively capture the intricate spatial relationships between cells, enabling more accurate modeling and interpretation of gene expression dynamics across tissues. We seek motivated students to explore novel GNN architectures tailored for spatial transcriptomics, with a particular emphasis on addressing challenges such as spatial heterogeneity, cell-cell interactions, and spatially varying gene expression patterns.

Contact : Filippo Guerranti , Alessandro Palma

References:

  • Cell clustering for spatial transcriptomics data with graph neural network
  • Unsupervised spatially embedded deep representation of spatial transcriptomics
  • SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network
  • DeepST: identifying spatial domains in spatial transcriptomics by deep learning
  • Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder

GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data

Generative Models for Drug Discovery

Type:  Mater Thesis / Guided Research

  • Proficiency with Python and deep learning frameworks (PyTorch or TensorFlow)
  • Knowledge of graph neural networks (e.g. GCN, MPNN)
  • No formal education in chemistry, physics or biology needed!

Effectively designing molecular geometries is essential to advancing pharmaceutical innovations, a domain which has experienced great attention through the success of generative models. These models promise a more efficient exploration of the vast chemical space and generation of novel compounds with specific properties by leveraging their learned representations, potentially leading to the discovery of molecules with unique properties that would otherwise go undiscovered. Our topics lie at the intersection of generative models like diffusion/flow matching models and graph representation learning, e.g., graph neural networks. The focus of our projects can be model development with an emphasis on downstream tasks ( e.g., diffusion guidance at inference time ) and a better understanding of the limitations of existing models.

Contact :  Johanna Sommer , Leon Hetzel

Equivariant Diffusion for Molecule Generation in 3D

Equivariant Flow Matching with Hybrid Probability Transport for 3D Molecule Generation

Structure-based Drug Design with Equivariant Diffusion Models

Efficient Machine Learning: Pruning, Quantization, Distillation, and More - DAML x Pruna AI

Type: Master's Thesis / Guided Research / Hiwi

  • Strong knowledge in machine learning
  • Proficiency with Python and deep learning frameworks (TensorFlow or PyTorch)

The efficiency of machine learning algorithms is commonly evaluated by looking at target performance, speed and memory footprint metrics. Reduce the costs associated to these metrics is of primary importance for real-world applications with limited ressources (e.g. embedded systems, real-time predictions). In this project, you will work in collaboration with the DAML research group and the Pruna AI startup on investigating solutions to improve the efficiency of machine leanring models by looking at multiple techniques like pruning, quantization, distillation, and more.

Contact: Bertrand Charpentier

  • The Efficiency Misnomer
  • A Gradient Flow Framework for Analyzing Network Pruning
  • Distilling the Knowledge in a Neural Network
  • A Survey of Quantization Methods for Efficient Neural Network Inference

Deep Generative Models

Type:  Master Thesis / Guided Research

  • Strong machine learning and probability theory knowledge
  • Knowledge of generative models and their basics (e.g., Normalizing Flows, Diffusion Models, VAE)
  • Optional: Neural ODEs/SDEs, Optimal Transport, Measure Theory

With recent advances, such as Diffusion Models, Transformers, Normalizing Flows, Flow Matching, etc., the field of generative models has gained significant attention in the machine learning and artificial intelligence research community. However, many problems and questions remain open, and the application to complex data domains such as graphs, time series, point processes, and sets is often non-trivial. We are interested in supervising motivated students to explore and extend the capabilities of state-of-the-art generative models for various data domains.

Contact : Marcel Kollovieh , David Lüdke

  • Flow Matching for Generative Modeling
  • Auto-Encoding Variational Bayes
  • Denoising Diffusion Probabilistic Models 
  • Structured Denoising Diffusion Models in Discrete State-Spaces

Active Learning for Multi Agent 3D Object Detection 

Type: Master's Thesis  Industrial partner: BMW 

Prerequisites: 

  • Strong knowledge in machine learning 
  • Knowledge in Object Detection 
  • Excellent programming skills 
  • Proficiency with Python and deep learning frameworks (TensorFlow or PyTorch) 

Description: 

In autonomous driving, state-of-the-art deep neural networks are used for perception tasks like for example 3D object detection. To provide promising results, these networks often require a lot of complex annotation data for training. These annotations are often costly and redundant. Active learning is used to select the most informative samples for annotation and cover a dataset with as less annotated data as possible.   

The objective is to explore active learning approaches for 3D object detection using combined uncertainty and diversity based methods.  

Contact: Sebastian Schmidt

References: 

  • Exploring Diversity-based Active Learning for 3D Object Detection in Autonomous Driving   
  • Efficient Uncertainty Estimation for Semantic Segmentation in Videos   
  • KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection
  • Towards Open World Active Learning for 3D Object Detection   

Graph Neural Networks

Type:  Master's thesis / Bachelor's thesis / guided research

  • Knowledge of graph/network theory

Graph neural networks (GNNs) have recently achieved great successes in a wide variety of applications, such as chemistry, reinforcement learning, knowledge graphs, traffic networks, or computer vision. These models leverage graph data by updating node representations based on messages passed between nodes connected by edges, or by transforming node representation using spectral graph properties. These approaches are very effective, but many theoretical aspects of these models remain unclear and there are many possible extensions to improve GNNs and go beyond the nodes' direct neighbors and simple message aggregation.

Contact: Simon Geisler

  • Semi-supervised classification with graph convolutional networks
  • Relational inductive biases, deep learning, and graph networks
  • Diffusion Improves Graph Learning
  • Weisfeiler and leman go neural: Higher-order graph neural networks
  • Reliable Graph Neural Networks via Robust Aggregation

Physics-aware Graph Neural Networks

Type:  Master's thesis / guided research

  • Proficiency with Python and deep learning frameworks (JAX or PyTorch)
  • Knowledge of graph neural networks (e.g. GCN, MPNN, SchNet)
  • Optional: Knowledge of machine learning on molecules and quantum chemistry

Deep learning models, especially graph neural networks (GNNs), have recently achieved great successes in predicting quantum mechanical properties of molecules. There is a vast amount of applications for these models, such as finding the best method of chemical synthesis or selecting candidates for drugs, construction materials, batteries, or solar cells. However, GNNs have only been proposed in recent years and there remain many open questions about how to best represent and leverage quantum mechanical properties and methods.

Contact: Nicholas Gao

  • Directional Message Passing for Molecular Graphs
  • Neural message passing for quantum chemistry
  • Learning to Simulate Complex Physics with Graph Network
  • Ab initio solution of the many-electron Schrödinger equation with deep neural networks
  • Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions
  • Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds

Robustness Verification for Deep Classifiers

Type: Master's thesis / Guided research

  • Strong machine learning knowledge (at least equivalent to IN2064 plus an advanced course on deep learning)
  • Strong background in mathematical optimization (preferably combined with Machine Learning setting)
  • Proficiency with python and deep learning frameworks (Pytorch or Tensorflow)
  • (Preferred) Knowledge of training techniques to obtain classifiers that are robust against small perturbations in data

Description : Recent work shows that deep classifiers suffer under presence of adversarial examples: misclassified points that are very close to the training samples or even visually indistinguishable from them. This undesired behaviour constraints possibilities of deployment in safety critical scenarios for promising classification methods based on neural nets. Therefore, new training methods should be proposed that promote (or preferably ensure) robust behaviour of the classifier around training samples.

Contact: Aleksei Kuvshinov

References (Background):

  • Intriguing properties of neural networks
  • Explaining and harnessing adversarial examples
  • SoK: Certified Robustness for Deep Neural Networks
  • Certified Adversarial Robustness via Randomized Smoothing
  • Formal guarantees on the robustness of a classifier against adversarial manipulation
  • Towards deep learning models resistant to adversarial attacks
  • Provable defenses against adversarial examples via the convex outer adversarial polytope
  • Certified defenses against adversarial examples
  • Lipschitz-margin training: Scalable certification of perturbation invariance for deep neural networks

Uncertainty Estimation in Deep Learning

Type: Master's Thesis / Guided Research

  • Strong knowledge in probability theory

Safe prediction is a key feature in many intelligent systems. Classically, Machine Learning models compute output predictions regardless of the underlying uncertainty of the encountered situations. In contrast, aleatoric and epistemic uncertainty bring knowledge about undecidable and uncommon situations. The uncertainty view can be a substantial help to detect and explain unsafe predictions, and therefore make ML systems more robust. The goal of this project is to improve the uncertainty estimation in ML models in various types of task.

Contact: Tom Wollschläger ,   Dominik Fuchsgruber ,   Bertrand Charpentier

  • Can You Trust Your Model’s Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
  • Predictive Uncertainty Estimation via Prior Networks
  • Posterior Network: Uncertainty Estimation without OOD samples via Density-based Pseudo-Counts
  • Evidential Deep Learning to Quantify Classification Uncertainty
  • Weight Uncertainty in Neural Networks

Hierarchies in Deep Learning

Type:  Master's Thesis / Guided Research

Multi-scale structures are ubiquitous in real life datasets. As an example, phylogenetic nomenclature naturally reveals a hierarchical classification of species based on their historical evolutions. Learning multi-scale structures can help to exhibit natural and meaningful organizations in the data and also to obtain compact data representation. The goal of this project is to leverage multi-scale structures to improve speed, performances and understanding of Deep Learning models.

Contact: Marcel Kollovieh , Bertrand Charpentier

  • Tree Sampling Divergence: An Information-Theoretic Metricfor Hierarchical Graph Clustering
  • Hierarchical Graph Representation Learning with Differentiable Pooling
  • Gradient-based Hierarchical Clustering
  • Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space

machine learning Recently Published Documents

Total documents.

  • Latest Documents
  • Most Cited Documents
  • Contributed Authors
  • Related Sources
  • Related Keywords

An explainable machine learning model for identifying geographical origins of sea cucumber Apostichopus japonicus based on multi-element profile

A comparison of machine learning- and regression-based models for predicting ductility ratio of rc beam-column joints, alexa, is this a historical record.

Digital transformation in government has brought an increase in the scale, variety, and complexity of records and greater levels of disorganised data. Current practices for selecting records for transfer to The National Archives (TNA) were developed to deal with paper records and are struggling to deal with this shift. This article examines the background to the problem and outlines a project that TNA undertook to research the feasibility of using commercially available artificial intelligence tools to aid selection. The project AI for Selection evaluated a range of commercial solutions varying from off-the-shelf products to cloud-hosted machine learning platforms, as well as a benchmarking tool developed in-house. Suitability of tools depended on several factors, including requirements and skills of transferring bodies as well as the tools’ usability and configurability. This article also explores questions around trust and explainability of decisions made when using AI for sensitive tasks such as selection.

Automated Text Classification of Maintenance Data of Higher Education Buildings Using Text Mining and Machine Learning Techniques

Data-driven analysis and machine learning for energy prediction in distributed photovoltaic generation plants: a case study in queensland, australia, modeling nutrient removal by membrane bioreactor at a sewage treatment plant using machine learning models, big five personality prediction based in indonesian tweets using machine learning methods.

<span lang="EN-US">The popularity of social media has drawn the attention of researchers who have conducted cross-disciplinary studies examining the relationship between personality traits and behavior on social media. Most current work focuses on personality prediction analysis of English texts, but Indonesian has received scant attention. Therefore, this research aims to predict user’s personalities based on Indonesian text from social media using machine learning techniques. This paper evaluates several machine learning techniques, including <a name="_Hlk87278444"></a>naive Bayes (NB), K-nearest neighbors (KNN), and support vector machine (SVM), based on semantic features including emotion, sentiment, and publicly available Twitter profile. We predict the personality based on the big five personality model, the most appropriate model for predicting user personality in social media. We examine the relationships between the semantic features and the Big Five personality dimensions. The experimental results indicate that the Big Five personality exhibit distinct emotional, sentimental, and social characteristics and that SVM outperformed NB and KNN for Indonesian. In addition, we observe several terms in Indonesian that specifically refer to each personality type, each of which has distinct emotional, sentimental, and social features.</span>

Compressive strength of concrete with recycled aggregate; a machine learning-based evaluation

Temperature prediction of flat steel box girders of long-span bridges utilizing in situ environmental parameters and machine learning, computer-assisted cohort identification in practice.

The standard approach to expert-in-the-loop machine learning is active learning, where, repeatedly, an expert is asked to annotate one or more records and the machine finds a classifier that respects all annotations made until that point. We propose an alternative approach, IQRef , in which the expert iteratively designs a classifier and the machine helps him or her to determine how well it is performing and, importantly, when to stop, by reporting statistics on a fixed, hold-out sample of annotated records. We justify our approach based on prior work giving a theoretical model of how to re-use hold-out data. We compare the two approaches in the context of identifying a cohort of EHRs and examine their strengths and weaknesses through a case study arising from an optometric research problem. We conclude that both approaches are complementary, and we recommend that they both be employed in conjunction to address the problem of cohort identification in health research.

Export Citation Format

Share document.

Kindson The Genius

Kindson The Genius

Providing the best learning experience for professionals

10 Machine Learning Project (Thesis) Topics for 2020

kindsonthegenius

Are you looking for some interesting project ideas for your thesis, project or dissertation? Then be sure that a machine learning topic would be a very good topic to write on. I have outlined 10 different topics. These topics are really good because you can easily obtain the dataset (i will provide the link to the dataset) and you can as well get some support from me. Let me know if you need any support in preparing your thesis.

You can leave a comment below in the comment area.

machine learning thesis topics

1.  Machine Learning Model for Classification and Detection of Breast Cancer (Classification)

The data is provided by the Oncology department and details instances and related attributes which are nine in all.

You can obtain the dataset from here

2. Intelligent Internet Ads Generation (Classification)

This is one of the most interesting topics for me. The reason is because the revenue generated or expended by ads campaign depends not just on the volume of the ads, but also on the relevance of the ads. Therefore it is possible to increase revenue and reduce spending by developing a Machine Learning model that select relevants ads with a high level of accuracy.  The dataset provides a collection of ads as well as the structure and geometry of the ads.

Get the ads dataset from here

3. Feature Extraction for National Census Data (Clustering)

This looks like big data stuff. But no! It’s simply dataset you can use for analysis. It is the actual data obtained from the US census in 1990. There are 68 attributes for each of the records and clustering would be performed to identify trends in the data.

You can obtain census the dataset from here

4. Movie Outcome Prediction (Classification)

This is quite a tasking project but its quite interesting. Before now, there exists models to predict the ratings of movies on a scale of 0 to 10 or 1 to 5. But this takes it a step further. You actually need to determine the outcome of the movie.  The data set is a large multivariate dataset of movie director, cast, individual roles of the actor, remarks, studio and relevant documents.

You can get the movies dataset from here

5. Forest Fire Area Coverage Prediction (Regression)

This project have been classified as difficult but I don’t think so. The objective to predict the the area affected by forest fires. Dataset include relevant meteological information and other parameters taken from a region of Portugal.

You can get the fire dataset from here

6. Atmospheric Ozone Level Analysis and Detection (Clustering)

Two ground ozone datasets are provided for this. Data includes temperatures at various times of the day as well as wind speed. The data included in the dataset was collected in a span of 6 years from 1998 to 2004.

You can get the Ozone dataset from here

7. Crime Prediction in New York City (Regression)

If you have watched the movie, ‘Person of Interest’ directed by Jonathan Nolan, then you will appreciate the fact that there is a possibility of predicting  violent criminal activities before they actually occur. Dataset would contain historical data on crime rate, types of crimes occurrence per region.

You can get the crime dataset from here

8. Sentiment Analysis on Amazon ECommerce User Reviews (Classification)

The dataset for this project is derived from user review comments from Amazon users. The model should be able to perform analysis on the training dataset and come up with a model that classifies the reviews based on sentiments. Granularity can be improved by generating predictions based on location and other factors.

You can get the reviews dataset from here

9. Home Eletrical Power Consumption Analysis (Regression)

Everyone uses electricity at home. Or rather, almost everyone! Would is not be great to have a system that helps to predict electricity consumption. Training dataset provided for this project includes feature set such as the size of the home, duration and more

You can get the dataset from here

10. Predictive Modelling of Individual Human Knowledge (Classification and Clustering)

Here the available dataset provide a collection of data about an individual on a subject matter. You are required to create a model that would try to quantify the amount of knowledge the individual have on the given subject. You can be creating by trying to also infer the performance of the user on certain exams.

I hope these 10 Machine Learning Project topic would be helpful to you.

Thanks for reading and do leave a comment below if you need some support

User Avatar

kindsonthegenius

Kindson Munonye is currently completing his doctoral program in Software Engineering in Budapest University of Technology and Economics

You might also like

Machine learning 101 – equation for a line and regression line, simple linear regression in machine learning (a simple tutorial), pca tutorial 1 – introduction to pca and dimensionality reduction, 2 thoughts on “ 10 machine learning project (thesis) topics for 2020 ”.

Is there any suggestion related to educational data mining?

I’m working on this. You can subscribe to my channel so when I make the update, you can get notified https://www.youtube.com/channel/UCvHgEAcw6VpcOA3864pSr5A

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

PHD PRIME

Thesis Topics for Machine Learning

  Machine learning is one of the recently growing fields of research for classification, clustering, and prediction of input data . The techniques of ensembles and hybridization have contributed to the improvement of machine learning models . As a result, the speed of computation, operation, accuracy, and robustness of the machine learning models are enhanced. Through this article, you can get an overview of novel machine learning models, their design, performance, merits, and uses explained via a new taxonomic approach . Also, you can get all essential details regarding any thesis topics for machine learning from this page.

At present, there are many new ensembles and hybridized machine learning models being introduced and developed .  Here the essentials of thesis writing are presented to you by our world-class certified writers and developers. What are the essential elements of a thesis statement?

  • First of all you have to understand that thesis statement writing is the most crucial process which involves a lot of time and thinking
  • Enough research data and evidence have to be gathered before writing a thesis statement
  • The main Idea or the objective has to be presented clearly with supporting evidence
  • Also remember that the thesis statement should be in accordance with the argument where adjustments are allowed

Usually, research scholars interact with our writers and experts for all aspects of thesis writing in machine learning. So we insist that you contact us much before you start your thesis so that you can have a clear-cut vision and well-strategized approach towards writing the best thesis.

Top 5 Research Thesis Topics for Machine Learning

Let us now have an idea about various headings to be included in any thesis topics for machine learning.

  • Introduction – overview of the thesis
  • Related / Existing works – presents of existing research
  • Problems definition/statements – identify and highlight the problems
  • Research methodology – convey the proposed concepts
  • Results and Discussion – discuss the results of the proposed works with previous works
  • Conclusion and future work – present the results of the proposed work

The introduction is the very first part of your thesis. It is the way by which you tend to create the first impression in the minds of the readers. What are the parts of the introduction in the thesis?

  • The issue under examination is the core of an overview
  • Main Idea and assertion has to be mentioned clearly
  • Thesis statement and argument forms the fundamental aspect here
  • Address the audience to prove to them that they are at the right place
  • Scope of your paper should be mentioned satisfactorily
  • The Planning based approach that you used to conduct research

In general, the choice of words, tone, approach, and language decide the quality of a thesis likewise the introduction. Our technical team and expert writers have gained enough experience writing thesis topics in machine learning. The amount of field knowledge and expertise that we gathered is quite large which will be of great use to you. Let us now talk about the next most important topic of a thesis called the issue

What are the guidelines for thesis writing? 

Under the heading of the issue, the following aspects of research are to be included

  • The background history about your result issue or concern solving which is stated as your objective
  • The impact of the issue in this field
  • Important characteristic features that affect the issue
  • Potential research solutions that are undertaken for research

With the massive amount of reliable and authentic research materials that we provide, you can surely get all the necessary information to include in the issues part of your thesis. Also, our engineers and technical team are here to solve any kind of technical queries that you may get. Let us now talk about the literature review  

LITERATURE REVIEW 

  • With important references and constructs from standard textbooks journals and relevant publications you need to make the following descriptions
  • Relevant theory
  • Issue explanation
  • Potential solution
  • Theoretical constructs
  • Explanation on major theories
  • Empirical literature from journal articles are considered for the following aspects
  • Explanation on latest empirical studies
  • Summary of the methodology adopted
  • Important findings of the study
  • Constraints associated with your findings
  • The pathway of your research study has to be organized in line with the literature review to make keynotes on the following
  • The referred definitions and concepts
  • Unique aspects of the issues under examination
  • Suitable method of your research

If you are searching for the best and most reliable online research guide for all kinds of thesis topics in machine learning then you are here at the right place. You can get professional and customized research support aligned with your institutional format from our experts. Let us now look into the method section in detail below  

The following are the different aspects that you need to incorporate in the methods section of your thesis

  • The research questions and issues under your examination
  • Description of proposed works like data collection
  • Rationale justification for the method of your choice

In addition to these aspects, you need to provide a clear description of all the research methods that you adopt in your study. For this purpose here are our research experts who will provide you with details on novel and innovative approaches useful for your research . You can also get concise and precise quantitative research data from us. Let us now look into this section of results

RESULTS AND DISCUSSION

On the page of results and discussion you need to incorporate the following aspects

  • Description of major findings
  • Visualization tools like charts, graphs, and tables to present the findings
  • Relevant previous studies and results
  • Creative and new results that you obtained
  • Scopes to expand the previous studies with your findings
  • Constraints of your study

The support of technical experts can help you do the best research work in machine learning . The interested researcher plus reliable and experienced research support makes the best PhD work possible. With our guidance, you get access to the best combo needed to carry out your research. Let’s now discuss the conclusions part  

Conclusion and recommendation

In the part of conclusion, you need to include the following aspects

  • Recap of issues being discussed
  • Methods used and major findings
  • Comparison between the original objective and accomplished results
  • Scope for future expansion of your research

For each and every aspect of your machine learning PhD thesis , you can get complete support from our experts. In this respect let us now look to the topmost machine learning thesis topics below  

Top 5 Thesis Topics for machine learning

  • Machine learning is of great importance to physicians in the following perspectives
  • Chatbots for speech recognition
  • Pattern recognition for disease detection
  • Treatment recommendation
  • Detecting cancerous cells
  • Body fluid analysis
  • Identification of phenotypes in case of rare diseases
  • Classifying data into groups for fault detection is possible using machine learning
  • The following are some real-time examples for predictive analysis
  • Fraudulent and legitimate transaction
  • Improvement of prediction mechanism for detecting faults
  • From the basics of developing products to predicting the stock market and real estate prices, predictive analytics is of greater importance
  • Using a trading algorithm that makes use of a proper strategy for financing huge volumes of security is called statistical arbitrage
  • Real-time examples of statistical arbitrage
  • Analysis of huge data sets
  • Algorithm-based trading for market microstructural analysis
  • Real-time arbitrage possibilities
  • Machine learning is used to enhance the strategy for statistical arbitrage as a result of which advanced results can be obtained
  • In order to help the predictive analytics mechanisms to obtain increased accuracy feature extraction using machine learning plays a significant role
  • Dataset annotations can be performed with greater significance using machine learning extraction methods where structured data can be extracted from unstructured information
  • Real-time examples of machine learning-based feature extraction include the following
  • Vocal cord disorder prediction
  • Mechanism for prevention diagnosis and treatment of many disorders
  • Detecting and solving many physiological problems in a Swift manner
  • Extraction of critical information becomes easy with machine learning even when large volumes of data are being processed
  • Machine learning methodologies can be used for translating speech into texts
  • Recorded speech and real-time voice can be converted into text using machine learning systems designed for this purpose
  • Speech can also be classified based on intensity, time, and frequency
  • Voice search, appliance control, and voice dialing are the main real-time examples of speech recognition

In order to get confidential research guidance from world-class experts on all these thesis topics for machine learning, you can feel free to contact us. With more than 15 years of customer satisfaction, we are providing in-depth Research and advanced project support for all thesis topics for machine learning . Our thesis writing support also includes the following aspects

  • Multiple revisions
  • Complete grammatical check
  • Formatting and editing
  • Benchmark reference and citations from topmost journals
  • Work privacy
  • Internal review

We ensure all these criteria are conferred to you by world-class certified engineers, developers, and writers. So you can avail of our services with elevated confidence. We are here to support you fully. Let us now see some important machine learning methods in the following  

Machine learning methods

Machine learning techniques are most often used in cases of making automatic decisions for any kind of input that they are trained and implemented for. Therefore machine learning approaches are expected to support the following aspects in decision making.

  • Maximum accuracy of recommendations
  • In-depth understanding and analysis before deciding to increase the trustworthiness

The decision-making approach using machine learning methods provides for higher accuracy in prediction and advanced comprehensible models respectively in implicit and explicit learning. For all your doubts and queries regarding the above-mentioned machine learning and decision-making approaches , you may feel free to contact us at any time of your convenience. Our technical team is highly experienced and skilled in resolving any kind of queries . Let us now see the important machine learning algorithms  

Machine learning algorithms

Machine learning algorithms are very much diverse that they can be oriented into various objectives and goals for which machine learning methods are frequently adopted

  • One rule, zero rule, and cubist
  • RIPPER or Repeated Incremental Pruning to Produce Error Reduction
  • Random forest, boosting, and AdaBoost
  • Gradient Boosted Regression Trees and the Stacked Generalization
  • Gradient Boosting Machines and Bootstrapped Aggregation
  • Convolutional Neural Networks and Stacked Autoencoders
  • Deep Boltzmann Machine and Deep Belief Networks
  • Projection Pursuit and Sammon Mapping
  • Principal Component Analysis and Partial Least Square Discriminant Analysis
  • Quadratic Discriminant Analysis and Flexible Discriminant Analysis
  • Partial Least Squares Regression and Multidimensional Scaling
  • Principal Component Regression and Mixture Discriminant Analysis
  • Regularized Discriminant Analysis and Linear Discriminant Analysis
  • K means and K medians
  • Expectation Maximization and Hierarchical Clustering
  • Ridge Regression and Elastic Net
  • Least Angle Regression and the LASSO or Least Absolute Shrinkage and Selection Operator
  • Hopfield Network and perception
  • Black Propagation and Radian Basis Function Network
  • Naive Bayes and Bayesian Network
  • Averaged One Dependents Estimators and Gaussian Naive Bayes
  • Bayesian Belief Networks and Multinomial Naive Bayes
  • Logistic, stepwise, and linear regression
  • Locally Estimated Scatterplot Smoothing and Ordinary Least Squares Regression
  • Multivariate Adaptive Regression Splines
  • MS, C 4.5, C 5.0, and Decision stump
  • Conditional Decision Trees and Iterative Dichotomiser 3
  • Chi-squared Automatic Interaction Detection
  • Classification and regression tree
  • K Nearest Neighbour and Self Organising Map
  • Locally Weighted Learning and Learning Vector Quantization

You can get a complete technical explanation and tips associated with the usage of these algorithms from our website. The selection of your thesis topic for machine learning becomes easier than before when you look into the various aspects of these algorithms and get to choose the best one based on your interests and needs. For this purpose, you can connect with us. We are here to assist you by giving proper expert consultation support for topic selection and allocating a highly qualified team of engineers to carry out your project successfully. Let us now talk about linear regression in detail

What is the process of linear regression?

The following are the three important stages in the process of linear regression analysis

  • Data correlation and directionality analysis
  • Model estimation based on linear fitting
  • Estimation of validity and assessing the merits of the model

It is important that certain characteristic features are inherent in a model for the proper working of an algorithm. Feature engineering is the process by which essential features from raw data are obtained for the better functioning of an algorithm. With the most appropriate features extracted the algorithms become simple. Thus as a result accuracy of results is obtained even in the case of nonideal algorithms. What are the objectives of feature engineering?

  • Preparation of input data for Better compatibility with the chosen machine learning algorithm
  • Enhancement of the efficiency and working of machine learning models

With these goals, feature engineering becomes one of the important aspects of a machine learning research project. Talk to engineers for more details on the methods and algorithms used in extracting the necessary features.  What are the techniques used in feature engineering? 

  • Imputation and binning
  • Log transform and feature split
  • Outliers handling and grouping functions
  • One hot encoding and scaling
  • Data extraction

Usually, we provide practical explanations in easy to understand words to our customers so that all their doubts are cleared even before they start their research. For this purpose, we make use of the real-time implemented models and our successful projects . Check out our website for all our machine learning project details. Let us now talk about hybrid machine learning models.

HYBRID MACHINE LEARNING MODELS

  • When the machine learning methods are integrated with other methods such as optimization approaches, soft computing, and so on drastic improvement can be observed in the machine learning model.
  • The ensemble methods are the culmination of grouping methods like boosting and bagging in case of multiple machine learning classifiers.

Our experts claim that the success of machine learning is dependent on ensemble and hybrid methods advancements. In this regard let us have a look into some of the hybrid methods below

  • NBTree and functional tree
  • Hybrid fuzzy with decision tree
  • Logistic model tree and hybrid hoeffding tree

Most importantly these hybrid models and ensemble-based approaches in machine learning are on a rising scale and our technical team always stays updated about such novelties. So we are highly capable of providing you with the best support in all thesis topics for machine learning. Let us now look into the metrics used in analyzing the performance of machine learning models

Performance analysis of machine learning

Confusion metrics are prominently used for analyzing the machine learning models. The following are the fundamental terms associated with machine learning confusion metrics

  • Contradiction of actual and predicted classes
  • Correct prediction of negative values consisting of ‘no’ results for both actual and predicted classes
  • Correct prediction of positive values consisting of ‘yes’ results for both actual and prediction classes

Using these fundamental parameters the essential values for calculation of efficiency and performance of the machine learning models are obtained as follows.

  • Procession is considered as the ratio between the number of accurate positives predicted and the total number of positives claimed
  • Recall is the ratio of all The true positive rate (in actual class being yes)
  • F1 Score is the average between recall and precision hence taking into account all the false positives and false negatives
  • Uneven distribution of classes require F1 Score to be evaluated than the accuracy, about which we will discuss below
  • Accuracy can be considered in cases of similar false positives and false negatives.
  • For different cost values of false positives and false negatives, it is recommended that you choose to recall and precision for performance evaluation
  • Accuracy is the ratio between correct predictions and the total observations
  • Also accuracy is considered as one of the most important and intuitive measures for analyzing the machine learning system performance

It becomes significant to note here that at thesis topics for machine learning ; our experts have produced excellent results in all these performance metrics. Contact our experts’ team for more details on the approaches that are considered to produce such the best outcomes . We work 24/7 to assist you.

machine learning thesis topics

Opening Hours

  • Mon-Sat 09.00 am – 6.30 pm
  • Lunch Time 12.30 pm – 01.30 pm
  • Break Time 04.00 pm – 04.30 pm
  • 18 years service excellence
  • 40+ country reach
  • 36+ university mou
  • 194+ college mou
  • 6000+ happy customers
  • 100+ employees
  • 240+ writers
  • 60+ developers
  • 45+ researchers
  • 540+ Journal tieup

Payment Options

money gram

Our Clients

machine learning thesis topics

Social Links

machine learning thesis topics

  • Terms of Use

machine learning thesis topics

Opening Time

machine learning thesis topics

Closing Time

  • We follow Indian time zone

award1

  • Data Science
  • Data Analysis
  • Data Visualization
  • Machine Learning
  • Deep Learning
  • Computer Vision
  • Artificial Intelligence
  • AI ML DS Interview Series
  • AI ML DS Projects series
  • Data Engineering
  • Web Scrapping

8 Best Topics for Research and Thesis in Artificial Intelligence

  • Top 5 Artificial Intelligence(AI) Predictions in 2020
  • Top 7 Artificial Intelligence Frameworks to Learn in 2022
  • What Are The Ethical Problems in Artificial Intelligence?
  • Top 7 Artificial Intelligence and Machine Learning Trends For 2022
  • The State of Artificial Intelligence in India and How Far is Too Far?
  • 5 Dangers of Artificial Intelligence in the Future
  • Top Challenges for Artificial Intelligence in 2020
  • Difference Between Machine Learning and Artificial Intelligence
  • What is Artificial Intelligence as a Service (AIaaS) in the Tech Industry?
  • 10 Best Artificial Intelligence Project Ideas To Kick-Start Your Career
  • Artificial Intelligence (AI) Researcher Jobs in China
  • Applied Artificial Intelligence in Estonia : A global springboard for startups
  • Types of Reasoning in Artificial Intelligence
  • Mapping Techniques in Artificial Intelligence and Robotics
  • Top 15 Artificial Intelligence(AI) Tools List
  • Artificial Intelligence in Robotics
  • Top Data Science with Artificial Intelligence Colleges in India
  • Difference Between Data Science and Artificial Intelligence
  • Difference Between Artificial Intelligence and Human Intelligence

Imagine a future in which intelligence is not restricted to humans!!! A future where machines can think as well as humans and work with them to create an even more exciting universe. While this future is still far away, Artificial Intelligence has still made a lot of advancement in these times. There is a lot of research being conducted in almost all fields of AI like Quantum Computing, Healthcare, Autonomous Vehicles, Internet of Things , Robotics , etc. So much so that there is an increase of 90% in the number of annually published research papers on Artificial Intelligence since 1996. Keeping this in mind, if you want to research and write a thesis based on Artificial Intelligence, there are many sub-topics that you can focus on. Some of these topics along with a brief introduction are provided in this article. We have also mentioned some published research papers related to each of these topics so that you can better understand the research process.

Best-Topics-for-Research-and-Thesis-in-Artificial-Intelligence

So without further ado, let’s see the different Topics for Research and Thesis in Artificial Intelligence!

1. Machine Learning

Machine Learning involves the use of Artificial Intelligence to enable machines to learn a task from experience without programming them specifically about that task. (In short, Machines learn automatically without human hand holding!!!) This process starts with feeding them good quality data and then training the machines by building various machine learning models using the data and different algorithms. The choice of algorithms depends on what type of data do we have and what kind of task we are trying to automate. However, generally speaking, Machine Learning Algorithms are divided into 3 types i.e. Supervised Machine Learning Algorithms, Unsupervised Machine Learning Algorithms , and Reinforcement Machine Learning Algorithms.

2. Deep Learning

Deep Learning is a subset of Machine Learning that learns by imitating the inner working of the human brain in order to process data and implement decisions based on that data. Basically, Deep Learning uses artificial neural networks to implement machine learning. These neural networks are connected in a web-like structure like the networks in the human brain (Basically a simplified version of our brain!). This web-like structure of artificial neural networks means that they are able to process data in a nonlinear approach which is a significant advantage over traditional algorithms that can only process data in a linear approach. An example of a deep neural network is RankBrain which is one of the factors in the Google Search algorithm.

3. Reinforcement Learning

Reinforcement Learning is a part of Artificial Intelligence in which the machine learns something in a way that is similar to how humans learn. As an example, assume that the machine is a student. Here the hypothetical student learns from its own mistakes over time (like we had to!!). So the Reinforcement Machine Learning Algorithms learn optimal actions through trial and error. This means that the algorithm decides the next action by learning behaviors that are based on its current state and that will maximize the reward in the future. And like humans, this works for machines as well! For example, Google’s AlphaGo computer program was able to beat the world champion in the game of Go (that’s a human!) in 2017 using Reinforcement Learning.

4. Robotics

Robotics is a field that deals with creating humanoid machines that can behave like humans and perform some actions like human beings. Now, robots can act like humans in certain situations but can they think like humans as well? This is where artificial intelligence comes in! AI allows robots to act intelligently in certain situations. These robots may be able to solve problems in a limited sphere or even learn in controlled environments. An example of this is Kismet , which is a social interaction robot developed at M.I.T’s Artificial Intelligence Lab. It recognizes the human body language and also our voice and interacts with humans accordingly. Another example is Robonaut , which was developed by NASA to work alongside the astronauts in space.

5. Natural Language Processing

It’s obvious that humans can converse with each other using speech but now machines can too! This is known as Natural Language Processing where machines analyze and understand language and speech as it is spoken (Now if you talk to a machine it may just talk back!). There are many subparts of NLP that deal with language such as speech recognition, natural language generation, natural language translation , etc. NLP is currently extremely popular for customer support applications, particularly the chatbot . These chatbots use ML and NLP to interact with the users in textual form and solve their queries. So you get the human touch in your customer support interactions without ever directly interacting with a human.

Some Research Papers published in the field of Natural Language Processing are provided here. You can study them to get more ideas about research and thesis on this topic.

6. Computer Vision

The internet is full of images! This is the selfie age, where taking an image and sharing it has never been easier. In fact, millions of images are uploaded and viewed every day on the internet. To make the most use of this huge amount of images online, it’s important that computers can see and understand images. And while humans can do this easily without a thought, it’s not so easy for computers! This is where Computer Vision comes in. Computer Vision uses Artificial Intelligence to extract information from images. This information can be object detection in the image, identification of image content to group various images together, etc. An application of computer vision is navigation for autonomous vehicles by analyzing images of surroundings such as AutoNav used in the Spirit and Opportunity rovers which landed on Mars.

7. Recommender Systems

When you are using Netflix, do you get a recommendation of movies and series based on your past choices or genres you like? This is done by Recommender Systems that provide you some guidance on what to choose next among the vast choices available online. A Recommender System can be based on Content-based Recommendation or even Collaborative Filtering. Content-Based Recommendation is done by analyzing the content of all the items. For example, you can be recommended books you might like based on Natural Language Processing done on the books. On the other hand, Collaborative Filtering is done by analyzing your past reading behavior and then recommending books based on that.

8. Internet of Things

Artificial Intelligence deals with the creation of systems that can learn to emulate human tasks using their prior experience and without any manual intervention. Internet of Things , on the other hand, is a network of various devices that are connected over the internet and they can collect and exchange data with each other. Now, all these IoT devices generate a lot of data that needs to be collected and mined for actionable results. This is where Artificial Intelligence comes into the picture. Internet of Things is used to collect and handle the huge amount of data that is required by the Artificial Intelligence algorithms. In turn, these algorithms convert the data into useful actionable results that can be implemented by the IoT devices.

Please Login to comment...

Similar reads.

author

  • AI-ML-DS Blogs

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Computer Science Thesis Topics

Academic Writing Service

This page provides a comprehensive list of computer science thesis topics , carefully curated to support students in identifying and selecting innovative and relevant areas for their academic research. Whether you are at the beginning of your research journey or are seeking a specific area to explore further, this guide aims to serve as an essential resource. With an expansive array of topics spread across various sub-disciplines of computer science, this list is designed to meet a diverse range of interests and academic needs. From the complexities of artificial intelligence to the intricate designs of web development, each category is equipped with 40 specific topics, offering a breadth of possibilities to inspire your next big thesis project. Explore our guide to find not only a topic that resonates with your academic ambitions but also one that has the potential to contribute significantly to the field of computer science.

1000 Computer Science Thesis Topics and Ideas

Computer Science Thesis Topics

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% off with 24start discount code, browse computer science thesis topics:, artificial intelligence thesis topics, augmented reality thesis topics, big data analytics thesis topics, bioinformatics thesis topics, blockchain technology thesis topics, cloud computing thesis topics, computer engineering thesis topics, computer vision thesis topics, cybersecurity thesis topics, data science thesis topics, digital transformation thesis topics, distributed systems and networks thesis topics, geographic information systems (gis) thesis topics, human-computer interaction (hci) thesis topics, image processing thesis topics, information system thesis topics, information technology thesis topics.

  • Internet Of Things (IoT) Thesis Topics

Machine Learning Thesis Topics

Neural networks thesis topics, programming thesis topics, quantum computing thesis topics, robotics thesis topics, software engineering thesis topics, web development thesis topics.

  • Ethical Implications of AI in Decision-Making Processes
  • The Role of AI in Personalized Medicine: Opportunities and Challenges
  • Advances in AI-Driven Predictive Analytics in Retail
  • AI in Autonomous Vehicles: Safety, Regulation, and Technology Integration
  • Natural Language Processing: Improving Human-Machine Interaction
  • The Future of AI in Cybersecurity: Threats and Defenses
  • Machine Learning Algorithms for Real-Time Data Processing
  • AI and the Internet of Things: Transforming Smart Home Technology
  • The Impact of Deep Learning on Image Recognition Technologies
  • Reinforcement Learning: Applications in Robotics and Automation
  • AI in Finance: Algorithmic Trading and Risk Assessment
  • Bias and Fairness in AI: Addressing Socio-Technical Challenges
  • The Evolution of AI in Education: Customized Learning Experiences
  • AI for Environmental Conservation: Tracking and Predictive Analysis
  • The Role of Artificial Neural Networks in Weather Forecasting
  • AI in Agriculture: Predictive Analytics for Crop and Soil Management
  • Emotional Recognition AI: Implications for Mental Health Assessments
  • AI in Space Exploration: Autonomous Rovers and Mission Planning
  • Enhancing User Experience with AI in Video Games
  • AI-Powered Virtual Assistants: Trends, Effectiveness, and User Trust
  • The Integration of AI in Traditional Industries: Case Studies
  • Generative AI Models in Art and Creativity
  • AI in LegalTech: Document Analysis and Litigation Prediction
  • Healthcare Diagnostics: AI Applications in Radiology and Pathology
  • AI and Blockchain: Enhancing Security in Decentralized Systems
  • Ethics of AI in Surveillance: Privacy vs. Security
  • AI in E-commerce: Personalization Engines and Customer Behavior Analysis
  • The Future of AI in Telecommunications: Network Optimization and Service Delivery
  • AI in Manufacturing: Predictive Maintenance and Quality Control
  • Challenges of AI in Elderly Care: Ethical Considerations and Technological Solutions
  • The Role of AI in Public Safety and Emergency Response
  • AI for Content Creation: Impact on Media and Journalism
  • AI-Driven Algorithms for Efficient Energy Management
  • The Role of AI in Cultural Heritage Preservation
  • AI and the Future of Public Transport: Optimization and Management
  • Enhancing Sports Performance with AI-Based Analytics
  • AI in Human Resources: Automating Recruitment and Employee Management
  • Real-Time Translation AI: Breaking Language Barriers
  • AI in Mental Health: Tools for Monitoring and Therapy Assistance
  • The Future of AI Governance: Regulation and Standardization
  • AR in Medical Training and Surgery Simulation
  • The Impact of Augmented Reality in Retail: Enhancing Consumer Experience
  • Augmented Reality for Enhanced Navigation Systems
  • AR Applications in Maintenance and Repair in Industrial Settings
  • The Role of AR in Enhancing Online Education
  • Augmented Reality in Cultural Heritage: Interactive Visitor Experiences
  • Developing AR Tools for Improved Sports Coaching and Training
  • Privacy and Security Challenges in Augmented Reality Applications
  • The Future of AR in Advertising: Engagement and Measurement
  • User Interface Design for AR: Principles and Best Practices
  • AR in Automotive Industry: Enhancing Driving Experience and Safety
  • Augmented Reality for Emergency Response Training
  • AR and IoT: Converging Technologies for Smart Environments
  • Enhancing Physical Rehabilitation with AR Applications
  • The Role of AR in Enhancing Public Safety and Awareness
  • Augmented Reality in Fashion: Virtual Fitting and Personalized Shopping
  • AR for Environmental Education: Interactive and Immersive Learning
  • The Use of AR in Building and Architecture Planning
  • AR in the Entertainment Industry: Games and Live Events
  • Implementing AR in Museums and Art Galleries for Interactive Learning
  • Augmented Reality for Real Estate: Virtual Tours and Property Visualization
  • AR in Consumer Electronics: Integration in Smart Devices
  • The Development of AR Applications for Children’s Education
  • AR for Enhancing User Engagement in Social Media Platforms
  • The Application of AR in Field Service Management
  • Augmented Reality for Disaster Management and Risk Assessment
  • Challenges of Content Creation for Augmented Reality
  • Future Trends in AR Hardware: Wearables and Beyond
  • Legal and Ethical Considerations of Augmented Reality Technology
  • AR in Space Exploration: Tools for Simulation and Training
  • Interactive Shopping Experiences with AR: The Future of Retail
  • AR in Wildlife Conservation: Educational Tools and Awareness
  • The Impact of AR on the Publishing Industry: Interactive Books and Magazines
  • Augmented Reality and Its Role in Automotive Manufacturing
  • AR for Job Training: Bridging the Skill Gap in Various Industries
  • The Role of AR in Therapy: New Frontiers in Mental Health Treatment
  • The Future of Augmented Reality in Sports Broadcasting
  • AR as a Tool for Enhancing Public Art Installations
  • Augmented Reality in the Tourism Industry: Personalized Travel Experiences
  • The Use of AR in Security Training: Realistic and Safe Simulations
  • The Role of Big Data in Improving Healthcare Outcomes
  • Big Data and Its Impact on Consumer Behavior Analysis
  • Privacy Concerns in Big Data: Ethical and Legal Implications
  • The Application of Big Data in Predictive Maintenance for Manufacturing
  • Real-Time Big Data Processing: Tools and Techniques
  • Big Data in Financial Services: Fraud Detection and Risk Management
  • The Evolution of Big Data Technologies: From Hadoop to Spark
  • Big Data Visualization: Techniques for Effective Communication of Insights
  • The Integration of Big Data and Artificial Intelligence
  • Big Data in Smart Cities: Applications in Traffic Management and Energy Use
  • Enhancing Supply Chain Efficiency with Big Data Analytics
  • Big Data in Sports Analytics: Improving Team Performance and Fan Engagement
  • The Role of Big Data in Environmental Monitoring and Sustainability
  • Big Data and Social Media: Analyzing Sentiments and Trends
  • Scalability Challenges in Big Data Systems
  • The Future of Big Data in Retail: Personalization and Customer Experience
  • Big Data in Education: Customized Learning Paths and Student Performance Analysis
  • Privacy-Preserving Techniques in Big Data
  • Big Data in Public Health: Epidemiology and Disease Surveillance
  • The Impact of Big Data on Insurance: Tailored Policies and Pricing
  • Edge Computing in Big Data: Processing at the Source
  • Big Data and the Internet of Things: Generating Insights from IoT Data
  • Cloud-Based Big Data Analytics: Opportunities and Challenges
  • Big Data Governance: Policies, Standards, and Management
  • The Role of Big Data in Crisis Management and Response
  • Machine Learning with Big Data: Building Predictive Models
  • Big Data in Agriculture: Precision Farming and Yield Optimization
  • The Ethics of Big Data in Research: Consent and Anonymity
  • Cross-Domain Big Data Integration: Challenges and Solutions
  • Big Data and Cybersecurity: Threat Detection and Prevention Strategies
  • Real-Time Streaming Analytics in Big Data
  • Big Data in the Media Industry: Content Optimization and Viewer Insights
  • The Impact of GDPR on Big Data Practices
  • Quantum Computing and Big Data: Future Prospects
  • Big Data in E-Commerce: Optimizing Logistics and Inventory Management
  • Big Data Talent: Education and Skill Development for Data Scientists
  • The Role of Big Data in Political Campaigns and Voting Behavior Analysis
  • Big Data and Mental Health: Analyzing Patterns for Better Interventions
  • Big Data in Genomics and Personalized Medicine
  • The Future of Big Data in Autonomous Driving Technologies
  • The Role of Bioinformatics in Personalized Medicine
  • Next-Generation Sequencing Data Analysis: Challenges and Opportunities
  • Bioinformatics and the Study of Genetic Diseases
  • Computational Models for Understanding Protein Structure and Function
  • Bioinformatics in Drug Discovery and Development
  • The Impact of Big Data on Bioinformatics: Data Management and Analysis
  • Machine Learning Applications in Bioinformatics
  • Bioinformatics Approaches for Cancer Genomics
  • The Development of Bioinformatics Tools for Metagenomics Analysis
  • Ethical Considerations in Bioinformatics: Data Sharing and Privacy
  • The Role of Bioinformatics in Agricultural Biotechnology
  • Bioinformatics and Viral Evolution: Tracking Pathogens and Outbreaks
  • The Integration of Bioinformatics and Systems Biology
  • Bioinformatics in Neuroscience: Mapping the Brain
  • The Future of Bioinformatics in Non-Invasive Prenatal Testing
  • Bioinformatics and the Human Microbiome: Health Implications
  • The Application of Artificial Intelligence in Bioinformatics
  • Structural Bioinformatics: Computational Techniques for Molecular Modeling
  • Comparative Genomics: Insights into Evolution and Function
  • Bioinformatics in Immunology: Vaccine Design and Immune Response Analysis
  • High-Performance Computing in Bioinformatics
  • The Challenge of Proteomics in Bioinformatics
  • RNA-Seq Data Analysis and Interpretation
  • Cloud Computing Solutions for Bioinformatics Data
  • Computational Epigenetics: DNA Methylation and Histone Modification Analysis
  • Bioinformatics in Ecology: Biodiversity and Conservation Genetics
  • The Role of Bioinformatics in Forensic Analysis
  • Mobile Apps and Tools for Bioinformatics Research
  • Bioinformatics and Public Health: Epidemiological Studies
  • The Use of Bioinformatics in Clinical Diagnostics
  • Genetic Algorithms in Bioinformatics
  • Bioinformatics for Aging Research: Understanding the Mechanisms of Aging
  • Data Visualization Techniques in Bioinformatics
  • Bioinformatics and the Development of Therapeutic Antibodies
  • The Role of Bioinformatics in Stem Cell Research
  • Bioinformatics and Cardiovascular Diseases: Genomic Insights
  • The Impact of Machine Learning on Functional Genomics in Bioinformatics
  • Bioinformatics in Dental Research: Genetic Links to Oral Diseases
  • The Future of CRISPR Technology and Bioinformatics
  • Bioinformatics and Nutrition: Genomic Insights into Diet and Health
  • Blockchain for Enhancing Cybersecurity in Various Industries
  • The Impact of Blockchain on Supply Chain Transparency
  • Blockchain in Healthcare: Patient Data Management and Security
  • The Application of Blockchain in Voting Systems
  • Blockchain and Smart Contracts: Legal Implications and Applications
  • Cryptocurrencies: Market Trends and the Future of Digital Finance
  • Blockchain in Real Estate: Improving Property and Land Registration
  • The Role of Blockchain in Managing Digital Identities
  • Blockchain for Intellectual Property Management
  • Energy Sector Innovations: Blockchain for Renewable Energy Distribution
  • Blockchain and the Future of Public Sector Operations
  • The Impact of Blockchain on Cross-Border Payments
  • Blockchain for Non-Fungible Tokens (NFTs): Applications in Art and Media
  • Privacy Issues in Blockchain Applications
  • Blockchain in the Automotive Industry: Supply Chain and Beyond
  • Decentralized Finance (DeFi): Opportunities and Challenges
  • The Role of Blockchain in Combating Counterfeiting and Fraud
  • Blockchain for Sustainable Environmental Practices
  • The Integration of Artificial Intelligence with Blockchain
  • Blockchain Education: Curriculum Development and Training Needs
  • Blockchain in the Music Industry: Rights Management and Revenue Distribution
  • The Challenges of Blockchain Scalability and Performance Optimization
  • The Future of Blockchain in the Telecommunications Industry
  • Blockchain and Consumer Data Privacy: A New Paradigm
  • Blockchain for Disaster Recovery and Business Continuity
  • Blockchain in the Charity and Non-Profit Sectors
  • Quantum Resistance in Blockchain: Preparing for the Quantum Era
  • Blockchain and Its Impact on Traditional Banking and Financial Institutions
  • Legal and Regulatory Challenges Facing Blockchain Technology
  • Blockchain for Improved Logistics and Freight Management
  • The Role of Blockchain in the Evolution of the Internet of Things (IoT)
  • Blockchain and the Future of Gaming: Transparency and Fair Play
  • Blockchain for Academic Credentials Verification
  • The Application of Blockchain in the Insurance Industry
  • Blockchain and the Future of Content Creation and Distribution
  • Blockchain for Enhancing Data Integrity in Scientific Research
  • The Impact of Blockchain on Human Resources: Employee Verification and Salary Payments
  • Blockchain and the Future of Retail: Customer Loyalty Programs and Inventory Management
  • Blockchain and Industrial Automation: Trust and Efficiency
  • Blockchain for Digital Marketing: Transparency and Consumer Engagement
  • Multi-Cloud Strategies: Optimization and Security Challenges
  • Advances in Cloud Computing Architectures for Scalable Applications
  • Edge Computing: Extending the Reach of Cloud Services
  • Cloud Security: Novel Approaches to Data Encryption and Threat Mitigation
  • The Impact of Serverless Computing on Software Development Lifecycle
  • Cloud Computing and Sustainability: Energy-Efficient Data Centers
  • Cloud Service Models: Comparative Analysis of IaaS, PaaS, and SaaS
  • Cloud Migration Strategies: Best Practices and Common Pitfalls
  • The Role of Cloud Computing in Big Data Analytics
  • Implementing AI and Machine Learning Workloads on Cloud Platforms
  • Hybrid Cloud Environments: Management Tools and Techniques
  • Cloud Computing in Healthcare: Compliance, Security, and Use Cases
  • Cost-Effective Cloud Solutions for Small and Medium Enterprises (SMEs)
  • The Evolution of Cloud Storage Solutions: Trends and Technologies
  • Cloud-Based Disaster Recovery Solutions: Design and Reliability
  • Blockchain in Cloud Services: Enhancing Transparency and Trust
  • Cloud Networking: Managing Connectivity and Traffic in Cloud Environments
  • Cloud Governance: Managing Compliance and Operational Risks
  • The Future of Cloud Computing: Quantum Computing Integration
  • Performance Benchmarking of Cloud Services Across Different Providers
  • Privacy Preservation in Cloud Environments
  • Cloud Computing in Education: Virtual Classrooms and Learning Management Systems
  • Automation in Cloud Deployments: Tools and Strategies
  • Cloud Auditing and Monitoring Techniques
  • Mobile Cloud Computing: Challenges and Future Trends
  • The Role of Cloud Computing in Digital Media Production and Distribution
  • Security Risks in Multi-Tenancy Cloud Environments
  • Cloud Computing for Scientific Research: Enabling Complex Simulations
  • The Impact of 5G on Cloud Computing Services
  • Federated Clouds: Building Collaborative Cloud Environments
  • Managing Software Dependencies in Cloud Applications
  • The Economics of Cloud Computing: Cost Models and Pricing Strategies
  • Cloud Computing in Government: Security Protocols and Citizen Services
  • Cloud Access Security Brokers (CASBs): Security Enforcement Points
  • DevOps in the Cloud: Strategies for Continuous Integration and Deployment
  • Predictive Analytics in Cloud Computing
  • The Role of Cloud Computing in IoT Deployment
  • Implementing Robust Cybersecurity Measures in Cloud Architecture
  • Cloud Computing in the Financial Sector: Handling Sensitive Data
  • Future Trends in Cloud Computing: The Role of AI in Cloud Optimization
  • Advances in Microprocessor Design and Architecture
  • FPGA-Based Design: Innovations and Applications
  • The Role of Embedded Systems in Consumer Electronics
  • Quantum Computing: Hardware Development and Challenges
  • High-Performance Computing (HPC) and Parallel Processing
  • Design and Analysis of Computer Networks
  • Cyber-Physical Systems: Design, Analysis, and Security
  • The Impact of Nanotechnology on Computer Hardware
  • Wireless Sensor Networks: Design and Optimization
  • Cryptographic Hardware: Implementations and Security Evaluations
  • Machine Learning Techniques for Hardware Optimization
  • Hardware for Artificial Intelligence: GPUs vs. TPUs
  • Energy-Efficient Hardware Designs for Sustainable Computing
  • Security Aspects of Mobile and Ubiquitous Computing
  • Advanced Algorithms for Computer-Aided Design (CAD) of VLSI
  • Signal Processing in Communication Systems
  • The Development of Wearable Computing Devices
  • Computer Hardware Testing: Techniques and Tools
  • The Role of Hardware in Network Security
  • The Evolution of Interface Designs in Consumer Electronics
  • Biometric Systems: Hardware and Software Integration
  • The Integration of IoT Devices in Smart Environments
  • Electronic Design Automation (EDA) Tools and Methodologies
  • Robotics: Hardware Design and Control Systems
  • Hardware Accelerators for Deep Learning Applications
  • Developments in Non-Volatile Memory Technologies
  • The Future of Computer Hardware in the Era of Quantum Computing
  • Hardware Solutions for Data Storage and Retrieval
  • Power Management Techniques in Embedded Systems
  • Challenges in Designing Multi-Core Processors
  • System on Chip (SoC) Design Trends and Challenges
  • The Role of Computer Engineering in Aerospace Technology
  • Real-Time Systems: Design and Implementation Challenges
  • Hardware Support for Virtualization Technology
  • Advances in Computer Graphics Hardware
  • The Impact of 5G Technology on Mobile Computing Hardware
  • Environmental Impact Assessment of Computer Hardware Production
  • Security Vulnerabilities in Modern Microprocessors
  • Computer Hardware Innovations in the Automotive Industry
  • The Role of Computer Engineering in Medical Device Technology
  • Deep Learning Approaches to Object Recognition
  • Real-Time Image Processing for Autonomous Vehicles
  • Computer Vision in Robotic Surgery: Techniques and Challenges
  • Facial Recognition Technology: Innovations and Privacy Concerns
  • Machine Vision in Industrial Automation and Quality Control
  • 3D Reconstruction Techniques in Computer Vision
  • Enhancing Sports Analytics with Computer Vision
  • Augmented Reality: Integrating Computer Vision for Immersive Experiences
  • Computer Vision for Environmental Monitoring
  • Thermal Imaging and Its Applications in Computer Vision
  • Computer Vision in Retail: Customer Behavior and Store Layout Optimization
  • Motion Detection and Tracking in Security Systems
  • The Role of Computer Vision in Content Moderation on Social Media
  • Gesture Recognition: Methods and Applications
  • Computer Vision in Agriculture: Pest Detection and Crop Analysis
  • Advances in Medical Imaging: Machine Learning and Computer Vision
  • Scene Understanding and Contextual Inference in Images
  • The Development of Vision-Based Autonomous Drones
  • Optical Character Recognition (OCR): Latest Techniques and Applications
  • The Impact of Computer Vision on Virtual Reality Experiences
  • Biometrics: Enhancing Security Systems with Computer Vision
  • Computer Vision for Wildlife Conservation: Species Recognition and Behavior Analysis
  • Underwater Image Processing: Challenges and Techniques
  • Video Surveillance: The Evolution of Algorithmic Approaches
  • Advanced Driver-Assistance Systems (ADAS): Leveraging Computer Vision
  • Computational Photography: Enhancing Image Capture Techniques
  • The Integration of AI in Computer Vision: Ethical and Technical Considerations
  • Computer Vision in the Gaming Industry: From Design to Interaction
  • The Future of Computer Vision in Smart Cities
  • Pattern Recognition in Historical Document Analysis
  • The Role of Computer Vision in the Manufacturing of Customized Products
  • Enhancing Accessibility with Computer Vision: Tools for the Visually Impaired
  • The Use of Computer Vision in Behavioral Research
  • Predictive Analytics with Computer Vision in Sports
  • Image Synthesis with Generative Adversarial Networks (GANs)
  • The Use of Computer Vision in Remote Sensing
  • Real-Time Video Analytics for Public Safety
  • The Role of Computer Vision in Telemedicine
  • Computer Vision and the Internet of Things (IoT): A Synergistic Approach
  • Future Trends in Computer Vision: Quantum Computing and Beyond
  • Advances in Cryptography: Post-Quantum Cryptosystems
  • Artificial Intelligence in Cybersecurity: Threat Detection and Response
  • Blockchain for Enhanced Security in Distributed Networks
  • The Impact of IoT on Cybersecurity: Vulnerabilities and Solutions
  • Cybersecurity in Cloud Computing: Best Practices and Tools
  • Ethical Hacking: Techniques and Ethical Implications
  • The Role of Human Factors in Cybersecurity Breaches
  • Privacy-preserving Technologies in an Age of Surveillance
  • The Evolution of Ransomware Attacks and Defense Strategies
  • Secure Software Development: Integrating Security in DevOps (DevSecOps)
  • Cybersecurity in Critical Infrastructure: Challenges and Innovations
  • The Future of Biometric Security Systems
  • Cyber Warfare: State-sponsored Attacks and Defense Mechanisms
  • The Role of Cybersecurity in Protecting Digital Identities
  • Social Engineering Attacks: Prevention and Countermeasures
  • Mobile Security: Protecting Against Malware and Exploits
  • Wireless Network Security: Protocols and Practices
  • Data Breaches: Analysis, Consequences, and Mitigation
  • The Ethics of Cybersecurity: Balancing Privacy and Security
  • Regulatory Compliance and Cybersecurity: GDPR and Beyond
  • The Impact of 5G Technology on Cybersecurity
  • The Role of Machine Learning in Cyber Threat Intelligence
  • Cybersecurity in Automotive Systems: Challenges in a Connected Environment
  • The Use of Virtual Reality for Cybersecurity Training and Simulation
  • Advanced Persistent Threats (APT): Detection and Response
  • Cybersecurity for Smart Cities: Challenges and Solutions
  • Deep Learning Applications in Malware Detection
  • The Role of Cybersecurity in Healthcare: Protecting Patient Data
  • Supply Chain Cybersecurity: Identifying Risks and Solutions
  • Endpoint Security: Trends, Challenges, and Future Directions
  • Forensic Techniques in Cybersecurity: Tracking and Analyzing Cyber Crimes
  • The Influence of International Law on Cyber Operations
  • Protecting Financial Institutions from Cyber Frauds and Attacks
  • Quantum Computing and Its Implications for Cybersecurity
  • Cybersecurity and Remote Work: Emerging Threats and Strategies
  • IoT Security in Industrial Applications
  • Cyber Insurance: Risk Assessment and Management
  • Security Challenges in Edge Computing Environments
  • Anomaly Detection in Network Security Using AI Techniques
  • Securing the Software Supply Chain in Application Development
  • Big Data Analytics: Techniques and Applications in Real-time
  • Machine Learning Algorithms for Predictive Analytics
  • Data Science in Healthcare: Improving Patient Outcomes with Predictive Models
  • The Role of Data Science in Financial Market Predictions
  • Natural Language Processing: Emerging Trends and Applications
  • Data Visualization Tools and Techniques for Enhanced Business Intelligence
  • Ethics in Data Science: Privacy, Fairness, and Transparency
  • The Use of Data Science in Environmental Science for Sustainability Studies
  • The Impact of Data Science on Social Media Marketing Strategies
  • Data Mining Techniques for Detecting Patterns in Large Datasets
  • AI and Data Science: Synergies and Future Prospects
  • Reinforcement Learning: Applications and Challenges in Data Science
  • The Role of Data Science in E-commerce Personalization
  • Predictive Maintenance in Manufacturing Through Data Science
  • The Evolution of Recommendation Systems in Streaming Services
  • Real-time Data Processing with Stream Analytics
  • Deep Learning for Image and Video Analysis
  • Data Governance in Big Data Analytics
  • Text Analytics and Sentiment Analysis for Customer Feedback
  • Fraud Detection in Banking and Insurance Using Data Science
  • The Integration of IoT Data in Data Science Models
  • The Future of Data Science in Quantum Computing
  • Data Science for Public Health: Epidemic Outbreak Prediction
  • Sports Analytics: Performance Improvement and Injury Prevention
  • Data Science in Retail: Inventory Management and Customer Journey Analysis
  • Data Science in Smart Cities: Traffic and Urban Planning
  • The Use of Blockchain in Data Security and Integrity
  • Geospatial Analysis for Environmental Monitoring
  • Time Series Analysis in Economic Forecasting
  • Data Science in Education: Analyzing Trends and Student Performance
  • Predictive Policing: Data Science in Law Enforcement
  • Data Science in Agriculture: Yield Prediction and Soil Health
  • Computational Social Science: Analyzing Societal Trends
  • Data Science in Energy Sector: Consumption and Optimization
  • Personalization Technologies in Healthcare Through Data Science
  • The Role of Data Science in Content Creation and Media
  • Anomaly Detection in Network Security Using Data Science Techniques
  • The Future of Autonomous Vehicles: Data Science-Driven Innovations
  • Multimodal Data Fusion Techniques in Data Science
  • Scalability Challenges in Data Science Projects
  • The Role of Digital Transformation in Business Model Innovation
  • The Impact of Digital Technologies on Customer Experience
  • Digital Transformation in the Banking Sector: Trends and Challenges
  • The Use of AI and Robotics in Digital Transformation of Manufacturing
  • Digital Transformation in Healthcare: Telemedicine and Beyond
  • The Influence of Big Data on Decision-Making Processes in Corporations
  • Blockchain as a Driver for Transparency in Digital Transformation
  • The Role of IoT in Enhancing Operational Efficiency in Industries
  • Digital Marketing Strategies: SEO, Content, and Social Media
  • The Integration of Cyber-Physical Systems in Industrial Automation
  • Digital Transformation in Education: Virtual Learning Environments
  • Smart Cities: The Role of Digital Technologies in Urban Planning
  • Digital Transformation in the Retail Sector: E-commerce Evolution
  • The Future of Work: Impact of Digital Transformation on Workplaces
  • Cybersecurity Challenges in a Digitally Transformed World
  • Mobile Technologies and Their Impact on Digital Transformation
  • The Role of Digital Twin Technology in Industry 4.0
  • Digital Transformation in the Public Sector: E-Government Services
  • Data Privacy and Security in the Age of Digital Transformation
  • Digital Transformation in the Energy Sector: Smart Grids and Renewable Energy
  • The Use of Augmented Reality in Training and Development
  • The Role of Virtual Reality in Real Estate and Architecture
  • Digital Transformation and Sustainability: Reducing Environmental Footprint
  • The Role of Digital Transformation in Supply Chain Optimization
  • Digital Transformation in Agriculture: IoT and Smart Farming
  • The Impact of 5G on Digital Transformation Initiatives
  • The Influence of Digital Transformation on Media and Entertainment
  • Digital Transformation in Insurance: Telematics and Risk Assessment
  • The Role of AI in Enhancing Customer Service Operations
  • The Future of Digital Transformation: Trends and Predictions
  • Digital Transformation and Corporate Governance
  • The Role of Leadership in Driving Digital Transformation
  • Digital Transformation in Non-Profit Organizations: Challenges and Benefits
  • The Economic Implications of Digital Transformation
  • The Cultural Impact of Digital Transformation on Organizations
  • Digital Transformation in Transportation: Logistics and Fleet Management
  • User Experience (UX) Design in Digital Transformation
  • The Role of Digital Transformation in Crisis Management
  • Digital Transformation and Human Resource Management
  • Implementing Change Management in Digital Transformation Projects
  • Scalability Challenges in Distributed Systems: Solutions and Strategies
  • Blockchain Technology: Enhancing Security and Transparency in Distributed Networks
  • The Role of Edge Computing in Distributed Systems
  • Designing Fault-Tolerant Systems in Distributed Networks
  • The Impact of 5G Technology on Distributed Network Architectures
  • Machine Learning Algorithms for Network Traffic Analysis
  • Load Balancing Techniques in Distributed Computing
  • The Use of Distributed Ledger Technology Beyond Cryptocurrencies
  • Network Function Virtualization (NFV) and Its Impact on Service Providers
  • The Evolution of Software-Defined Networking (SDN) in Enterprise Environments
  • Implementing Robust Cybersecurity Measures in Distributed Systems
  • Quantum Computing: Implications for Network Security in Distributed Systems
  • Peer-to-Peer Network Protocols and Their Applications
  • The Internet of Things (IoT): Network Challenges and Communication Protocols
  • Real-Time Data Processing in Distributed Sensor Networks
  • The Role of Artificial Intelligence in Optimizing Network Operations
  • Privacy and Data Protection Strategies in Distributed Systems
  • The Future of Distributed Computing in Cloud Environments
  • Energy Efficiency in Distributed Network Systems
  • Wireless Mesh Networks: Design, Challenges, and Applications
  • Multi-Access Edge Computing (MEC): Use Cases and Deployment Challenges
  • Consensus Algorithms in Distributed Systems: From Blockchain to New Applications
  • The Use of Containers and Microservices in Building Scalable Applications
  • Network Slicing for 5G: Opportunities and Challenges
  • The Role of Distributed Systems in Big Data Analytics
  • Managing Data Consistency in Distributed Databases
  • The Impact of Distributed Systems on Digital Transformation Strategies
  • Augmented Reality over Distributed Networks: Performance and Scalability Issues
  • The Application of Distributed Systems in Smart Grid Technology
  • Developing Distributed Applications Using Serverless Architectures
  • The Challenges of Implementing IPv6 in Distributed Networks
  • Distributed Systems for Disaster Recovery: Design and Implementation
  • The Use of Virtual Reality in Distributed Network Environments
  • Security Protocols for Ad Hoc Networks in Emergency Situations
  • The Role of Distributed Networks in Enhancing Mobile Broadband Services
  • Next-Generation Protocols for Enhanced Network Reliability and Performance
  • The Application of Blockchain in Securing Distributed IoT Networks
  • Dynamic Resource Allocation Strategies in Distributed Systems
  • The Integration of Distributed Systems with Existing IT Infrastructure
  • The Future of Autonomous Systems in Distributed Networking
  • The Integration of GIS with Remote Sensing for Environmental Monitoring
  • GIS in Urban Planning: Techniques for Sustainable Development
  • The Role of GIS in Disaster Management and Response Strategies
  • Real-Time GIS Applications in Traffic Management and Route Planning
  • The Use of GIS in Water Resource Management
  • GIS and Public Health: Tracking Epidemics and Healthcare Access
  • Advances in 3D GIS: Technologies and Applications
  • GIS in Agricultural Management: Precision Farming Techniques
  • The Impact of GIS on Biodiversity Conservation Efforts
  • Spatial Data Analysis for Crime Pattern Detection and Prevention
  • GIS in Renewable Energy: Site Selection and Resource Management
  • The Role of GIS in Historical Research and Archaeology
  • GIS and Machine Learning: Integrating Spatial Analysis with Predictive Models
  • Cloud Computing and GIS: Enhancing Accessibility and Data Processing
  • The Application of GIS in Managing Public Transportation Systems
  • GIS in Real Estate: Market Analysis and Property Valuation
  • The Use of GIS for Environmental Impact Assessments
  • Mobile GIS Applications: Development and Usage Trends
  • GIS and Its Role in Smart City Initiatives
  • Privacy Issues in the Use of Geographic Information Systems
  • GIS in Forest Management: Monitoring and Conservation Strategies
  • The Impact of GIS on Tourism: Enhancing Visitor Experiences through Technology
  • GIS in the Insurance Industry: Risk Assessment and Policy Design
  • The Development of Participatory GIS (PGIS) for Community Engagement
  • GIS in Coastal Management: Addressing Erosion and Flood Risks
  • Geospatial Analytics in Retail: Optimizing Location and Consumer Insights
  • GIS for Wildlife Tracking and Habitat Analysis
  • The Use of GIS in Climate Change Studies
  • GIS and Social Media: Analyzing Spatial Trends from User Data
  • The Future of GIS: Augmented Reality and Virtual Reality Applications
  • GIS in Education: Tools for Teaching Geographic Concepts
  • The Role of GIS in Land Use Planning and Zoning
  • GIS for Emergency Medical Services: Optimizing Response Times
  • Open Source GIS Software: Development and Community Contributions
  • GIS and the Internet of Things (IoT): Converging Technologies for Advanced Monitoring
  • GIS for Mineral Exploration: Techniques and Applications
  • The Role of GIS in Municipal Management and Services
  • GIS and Drone Technology: A Synergy for Precision Mapping
  • Spatial Statistics in GIS: Techniques for Advanced Data Analysis
  • Future Trends in GIS: The Integration of AI for Smarter Solutions
  • The Evolution of User Interface (UI) Design: From Desktop to Mobile and Beyond
  • The Role of HCI in Enhancing Accessibility for Disabled Users
  • Virtual Reality (VR) and Augmented Reality (AR) in HCI: New Dimensions of Interaction
  • The Impact of HCI on User Experience (UX) in Software Applications
  • Cognitive Aspects of HCI: Understanding User Perception and Behavior
  • HCI and the Internet of Things (IoT): Designing Interactive Smart Devices
  • The Use of Biometrics in HCI: Security and Usability Concerns
  • HCI in Educational Technologies: Enhancing Learning through Interaction
  • Emotional Recognition and Its Application in HCI
  • The Role of HCI in Wearable Technology: Design and Functionality
  • Advanced Techniques in Voice User Interfaces (VUIs)
  • The Impact of HCI on Social Media Interaction Patterns
  • HCI in Healthcare: Designing User-Friendly Medical Devices and Software
  • HCI and Gaming: Enhancing Player Engagement and Experience
  • The Use of HCI in Robotic Systems: Improving Human-Robot Interaction
  • The Influence of HCI on E-commerce: Optimizing User Journeys and Conversions
  • HCI in Smart Homes: Interaction Design for Automated Environments
  • Multimodal Interaction: Integrating Touch, Voice, and Gesture in HCI
  • HCI and Aging: Designing Technology for Older Adults
  • The Role of HCI in Virtual Teams: Tools and Strategies for Collaboration
  • User-Centered Design: HCI Strategies for Developing User-Focused Software
  • HCI Research Methodologies: Experimental Design and User Studies
  • The Application of HCI Principles in the Design of Public Kiosks
  • The Future of HCI: Integrating Artificial Intelligence for Smarter Interfaces
  • HCI in Transportation: Designing User Interfaces for Autonomous Vehicles
  • Privacy and Ethics in HCI: Addressing User Data Security
  • HCI and Environmental Sustainability: Promoting Eco-Friendly Behaviors
  • Adaptive Interfaces: HCI Design for Personalized User Experiences
  • The Role of HCI in Content Creation: Tools for Artists and Designers
  • HCI for Crisis Management: Designing Systems for Emergency Use
  • The Use of HCI in Sports Technology: Enhancing Training and Performance
  • The Evolution of Haptic Feedback in HCI
  • HCI and Cultural Differences: Designing for Global User Bases
  • The Impact of HCI on Digital Marketing: Creating Engaging User Interactions
  • HCI in Financial Services: Improving User Interfaces for Banking Apps
  • The Role of HCI in Enhancing User Trust in Technology
  • HCI for Public Safety: User Interfaces for Security Systems
  • The Application of HCI in the Film and Television Industry
  • HCI and the Future of Work: Designing Interfaces for Remote Collaboration
  • Innovations in HCI: Exploring New Interaction Technologies and Their Applications
  • Deep Learning Techniques for Advanced Image Segmentation
  • Real-Time Image Processing for Autonomous Driving Systems
  • Image Enhancement Algorithms for Underwater Imaging
  • Super-Resolution Imaging: Techniques and Applications
  • The Role of Image Processing in Remote Sensing and Satellite Imagery Analysis
  • Machine Learning Models for Medical Image Diagnosis
  • The Impact of AI on Photographic Restoration and Enhancement
  • Image Processing in Security Systems: Facial Recognition and Motion Detection
  • Advanced Algorithms for Image Noise Reduction
  • 3D Image Reconstruction Techniques in Tomography
  • Image Processing for Agricultural Monitoring: Crop Disease Detection and Yield Prediction
  • Techniques for Panoramic Image Stitching
  • Video Image Processing: Real-Time Streaming and Data Compression
  • The Application of Image Processing in Printing Technology
  • Color Image Processing: Theory and Practical Applications
  • The Use of Image Processing in Biometrics Identification
  • Computational Photography: Image Processing Techniques in Smartphone Cameras
  • Image Processing for Augmented Reality: Real-time Object Overlay
  • The Development of Image Processing Algorithms for Traffic Control Systems
  • Pattern Recognition and Analysis in Forensic Imaging
  • Adaptive Filtering Techniques in Image Processing
  • Image Processing in Retail: Customer Tracking and Behavior Analysis
  • The Role of Image Processing in Cultural Heritage Preservation
  • Image Segmentation Techniques for Cancer Detection in Medical Imaging
  • High Dynamic Range (HDR) Imaging: Algorithms and Display Techniques
  • Image Classification with Deep Convolutional Neural Networks
  • The Evolution of Edge Detection Algorithms in Image Processing
  • Image Processing for Wildlife Monitoring: Species Recognition and Behavior Analysis
  • Application of Wavelet Transforms in Image Compression
  • Image Processing in Sports: Enhancing Broadcasts and Performance Analysis
  • Optical Character Recognition (OCR) Improvements in Document Scanning
  • Multi-Spectral Imaging for Environmental and Earth Studies
  • Image Processing for Space Exploration: Analysis of Planetary Images
  • Real-Time Image Processing for Event Surveillance
  • The Influence of Quantum Computing on Image Processing Speed and Security
  • Machine Vision in Manufacturing: Defect Detection and Quality Control
  • Image Processing in Neurology: Visualizing Brain Functions
  • Photogrammetry and Image Processing in Geology: 3D Terrain Mapping
  • Advanced Techniques in Image Watermarking for Copyright Protection
  • The Future of Image Processing: Integrating AI for Automated Editing
  • The Evolution of Enterprise Resource Planning (ERP) Systems in the Digital Age
  • Information Systems for Managing Distributed Workforces
  • The Role of Information Systems in Enhancing Supply Chain Management
  • Cybersecurity Measures in Information Systems
  • The Impact of Big Data on Decision Support Systems
  • Blockchain Technology for Information System Security
  • The Development of Sustainable IT Infrastructure in Information Systems
  • The Use of AI in Information Systems for Business Intelligence
  • Information Systems in Healthcare: Improving Patient Care and Data Management
  • The Influence of IoT on Information Systems Architecture
  • Mobile Information Systems: Development and Usability Challenges
  • The Role of Geographic Information Systems (GIS) in Urban Planning
  • Social Media Analytics: Tools and Techniques in Information Systems
  • Information Systems in Education: Enhancing Learning and Administration
  • Cloud Computing Integration into Corporate Information Systems
  • Information Systems Audit: Practices and Challenges
  • User Interface Design and User Experience in Information Systems
  • Privacy and Data Protection in Information Systems
  • The Future of Quantum Computing in Information Systems
  • The Role of Information Systems in Environmental Management
  • Implementing Effective Knowledge Management Systems
  • The Adoption of Virtual Reality in Information Systems
  • The Challenges of Implementing ERP Systems in Multinational Corporations
  • Information Systems for Real-Time Business Analytics
  • The Impact of 5G Technology on Mobile Information Systems
  • Ethical Issues in the Management of Information Systems
  • Information Systems in Retail: Enhancing Customer Experience and Management
  • The Role of Information Systems in Non-Profit Organizations
  • Development of Decision Support Systems for Strategic Planning
  • Information Systems in the Banking Sector: Enhancing Financial Services
  • Risk Management in Information Systems
  • The Integration of Artificial Neural Networks in Information Systems
  • Information Systems and Corporate Governance
  • Information Systems for Disaster Response and Management
  • The Role of Information Systems in Sports Management
  • Information Systems for Public Health Surveillance
  • The Future of Information Systems: Trends and Predictions
  • Information Systems in the Film and Media Industry
  • Business Process Reengineering through Information Systems
  • Implementing Customer Relationship Management (CRM) Systems in E-commerce
  • Emerging Trends in Artificial Intelligence and Machine Learning
  • The Future of Cloud Services and Technology
  • Cybersecurity: Current Threats and Future Defenses
  • The Role of Information Technology in Sustainable Energy Solutions
  • Internet of Things (IoT): From Smart Homes to Smart Cities
  • Blockchain and Its Impact on Information Technology
  • The Use of Big Data Analytics in Predictive Modeling
  • Virtual Reality (VR) and Augmented Reality (AR): The Next Frontier in IT
  • The Challenges of Digital Transformation in Traditional Businesses
  • Wearable Technology: Health Monitoring and Beyond
  • 5G Technology: Implementation and Impacts on IT
  • Biometrics Technology: Uses and Privacy Concerns
  • The Role of IT in Global Health Initiatives
  • Ethical Considerations in the Development of Autonomous Systems
  • Data Privacy in the Age of Information Overload
  • The Evolution of Software Development Methodologies
  • Quantum Computing: The Next Revolution in IT
  • IT Governance: Best Practices and Standards
  • The Integration of AI in Customer Service Technology
  • IT in Manufacturing: Industrial Automation and Robotics
  • The Future of E-commerce: Technology and Trends
  • Mobile Computing: Innovations and Challenges
  • Information Technology in Education: Tools and Trends
  • IT Project Management: Approaches and Tools
  • The Role of IT in Media and Entertainment
  • The Impact of Digital Marketing Technologies on Business Strategies
  • IT in Logistics and Supply Chain Management
  • The Development and Future of Autonomous Vehicles
  • IT in the Insurance Sector: Enhancing Efficiency and Customer Engagement
  • The Role of IT in Environmental Conservation
  • Smart Grid Technology: IT at the Intersection of Energy Management
  • Telemedicine: The Impact of IT on Healthcare Delivery
  • IT in the Agricultural Sector: Innovations and Impact
  • Cyber-Physical Systems: IT in the Integration of Physical and Digital Worlds
  • The Influence of Social Media Platforms on IT Development
  • Data Centers: Evolution, Technologies, and Sustainability
  • IT in Public Administration: Improving Services and Transparency
  • The Role of IT in Sports Analytics
  • Information Technology in Retail: Enhancing the Shopping Experience
  • The Future of IT: Integrating Ethical AI Systems

Internet of Things (IoT) Thesis Topics

  • Enhancing IoT Security: Strategies for Safeguarding Connected Devices
  • IoT in Smart Cities: Infrastructure and Data Management Challenges
  • The Application of IoT in Precision Agriculture: Maximizing Efficiency and Yield
  • IoT and Healthcare: Opportunities for Remote Monitoring and Patient Care
  • Energy Efficiency in IoT: Techniques for Reducing Power Consumption in Devices
  • The Role of IoT in Supply Chain Management and Logistics
  • Real-Time Data Processing Using Edge Computing in IoT Networks
  • Privacy Concerns and Data Protection in IoT Systems
  • The Integration of IoT with Blockchain for Enhanced Security and Transparency
  • IoT in Environmental Monitoring: Systems for Air Quality and Water Safety
  • Predictive Maintenance in Industrial IoT: Strategies and Benefits
  • IoT in Retail: Enhancing Customer Experience through Smart Technology
  • The Development of Standard Protocols for IoT Communication
  • IoT in Smart Homes: Automation and Security Systems
  • The Role of IoT in Disaster Management: Early Warning Systems and Response Coordination
  • Machine Learning Techniques for IoT Data Analytics
  • IoT in Automotive: The Future of Connected and Autonomous Vehicles
  • The Impact of 5G on IoT: Enhancements in Speed and Connectivity
  • IoT Device Lifecycle Management: From Creation to Decommissioning
  • IoT in Public Safety: Applications for Emergency Response and Crime Prevention
  • The Ethics of IoT: Balancing Innovation with Consumer Rights
  • IoT and the Future of Work: Automation and Labor Market Shifts
  • Designing User-Friendly Interfaces for IoT Applications
  • IoT in the Energy Sector: Smart Grids and Renewable Energy Integration
  • Quantum Computing and IoT: Potential Impacts and Applications
  • The Role of AI in Enhancing IoT Solutions
  • IoT for Elderly Care: Technologies for Health and Mobility Assistance
  • IoT in Education: Enhancing Classroom Experiences and Learning Outcomes
  • Challenges in Scaling IoT Infrastructure for Global Coverage
  • The Economic Impact of IoT: Industry Transformations and New Business Models
  • IoT and Tourism: Enhancing Visitor Experiences through Connected Technologies
  • Data Fusion Techniques in IoT: Integrating Diverse Data Sources
  • IoT in Aquaculture: Monitoring and Managing Aquatic Environments
  • Wireless Technologies for IoT: Comparing LoRa, Zigbee, and NB-IoT
  • IoT and Intellectual Property: Navigating the Legal Landscape
  • IoT in Sports: Enhancing Training and Audience Engagement
  • Building Resilient IoT Systems against Cyber Attacks
  • IoT for Waste Management: Innovations and System Implementations
  • IoT in Agriculture: Drones and Sensors for Crop Monitoring
  • The Role of IoT in Cultural Heritage Preservation: Monitoring and Maintenance
  • Advanced Algorithms for Supervised and Unsupervised Learning
  • Machine Learning in Genomics: Predicting Disease Propensity and Treatment Outcomes
  • The Use of Neural Networks in Image Recognition and Analysis
  • Reinforcement Learning: Applications in Robotics and Autonomous Systems
  • The Role of Machine Learning in Natural Language Processing and Linguistic Analysis
  • Deep Learning for Predictive Analytics in Business and Finance
  • Machine Learning for Cybersecurity: Detection of Anomalies and Malware
  • Ethical Considerations in Machine Learning: Bias and Fairness
  • The Integration of Machine Learning with IoT for Smart Device Management
  • Transfer Learning: Techniques and Applications in New Domains
  • The Application of Machine Learning in Environmental Science
  • Machine Learning in Healthcare: Diagnosing Conditions from Medical Images
  • The Use of Machine Learning in Algorithmic Trading and Stock Market Analysis
  • Machine Learning in Social Media: Sentiment Analysis and Trend Prediction
  • Quantum Machine Learning: Merging Quantum Computing with AI
  • Feature Engineering and Selection in Machine Learning
  • Machine Learning for Enhancing User Experience in Mobile Applications
  • The Impact of Machine Learning on Digital Marketing Strategies
  • Machine Learning for Energy Consumption Forecasting and Optimization
  • The Role of Machine Learning in Enhancing Network Security Protocols
  • Scalability and Efficiency of Machine Learning Algorithms
  • Machine Learning in Drug Discovery and Pharmaceutical Research
  • The Application of Machine Learning in Sports Analytics
  • Machine Learning for Real-Time Decision-Making in Autonomous Vehicles
  • The Use of Machine Learning in Predicting Geographical and Meteorological Events
  • Machine Learning for Educational Data Mining and Learning Analytics
  • The Role of Machine Learning in Audio Signal Processing
  • Predictive Maintenance in Manufacturing Through Machine Learning
  • Machine Learning and Its Implications for Privacy and Surveillance
  • The Application of Machine Learning in Augmented Reality Systems
  • Deep Learning Techniques in Medical Diagnosis: Challenges and Opportunities
  • The Use of Machine Learning in Video Game Development
  • Machine Learning for Fraud Detection in Financial Services
  • The Role of Machine Learning in Agricultural Optimization and Management
  • The Impact of Machine Learning on Content Personalization and Recommendation Systems
  • Machine Learning in Legal Tech: Document Analysis and Case Prediction
  • Adaptive Learning Systems: Tailoring Education Through Machine Learning
  • Machine Learning in Space Exploration: Analyzing Data from Space Missions
  • Machine Learning for Public Sector Applications: Improving Services and Efficiency
  • The Future of Machine Learning: Integrating Explainable AI
  • Innovations in Convolutional Neural Networks for Image and Video Analysis
  • Recurrent Neural Networks: Applications in Sequence Prediction and Analysis
  • The Role of Neural Networks in Predicting Financial Market Trends
  • Deep Neural Networks for Enhanced Speech Recognition Systems
  • Neural Networks in Medical Imaging: From Detection to Diagnosis
  • Generative Adversarial Networks (GANs): Applications in Art and Media
  • The Use of Neural Networks in Autonomous Driving Technologies
  • Neural Networks for Real-Time Language Translation
  • The Application of Neural Networks in Robotics: Sensory Data and Movement Control
  • Neural Network Optimization Techniques: Overcoming Overfitting and Underfitting
  • The Integration of Neural Networks with Blockchain for Data Security
  • Neural Networks in Climate Modeling and Weather Forecasting
  • The Use of Neural Networks in Enhancing Internet of Things (IoT) Devices
  • Graph Neural Networks: Applications in Social Network Analysis and Beyond
  • The Impact of Neural Networks on Augmented Reality Experiences
  • Neural Networks for Anomaly Detection in Network Security
  • The Application of Neural Networks in Bioinformatics and Genomic Data Analysis
  • Capsule Neural Networks: Improving the Robustness and Interpretability of Deep Learning
  • The Role of Neural Networks in Consumer Behavior Analysis
  • Neural Networks in Energy Sector: Forecasting and Optimization
  • The Evolution of Neural Network Architectures for Efficient Learning
  • The Use of Neural Networks in Sentiment Analysis: Techniques and Challenges
  • Deep Reinforcement Learning: Strategies for Advanced Decision-Making Systems
  • Neural Networks for Precision Medicine: Tailoring Treatments to Individual Genetic Profiles
  • The Use of Neural Networks in Virtual Assistants: Enhancing Natural Language Understanding
  • The Impact of Neural Networks on Pharmaceutical Research
  • Neural Networks for Supply Chain Management: Prediction and Automation
  • The Application of Neural Networks in E-commerce: Personalization and Recommendation Systems
  • Neural Networks for Facial Recognition: Advances and Ethical Considerations
  • The Role of Neural Networks in Educational Technologies
  • The Use of Neural Networks in Predicting Economic Trends
  • Neural Networks in Sports: Analyzing Performance and Strategy
  • The Impact of Neural Networks on Digital Security Systems
  • Neural Networks for Real-Time Video Surveillance Analysis
  • The Integration of Neural Networks in Edge Computing Devices
  • Neural Networks for Industrial Automation: Improving Efficiency and Accuracy
  • The Future of Neural Networks: Towards More General AI Applications
  • Neural Networks in Art and Design: Creating New Forms of Expression
  • The Role of Neural Networks in Enhancing Public Health Initiatives
  • The Future of Neural Networks: Challenges in Scalability and Generalization
  • The Evolution of Programming Paradigms: Functional vs. Object-Oriented Programming
  • Advances in Compiler Design and Optimization Techniques
  • The Impact of Programming Languages on Software Security
  • Developing Programming Languages for Quantum Computing
  • Machine Learning in Automated Code Generation and Optimization
  • The Role of Programming in Developing Scalable Cloud Applications
  • The Future of Web Development: New Frameworks and Technologies
  • Cross-Platform Development: Best Practices in Mobile App Programming
  • The Influence of Programming Techniques on Big Data Analytics
  • Real-Time Systems Programming: Challenges and Solutions
  • The Integration of Programming with Blockchain Technology
  • Programming for IoT: Languages and Tools for Device Communication
  • Secure Coding Practices: Preventing Cyber Attacks through Software Design
  • The Role of Programming in Data Visualization and User Interface Design
  • Advances in Game Programming: Graphics, AI, and Network Play
  • The Impact of Programming on Digital Media and Content Creation
  • Programming Languages for Robotics: Trends and Future Directions
  • The Use of Artificial Intelligence in Enhancing Programming Productivity
  • Programming for Augmented and Virtual Reality: New Challenges and Techniques
  • Ethical Considerations in Programming: Bias, Fairness, and Transparency
  • The Future of Programming Education: Interactive and Adaptive Learning Models
  • Programming for Wearable Technology: Special Considerations and Challenges
  • The Evolution of Programming in Financial Technology
  • Functional Programming in Enterprise Applications
  • Memory Management Techniques in Programming: From Garbage Collection to Manual Control
  • The Role of Open Source Programming in Accelerating Innovation
  • The Impact of Programming on Network Security and Cryptography
  • Developing Accessible Software: Programming for Users with Disabilities
  • Programming Language Theories: New Models and Approaches
  • The Challenges of Legacy Code: Strategies for Modernization and Integration
  • Energy-Efficient Programming: Optimizing Code for Green Computing
  • Multithreading and Concurrency: Advanced Programming Techniques
  • The Impact of Programming on Computational Biology and Bioinformatics
  • The Role of Scripting Languages in Automating System Administration
  • Programming and the Future of Quantum Resistant Cryptography
  • Code Review and Quality Assurance: Techniques and Tools
  • Adaptive and Predictive Programming for Dynamic Environments
  • The Role of Programming in Enhancing E-commerce Technology
  • Programming for Cyber-Physical Systems: Bridging the Gap Between Digital and Physical
  • The Influence of Programming Languages on Computational Efficiency and Performance
  • Quantum Algorithms: Development and Applications Beyond Shor’s and Grover’s Algorithms
  • The Role of Quantum Computing in Solving Complex Biological Problems
  • Quantum Cryptography: New Paradigms for Secure Communication
  • Error Correction Techniques in Quantum Computing
  • Quantum Computing and Its Impact on Artificial Intelligence
  • The Integration of Classical and Quantum Computing: Hybrid Models
  • Quantum Machine Learning: Theoretical Foundations and Practical Applications
  • Quantum Computing Hardware: Advances in Qubit Technology
  • The Application of Quantum Computing in Financial Modeling and Risk Assessment
  • Quantum Networking: Establishing Secure Quantum Communication Channels
  • The Future of Drug Discovery: Applications of Quantum Computing
  • Quantum Computing in Cryptanalysis: Threats to Current Cryptography Standards
  • Simulation of Quantum Systems for Material Science
  • Quantum Computing for Optimization Problems in Logistics and Manufacturing
  • Theoretical Limits of Quantum Computing: Understanding Quantum Complexity
  • Quantum Computing and the Future of Search Algorithms
  • The Role of Quantum Computing in Climate Science and Environmental Modeling
  • Quantum Annealing vs. Universal Quantum Computing: Comparative Studies
  • Implementing Quantum Algorithms in Quantum Programming Languages
  • The Impact of Quantum Computing on Public Key Cryptography
  • Quantum Entanglement: Experiments and Applications in Quantum Networks
  • Scalability Challenges in Quantum Processors
  • The Ethics and Policy Implications of Quantum Computing
  • Quantum Computing in Space Exploration and Astrophysics
  • The Role of Quantum Computing in Developing Next-Generation AI Systems
  • Quantum Computing in the Energy Sector: Applications in Smart Grids and Nuclear Fusion
  • Noise and Decoherence in Quantum Computers: Overcoming Practical Challenges
  • Quantum Computing for Predicting Economic Market Trends
  • Quantum Sensors: Enhancing Precision in Measurement and Imaging
  • The Future of Quantum Computing Education and Workforce Development
  • Quantum Computing in Cybersecurity: Preparing for a Post-Quantum World
  • Quantum Computing and the Internet of Things: Potential Intersections
  • Practical Quantum Computing: From Theory to Real-World Applications
  • Quantum Supremacy: Milestones and Future Goals
  • The Role of Quantum Computing in Genetics and Genomics
  • Quantum Computing for Material Discovery and Design
  • The Challenges of Quantum Programming Languages and Environments
  • Quantum Computing in Art and Creative Industries
  • The Global Race for Quantum Computing Supremacy: Technological and Political Aspects
  • Quantum Computing and Its Implications for Software Engineering
  • Advances in Humanoid Robotics: New Developments and Challenges
  • Robotics in Healthcare: From Surgery to Rehabilitation
  • The Integration of AI in Robotics: Enhanced Autonomy and Learning Capabilities
  • Swarm Robotics: Coordination Strategies and Applications
  • The Use of Robotics in Hazardous Environments: Deep Sea and Space Exploration
  • Soft Robotics: Materials, Design, and Applications
  • Robotics in Agriculture: Automation of Farming and Harvesting Processes
  • The Role of Robotics in Manufacturing: Increased Efficiency and Flexibility
  • Ethical Considerations in the Deployment of Robots in Human Environments
  • Autonomous Vehicles: Technological Advances and Regulatory Challenges
  • Robotic Assistants for the Elderly and Disabled: Improving Quality of Life
  • The Use of Robotics in Education: Teaching Science, Technology, Engineering, and Math (STEM)
  • Robotics and Computer Vision: Enhancing Perception and Decision Making
  • The Impact of Robotics on Employment and the Workforce
  • The Development of Robotic Systems for Environmental Monitoring and Conservation
  • Machine Learning Techniques for Robotic Perception and Navigation
  • Advances in Robotic Surgery: Precision and Outcomes
  • Human-Robot Interaction: Building Trust and Cooperation
  • Robotics in Retail: Automated Warehousing and Customer Service
  • Energy-Efficient Robots: Design and Utilization
  • Robotics in Construction: Automation and Safety Improvements
  • The Role of Robotics in Disaster Response and Recovery Operations
  • The Application of Robotics in Art and Creative Industries
  • Robotics and the Future of Personal Transportation
  • Ethical AI in Robotics: Ensuring Safe and Fair Decision-Making
  • The Use of Robotics in Logistics: Drones and Autonomous Delivery Vehicles
  • Robotics in the Food Industry: From Production to Service
  • The Integration of IoT with Robotics for Enhanced Connectivity
  • Wearable Robotics: Exoskeletons for Rehabilitation and Enhanced Mobility
  • The Impact of Robotics on Privacy and Security
  • Robotic Pet Companions: Social Robots and Their Psychological Effects
  • Robotics for Planetary Exploration and Colonization
  • Underwater Robotics: Innovations in Oceanography and Marine Biology
  • Advances in Robotics Programming Languages and Tools
  • The Role of Robotics in Minimizing Human Exposure to Contaminants and Pathogens
  • Collaborative Robots (Cobots): Working Alongside Humans in Shared Spaces
  • The Use of Robotics in Entertainment and Sports
  • Robotics and Machine Ethics: Programming Moral Decision-Making
  • The Future of Military Robotics: Opportunities and Challenges
  • Sustainable Robotics: Reducing the Environmental Impact of Robotic Systems
  • Agile Methodologies: Evolution and Future Trends
  • DevOps Practices: Improving Software Delivery and Lifecycle Management
  • The Impact of Microservices Architecture on Software Development
  • Containerization Technologies: Docker, Kubernetes, and Beyond
  • Software Quality Assurance: Modern Techniques and Tools
  • The Role of Artificial Intelligence in Automated Software Testing
  • Blockchain Applications in Software Development and Security
  • The Integration of Continuous Integration and Continuous Deployment (CI/CD) in Software Projects
  • Cybersecurity in Software Engineering: Best Practices for Secure Coding
  • Low-Code and No-Code Development: Implications for Professional Software Development
  • The Future of Software Engineering Education
  • Software Sustainability: Developing Green Software and Reducing Carbon Footprints
  • The Role of Software Engineering in Healthcare: Telemedicine and Patient Data Management
  • Privacy by Design: Incorporating Privacy Features at the Development Stage
  • The Impact of Quantum Computing on Software Engineering
  • Software Engineering for Augmented and Virtual Reality: Challenges and Innovations
  • Cloud-Native Applications: Design, Development, and Deployment
  • Software Project Management: Agile vs. Traditional Approaches
  • Open Source Software: Community Engagement and Project Sustainability
  • The Evolution of Graphical User Interfaces in Application Development
  • The Challenges of Integrating IoT Devices into Software Systems
  • Ethical Issues in Software Engineering: Bias, Accountability, and Regulation
  • Software Engineering for Autonomous Vehicles: Safety and Regulatory Considerations
  • Big Data Analytics in Software Development: Enhancing Decision-Making Processes
  • The Future of Mobile App Development: Trends and Technologies
  • The Role of Software Engineering in Artificial Intelligence: Frameworks and Algorithms
  • Performance Optimization in Software Applications
  • Adaptive Software Development: Responding to Changing User Needs
  • Software Engineering in Financial Services: Compliance and Security Challenges
  • User Experience (UX) Design in Software Engineering
  • The Role of Software Engineering in Smart Cities: Infrastructure and Services
  • The Impact of 5G on Software Development and Deployment
  • Real-Time Systems in Software Engineering: Design and Implementation Challenges
  • Cross-Platform Development Challenges: Ensuring Consistency and Performance
  • Software Testing Automation: Tools and Trends
  • The Integration of Cyber-Physical Systems in Software Engineering
  • Software Engineering in the Entertainment Industry: Game Development and Beyond
  • The Application of Machine Learning in Predicting Software Bugs
  • The Role of Software Engineering in Cybersecurity Defense Strategies
  • Accessibility in Software Engineering: Creating Inclusive and Usable Software
  • Progressive Web Apps (PWAs): Advantages and Implementation Challenges
  • The Future of Web Accessibility: Standards and Practices
  • Single-Page Applications (SPAs) vs. Multi-Page Applications (MPAs): Performance and Usability
  • The Impact of Serverless Computing on Web Development
  • The Evolution of CSS for Modern Web Design
  • Security Best Practices in Web Development: Defending Against XSS and CSRF Attacks
  • The Role of Web Development in Enhancing E-commerce User Experience
  • The Use of Artificial Intelligence in Web Personalization and User Engagement
  • The Future of Web APIs: Standards, Security, and Scalability
  • Responsive Web Design: Techniques and Trends
  • JavaScript Frameworks: Vue.js, React.js, and Angular – A Comparative Analysis
  • Web Development for IoT: Interfaces and Connectivity Solutions
  • The Impact of 5G on Web Development and User Experiences
  • The Use of Blockchain Technology in Web Development for Enhanced Security
  • Web Development in the Cloud: Using AWS, Azure, and Google Cloud
  • Content Management Systems (CMS): Trends and Future Developments
  • The Application of Web Development in Virtual and Augmented Reality
  • The Importance of Web Performance Optimization: Tools and Techniques
  • Sustainable Web Design: Practices for Reducing Energy Consumption
  • The Role of Web Development in Digital Marketing: SEO and Social Media Integration
  • Headless CMS: Benefits and Challenges for Developers and Content Creators
  • The Future of Web Typography: Design, Accessibility, and Performance
  • Web Development and Data Protection: Complying with GDPR and Other Regulations
  • Real-Time Web Communication: Technologies like WebSockets and WebRTC
  • Front-End Development Tools: Efficiency and Innovation in Workflow
  • The Challenges of Migrating Legacy Systems to Modern Web Architectures
  • Microfrontends Architecture: Designing Scalable and Decoupled Web Applications
  • The Impact of Cryptocurrencies on Web Payment Systems
  • User-Centered Design in Web Development: Methods for Engaging Users
  • The Role of Web Development in Business Intelligence: Dashboards and Reporting Tools
  • Web Development for Mobile Platforms: Optimization and Best Practices
  • The Evolution of E-commerce Platforms: From Web to Mobile Commerce
  • Web Security in E-commerce: Protecting Transactions and User Data
  • Dynamic Web Content: Server-Side vs. Client-Side Rendering
  • The Future of Full Stack Development: Trends and Skills
  • Web Design Psychology: How Design Influences User Behavior
  • The Role of Web Development in the Non-Profit Sector: Fundraising and Community Engagement
  • The Integration of AI Chatbots in Web Development
  • The Use of Motion UI in Web Design: Enhancing Aesthetics and User Interaction
  • The Future of Web Development: Predictions and Emerging Technologies

We trust that this comprehensive list of computer science thesis topics will serve as a valuable starting point for your research endeavors. With 1000 unique and carefully selected topics distributed across 25 key areas of computer science, students are equipped to tackle complex questions and contribute meaningful advancements to the field. As you proceed to select your thesis topic, consider not only your personal interests and career goals but also the potential impact of your research. We encourage you to explore these topics thoroughly and choose one that will not only challenge you but also push the boundaries of technology and innovation.

The Range of Computer Science Thesis Topics

Computer science stands as a dynamic and ever-evolving field that continuously reshapes how we interact with the world. At its core, the discipline encompasses not just the study of algorithms and computation, but a broad spectrum of practical and theoretical knowledge areas that drive innovation in various sectors. This article aims to explore the rich landscape of computer science thesis topics, offering students and researchers a glimpse into the potential areas of study that not only challenge the intellect but also contribute significantly to technological progress. As we delve into the current issues, recent trends, and future directions of computer science, it becomes evident that the possibilities for research are both vast and diverse. Whether you are intrigued by the complexities of artificial intelligence, the robust architecture of networks and systems, or the innovative approaches in cybersecurity, computer science offers a fertile ground for developing thesis topics that are as impactful as they are intellectually stimulating.

Current Issues in Computer Science

One of the prominent current issues in computer science revolves around data security and privacy. As digital transformation accelerates across industries, the massive influx of data generated poses significant challenges in terms of its protection and ethical use. Cybersecurity threats have become more sophisticated, with data breaches and cyber-attacks causing major concerns for organizations worldwide. This ongoing battle demands continuous improvements in security protocols and the development of robust cybersecurity measures. Computer science thesis topics in this area can explore new cryptographic methods, intrusion detection systems, and secure communication protocols to fortify digital defenses. Research could also delve into the ethical implications of data collection and use, proposing frameworks that ensure privacy while still leveraging data for innovation.

Another critical issue facing the field of computer science is the ethical development and deployment of artificial intelligence (AI) systems. As AI technologies become more integrated into daily life and critical infrastructure, concerns about bias, fairness, and accountability in AI systems have intensified. Thesis topics could focus on developing algorithms that address these ethical concerns, including techniques for reducing bias in machine learning models and methods for increasing transparency and explainability in AI decisions. This research is crucial for ensuring that AI technologies promote fairness and do not perpetuate or exacerbate existing societal inequalities.

Furthermore, the rapid pace of technological change presents a challenge in terms of sustainability and environmental impact. The energy consumption of large data centers, the carbon footprint of producing and disposing of electronic waste, and the broader effects of high-tech innovations on the environment are significant concerns within computer science. Thesis research in this domain could focus on creating more energy-efficient computing methods, developing algorithms that reduce power consumption, or innovating recycling technologies that address the issue of e-waste. This research not only contributes to the field of computer science but also plays a crucial role in ensuring that technological advancement does not come at an unsustainable cost to the environment.

These current issues highlight the dynamic nature of computer science and its direct impact on society. Addressing these challenges through focused research and innovative thesis topics not only advances the field but also contributes to resolving some of the most pressing problems facing our global community today.

Recent Trends in Computer Science

In recent years, computer science has witnessed significant advancements in the integration of artificial intelligence (AI) and machine learning (ML) across various sectors, marking one of the most exciting trends in the field. These technologies are not just reshaping traditional industries but are also at the forefront of driving innovations in areas like healthcare, finance, and autonomous systems. Thesis topics within this trend could explore the development of advanced ML algorithms that enhance predictive analytics, improve automated decision-making, or refine natural language processing capabilities. Additionally, AI’s role in ethical decision-making and its societal impacts offers a rich vein of inquiry for research, focusing on mitigating biases and ensuring that AI systems operate transparently and justly.

Another prominent trend in computer science is the rapid growth of blockchain technology beyond its initial application in cryptocurrencies. Blockchain is proving its potential in creating more secure, decentralized, and transparent networks for a variety of applications, from enhancing supply chain logistics to revolutionizing digital identity verification processes. Computer science thesis topics could investigate novel uses of blockchain for ensuring data integrity in digital transactions, enhancing cybersecurity measures, or even developing new frameworks for blockchain integration into existing technological infrastructures. The exploration of blockchain’s scalability, speed, and energy consumption also presents critical research opportunities that are timely and relevant.

Furthermore, the expansion of the Internet of Things (IoT) continues to be a significant trend, with more devices becoming connected every day, leading to increasingly smart environments. This proliferation poses unique challenges and opportunities for computer science research, particularly in terms of scalability, security, and new data management strategies. Thesis topics might focus on optimizing network protocols to handle the massive influx of data from IoT devices, developing solutions to safeguard against IoT-specific security vulnerabilities, or innovative applications of IoT in urban planning, smart homes, or healthcare. Research in this area is crucial for advancing the efficiency and functionality of IoT systems and for ensuring they can be safely and effectively integrated into modern life.

These recent trends underscore the vibrant and ever-evolving nature of computer science, reflecting its capacity to influence and transform an array of sectors through technological innovation. The continual emergence of new research topics within these trends not only enriches the academic discipline but also provides substantial benefits to society by addressing practical challenges and enhancing the capabilities of technology in everyday life.

Future Directions in Computer Science

As we look toward the future, one of the most anticipated areas in computer science is the advancement of quantum computing. This emerging technology promises to revolutionize problem-solving in fields that require immense computational power, such as cryptography, drug discovery, and complex system modeling. Quantum computing has the potential to process tasks at speeds unachievable by classical computers, offering breakthroughs in materials science and encryption methods. Computer science thesis topics might explore the theoretical underpinnings of quantum algorithms, the development of quantum-resistant cryptographic systems, or practical applications of quantum computing in industry-specific scenarios. Research in this area not only contributes to the foundational knowledge of quantum mechanics but also paves the way for its integration into mainstream computing, marking a significant leap forward in computational capabilities.

Another promising direction in computer science is the advancement of autonomous systems, particularly in robotics and vehicle automation. The future of autonomous technologies hinges on improving their safety, reliability, and decision-making processes under uncertain conditions. Thesis topics could focus on the enhancement of machine perception through computer vision and sensor fusion, the development of more sophisticated AI-driven decision frameworks, or ethical considerations in the deployment of autonomous systems. As these technologies become increasingly prevalent, research will play a crucial role in addressing the societal and technical challenges they present, ensuring their beneficial integration into daily life and industry operations.

Additionally, the ongoing expansion of artificial intelligence applications poses significant future directions for research, especially in the realm of AI ethics and policy. As AI systems become more capable and widespread, their impact on privacy, employment, and societal norms continues to grow. Future thesis topics might delve into the development of guidelines and frameworks for responsible AI, studies on the impact of AI on workforce dynamics, or innovations in transparent and fair AI systems. This research is vital for guiding the ethical evolution of AI technologies, ensuring they enhance societal well-being without diminishing human dignity or autonomy.

These future directions in computer science not only highlight the field’s potential for substantial technological advancements but also underscore the importance of thoughtful consideration of their broader implications. By exploring these areas in depth, computer science research can lead the way in not just technological innovation, but also in shaping a future where technology and ethics coexist harmoniously for the betterment of society.

In conclusion, the field of computer science is not only foundational to the technological advancements that characterize the modern age but also crucial in solving some of the most pressing challenges of our time. The potential thesis topics discussed in this article reflect a mere fraction of the opportunities that lie in the realms of theory, application, and innovation within this expansive field. As emerging technologies such as quantum computing, artificial intelligence, and blockchain continue to evolve, they open new avenues for research that could potentially redefine existing paradigms. For students embarking on their thesis journey, it is essential to choose a topic that not only aligns with their academic passions but also contributes to the ongoing expansion of computer science knowledge. By pushing the boundaries of what is known and exploring uncharted territories, students can leave a lasting impact on the field and pave the way for future technological breakthroughs. As we look forward, it’s clear that computer science will continue to be a key driver of change, making it an exciting and rewarding area for academic and professional growth.

Thesis Writing Services by iResearchNet

At iResearchNet, we specialize in providing exceptional thesis writing services tailored to meet the diverse needs of students, particularly those pursuing advanced topics in computer science. Understanding the pivotal role a thesis plays in a student’s academic career, we offer a suite of services designed to assist students in crafting papers that are not only well-researched and insightful but also perfectly aligned with their academic objectives. Here are the key features of our thesis writing services:

  • Expert Degree-Holding Writers : Our team consists of writers who hold advanced degrees in computer science and related fields. Their academic and professional backgrounds ensure that they bring a wealth of knowledge and expertise to your thesis.
  • Custom Written Works : Every thesis we produce is tailor-made to meet the specific requirements and guidelines provided by the student. This bespoke approach ensures that each paper is unique and of the highest quality.
  • In-depth Research : We pride ourselves on conducting thorough and comprehensive research for every thesis. Our writers utilize the latest resources, databases, and scholarly articles to gather the most relevant and up-to-date information.
  • Custom Formatting : Each thesis is formatted according to academic standards and the specific requirements of the student’s program, whether it’s APA, MLA, Chicago/Turabian, or Harvard style.
  • Top Quality : Quality is at the core of our services. From language clarity to factual accuracy, each thesis is crafted to meet the highest academic standards.
  • Customized Solutions : Recognizing that every student’s needs are different, we offer customized solutions that cater to individual preferences and requirements.
  • Flexible Pricing : We provide a range of pricing options to accommodate students’ different budgets, ensuring that our services are accessible to everyone.
  • Short Deadlines : Our services are designed to accommodate even the tightest deadlines, with the ability to handle requests that require a turnaround as quick as 3 hours.
  • Timely Delivery : We guarantee timely delivery of all our papers, helping students meet their submission deadlines without compromising on quality.
  • 24/7 Support : Our customer support team is available around the clock to answer any questions and provide assistance whenever needed.
  • Absolute Privacy : We maintain a strict privacy policy to ensure that all client information is kept confidential and secure.
  • Easy Order Tracking : Our client portal allows for easy tracking of orders, giving students the ability to monitor the progress of their thesis writing process.
  • Money-Back Guarantee : We offer a money-back guarantee to ensure that all students are completely satisfied with our services.

At iResearchNet, we are dedicated to supporting students by providing them with high-quality, reliable, and professional thesis writing services. By choosing us, students can be confident that they are receiving expert help that not only meets but exceeds their expectations. Whether you are tackling complex topics in computer science or any other academic discipline, our team is here to help you achieve academic success.

Order Your Custom Thesis Paper Today!

Are you ready to take the next step towards academic excellence in computer science? At iResearchNet, we are committed to helping you achieve your academic goals with our premier thesis writing services. Our team of expert writers is equipped to handle the most challenging topics and tightest deadlines, ensuring that you receive a top-quality, custom-written thesis that not only meets but exceeds your academic requirements.

Don’t let the stress of thesis writing hold you back. Whether you’re grappling with complex algorithms, innovative software solutions, or groundbreaking data analysis, our custom thesis papers are crafted to provide you with the insights and depth needed to excel. With flexible pricing, personalized support, and guaranteed confidentiality, you can trust iResearchNet to be your partner in your academic journey.

Act now to secure your future! Visit our website to place your order or speak with one of our representatives to learn more about how we can assist you. Remember, when you choose iResearchNet, you’re not just getting a thesis paper; you’re investing in your success. Order your custom thesis paper today and take the first step towards standing out in the competitive field of computer science. With iResearchNet, you’re one step closer to not only completing your degree but also making a significant impact in the world of technology.

ORDER HIGH QUALITY CUSTOM PAPER

machine learning thesis topics

Princeton University

  • Advisers & Contacts
  • Bachelor of Arts & Bachelor of Science in Engineering
  • Prerequisites
  • Declaring Computer Science for AB Students
  • Declaring Computer Science for BSE Students
  • Class of '25, '26 & '27 - Departmental Requirements
  • Class of 2024 - Departmental Requirements
  • COS126 Information
  • Important Steps and Deadlines
  • Independent Work Seminars
  • Guidelines and Useful Information

Undergraduate Research Topics

  • AB Junior Research Workshops
  • Undergraduate Program FAQ
  • How to Enroll
  • Requirements
  • Certificate Program FAQ
  • Interdepartmental Committee
  • Minor Program
  • Funding for Student Group Activities
  • Mailing Lists and Policies
  • Study Abroad
  • Jobs & Careers
  • Admissions Requirements
  • Breadth Requirements
  • Pre-FPO Checklist
  • FPO Checklist
  • M.S.E. Track
  • M.Eng. Track
  • Departmental Internship Policy (for Master's students)
  • General Examination
  • Fellowship Opportunities
  • Travel Reimbursement Policy
  • Communication Skills
  • Course Schedule
  • Course Catalog
  • Research Areas
  • Interdisciplinary Programs
  • Technical Reports
  • Computing Facilities
  • Researchers
  • Technical Staff
  • Administrative Staff
  • Graduate Students
  • Undergraduate Students
  • Graduate Alumni
  • Climate and Inclusion Committee
  • Resources for Undergraduate & Graduate Students
  • Outreach Initiatives
  • Resources for Faculty & Staff
  • Spotlight Stories
  • Job Openings
  • Undergraduate Program
  • Independent Work & Theses

Suggested Undergraduate Research Topics

machine learning thesis topics

How to Contact Faculty for IW/Thesis Advising

Send the professor an e-mail. When you write a professor, be clear that you want a meeting regarding a senior thesis or one-on-one IW project, and briefly describe the topic or idea that you want to work on. Check the faculty listing for email addresses.

Parastoo Abtahi, Room 419

Available for single-semester IW and senior thesis advising, 2024-2025

  • Research Areas: Human-Computer Interaction (HCI), Augmented Reality (AR), and Spatial Computing
  • Input techniques for on-the-go interaction (e.g., eye-gaze, microgestures, voice) with a focus on uncertainty, disambiguation, and privacy.
  • Minimal and timely multisensory output (e.g., spatial audio, haptics) that enables users to attend to their physical environment and the people around them, instead of a 2D screen.
  • Interaction with intelligent systems (e.g., IoT, robots) situated in physical spaces with a focus on updating users’ mental model despite the complexity and dynamicity of these systems.

Ryan Adams, Room 411

Research areas:

  • Machine learning driven design
  • Generative models for structured discrete objects
  • Approximate inference in probabilistic models
  • Accelerating solutions to partial differential equations
  • Innovative uses of automatic differentiation
  • Modeling and optimizing 3d printing and CNC machining

Andrew Appel, Room 209

Available for Fall 2024 IW advising, only

  • Research Areas: Formal methods, programming languages, compilers, computer security.
  • Software verification (for which taking COS 326 / COS 510 is helpful preparation)
  • Game theory of poker or other games (for which COS 217 / 226 are helpful)
  • Computer game-playing programs (for which COS 217 / 226)
  •  Risk-limiting audits of elections (for which ORF 245 or other knowledge of probability is useful)

Sanjeev Arora, Room 407

  • Theoretical machine learning, deep learning and its analysis, natural language processing. My advisees would typically have taken a course in algorithms (COS423 or COS 521 or equivalent) and a course in machine learning.
  • Show that finding approximate solutions to NP-complete problems is also NP-complete (i.e., come up with NP-completeness reductions a la COS 487). 
  • Experimental Algorithms: Implementing and Evaluating Algorithms using existing software packages. 
  • Studying/designing provable algorithms for machine learning and implementions using packages like scipy and MATLAB, including applications in Natural language processing and deep learning.
  • Any topic in theoretical computer science.

David August, Room 221

Not available for IW or thesis advising, 2024-2025

  • Research Areas: Computer Architecture, Compilers, Parallelism
  • Containment-based approaches to security:  We have designed and tested a simple hardware+software containment mechanism that stops incorrect communication resulting from faults, bugs, or exploits from leaving the system.   Let's explore ways to use containment to solve real problems.  Expect to work with corporate security and technology decision-makers.
  • Parallelism: Studies show much more parallelism than is currently realized in compilers and architectures.  Let's find ways to realize this parallelism.
  • Any other interesting topic in computer architecture or compilers. 

Mark Braverman, 194 Nassau St., Room 231

  • Research Areas: computational complexity, algorithms, applied probability, computability over the real numbers, game theory and mechanism design, information theory.
  • Topics in computational and communication complexity.
  • Applications of information theory in complexity theory.
  • Algorithms for problems under real-life assumptions.
  • Game theory, network effects
  • Mechanism design (could be on a problem proposed by the student)

Sebastian Caldas, 221 Nassau Street, Room 105

  • Research Areas: collaborative learning, machine learning for healthcare. Typically, I will work with students that have taken COS324.
  • Methods for collaborative and continual learning.
  • Machine learning for healthcare applications.

Bernard Chazelle, 194 Nassau St., Room 301

  • Research Areas: Natural Algorithms, Computational Geometry, Sublinear Algorithms. 
  • Natural algorithms (flocking, swarming, social networks, etc).
  • Sublinear algorithms
  • Self-improving algorithms
  • Markov data structures

Danqi Chen, Room 412

  • My advisees would be expected to have taken a course in machine learning and ideally have taken COS484 or an NLP graduate seminar.
  • Representation learning for text and knowledge bases
  • Pre-training and transfer learning
  • Question answering and reading comprehension
  • Information extraction
  • Text summarization
  • Any other interesting topics related to natural language understanding/generation

Marcel Dall'Agnol, Corwin 034

  • Research Areas: Theoretical computer science. (Specifically, quantum computation, sublinear algorithms, complexity theory, interactive proofs and cryptography)
  • Research Areas: Machine learning

Jia Deng, Room 423

  •  Research Areas: Computer Vision, Machine Learning.
  • Object recognition and action recognition
  • Deep Learning, autoML, meta-learning
  • Geometric reasoning, logical reasoning

Adji Bousso Dieng, Room 406

  • Research areas: Vertaix is a research lab at Princeton University led by Professor Adji Bousso Dieng. We work at the intersection of artificial intelligence (AI) and the natural sciences. The models and algorithms we develop are motivated by problems in those domains and contribute to advancing methodological research in AI. We leverage tools in statistical machine learning and deep learning in developing methods for learning with the data, of various modalities, arising from the natural sciences.

Robert Dondero, Corwin Hall, Room 038

  • Research Areas:  Software engineering; software engineering education.
  • Develop or evaluate tools to facilitate student learning in undergraduate computer science courses at Princeton, and beyond.
  • In particular, can code critiquing tools help students learn about software quality?

Zeev Dvir, 194 Nassau St., Room 250

  • Research Areas: computational complexity, pseudo-randomness, coding theory and discrete mathematics.
  • Independent Research: I have various research problems related to Pseudorandomness, Coding theory, Complexity and Discrete mathematics - all of which require strong mathematical background. A project could also be based on writing a survey paper describing results from a few theory papers revolving around some particular subject.

Benjamin Eysenbach, Room 416

  • Research areas: reinforcement learning, machine learning. My advisees would typically have taken COS324.
  • Using RL algorithms to applications in science and engineering.
  • Emergent behavior of RL algorithms on high-fidelity robotic simulators.
  • Studying how architectures and representations can facilitate generalization.

Christiane Fellbaum, 1-S-14 Green

  • Research Areas: theoretical and computational linguistics, word sense disambiguation, lexical resource construction, English and multilingual WordNet(s), ontology
  • Anything having to do with natural language--come and see me with/for ideas suitable to your background and interests. Some topics students have worked on in the past:
  • Developing parsers, part-of-speech taggers, morphological analyzers for underrepresented languages (you don't have to know the language to develop such tools!)
  • Quantitative approaches to theoretical linguistics questions
  • Extensions and interfaces for WordNet (English and WN in other languages),
  • Applications of WordNet(s), including:
  • Foreign language tutoring systems,
  • Spelling correction software,
  • Word-finding/suggestion software for ordinary users and people with memory problems,
  • Machine Translation 
  • Sentiment and Opinion detection
  • Automatic reasoning and inferencing
  • Collaboration with professors in the social sciences and humanities ("Digital Humanities")

Adam Finkelstein, Room 424 

  • Research Areas: computer graphics, audio.

Robert S. Fish, Corwin Hall, Room 037

  • Networking and telecommunications
  • Learning, perception, and intelligence, artificial and otherwise;
  • Human-computer interaction and computer-supported cooperative work
  • Online education, especially in Computer Science Education
  • Topics in research and development innovation methodologies including standards, open-source, and entrepreneurship
  • Distributed autonomous organizations and related blockchain technologies

Michael Freedman, Room 308 

  • Research Areas: Distributed systems, security, networking
  • Projects related to streaming data analysis, datacenter systems and networks, untrusted cloud storage and applications. Please see my group website at http://sns.cs.princeton.edu/ for current research projects.

Ruth Fong, Room 032

  • Research Areas: computer vision, machine learning, deep learning, interpretability, explainable AI, fairness and bias in AI
  • Develop a technique for understanding AI models
  • Design a AI model that is interpretable by design
  • Build a paradigm for detecting and/or correcting failure points in an AI model
  • Analyze an existing AI model and/or dataset to better understand its failure points
  • Build a computer vision system for another domain (e.g., medical imaging, satellite data, etc.)
  • Develop a software package for explainable AI
  • Adapt explainable AI research to a consumer-facing problem

Note: I am happy to advise any project if there's a sufficient overlap in interest and/or expertise; please reach out via email to chat about project ideas.

Tom Griffiths, Room 405

Available for Fall 2024 single-semester IW advising, only

Research areas: computational cognitive science, computational social science, machine learning and artificial intelligence

Note: I am open to projects that apply ideas from computer science to understanding aspects of human cognition in a wide range of areas, from decision-making to cultural evolution and everything in between. For example, we have current projects analyzing chess game data and magic tricks, both of which give us clues about how human minds work. Students who have expertise or access to data related to games, magic, strategic sports like fencing, or other quantifiable domains of human behavior feel free to get in touch.

Aarti Gupta, Room 220

  • Research Areas: Formal methods, program analysis, logic decision procedures
  • Finding bugs in open source software using automatic verification tools
  • Software verification (program analysis, model checking, test generation)
  • Decision procedures for logical reasoning (SAT solvers, SMT solvers)

Elad Hazan, Room 409  

  • Research interests: machine learning methods and algorithms, efficient methods for mathematical optimization, regret minimization in games, reinforcement learning, control theory and practice
  • Machine learning, efficient methods for mathematical optimization, statistical and computational learning theory, regret minimization in games.
  • Implementation and algorithm engineering for control, reinforcement learning and robotics
  • Implementation and algorithm engineering for time series prediction

Felix Heide, Room 410

  • Research Areas: Computational Imaging, Computer Vision, Machine Learning (focus on Optimization and Approximate Inference).
  • Optical Neural Networks
  • Hardware-in-the-loop Holography
  • Zero-shot and Simulation-only Learning
  • Object recognition in extreme conditions
  • 3D Scene Representations for View Generation and Inverse Problems
  • Long-range Imaging in Scattering Media
  • Hardware-in-the-loop Illumination and Sensor Optimization
  • Inverse Lidar Design
  • Phase Retrieval Algorithms
  • Proximal Algorithms for Learning and Inference
  • Domain-Specific Language for Optics Design

Peter Henderson , 302 Sherrerd Hall

  • Research Areas: Machine learning, law, and policy

Kyle Jamieson, Room 306

  • Research areas: Wireless and mobile networking; indoor radar and indoor localization; Internet of Things
  • See other topics on my independent work  ideas page  (campus IP and CS dept. login req'd)

Alan Kaplan, 221 Nassau Street, Room 105

Research Areas:

  • Random apps of kindness - mobile application/technology frameworks used to help individuals or communities; topic areas include, but are not limited to: first response, accessibility, environment, sustainability, social activism, civic computing, tele-health, remote learning, crowdsourcing, etc.
  • Tools automating programming language interoperability - Java/C++, React Native/Java, etc.
  • Software visualization tools for education
  • Connected consumer devices, applications and protocols

Brian Kernighan, Room 311

  • Research Areas: application-specific languages, document preparation, user interfaces, software tools, programming methodology
  • Application-oriented languages, scripting languages.
  • Tools; user interfaces
  • Digital humanities

Zachary Kincaid, Room 219

  • Research areas: programming languages, program analysis, program verification, automated reasoning
  • Independent Research Topics:
  • Develop a practical algorithm for an intractable problem (e.g., by developing practical search heuristics, or by reducing to, or by identifying a tractable sub-problem, ...).
  • Design a domain-specific programming language, or prototype a new feature for an existing language.
  • Any interesting project related to programming languages or logic.

Gillat Kol, Room 316

Aleksandra korolova, 309 sherrerd hall.

  • Research areas: Societal impacts of algorithms and AI; privacy; fair and privacy-preserving machine learning; algorithm auditing.

Advisees typically have taken one or more of COS 226, COS 324, COS 423, COS 424 or COS 445.

Pravesh Kothari, Room 320

  • Research areas: Theory

Amit Levy, Room 307

  • Research Areas: Operating Systems, Distributed Systems, Embedded Systems, Internet of Things
  • Distributed hardware testing infrastructure
  • Second factor security tokens
  • Low-power wireless network protocol implementation
  • USB device driver implementation

Kai Li, Room 321

  • Research Areas: Distributed systems; storage systems; content-based search and data analysis of large datasets.
  • Fast communication mechanisms for heterogeneous clusters.
  • Approximate nearest-neighbor search for high dimensional data.
  • Data analysis and prediction of in-patient medical data.
  • Optimized implementation of classification algorithms on manycore processors.

Xiaoyan Li, 221 Nassau Street, Room 104

  • Research areas: Information retrieval, novelty detection, question answering, AI, machine learning and data analysis.
  • Explore new statistical retrieval models for document retrieval and question answering.
  • Apply AI in various fields.
  • Apply supervised or unsupervised learning in health, education, finance, and social networks, etc.
  • Any interesting project related to AI, machine learning, and data analysis.

Lydia Liu, Room 414

  • Research Areas: algorithmic decision making, machine learning and society
  • Theoretical foundations for algorithmic decision making (e.g. mathematical modeling of data-driven decision processes, societal level dynamics)
  • Societal impacts of algorithms and AI through a socio-technical lens (e.g. normative implications of worst case ML metrics, prediction and model arbitrariness)
  • Machine learning for social impact domains, especially education (e.g. responsible development and use of LLMs for education equity and access)
  • Evaluation of human-AI decision making using statistical methods (e.g. causal inference of long term impact)

Wyatt Lloyd, Room 323

  • Research areas: Distributed Systems
  • Caching algorithms and implementations
  • Storage systems
  • Distributed transaction algorithms and implementations

Alex Lombardi , Room 312

  • Research Areas: Theory

Margaret Martonosi, Room 208

  • Quantum Computing research, particularly related to architecture and compiler issues for QC.
  • Computer architectures specialized for modern workloads (e.g., graph analytics, machine learning algorithms, mobile applications
  • Investigating security and privacy vulnerabilities in computer systems, particularly IoT devices.
  • Other topics in computer architecture or mobile / IoT systems also possible.

Jonathan Mayer, Sherrerd Hall, Room 307 

Available for Spring 2025 single-semester IW, only

  • Research areas: Technology law and policy, with emphasis on national security, criminal procedure, consumer privacy, network management, and online speech.
  • Assessing the effects of government policies, both in the public and private sectors.
  • Collecting new data that relates to government decision making, including surveying current business practices and studying user behavior.
  • Developing new tools to improve government processes and offer policy alternatives.

Mae Milano, Room 307

  • Local-first / peer-to-peer systems
  • Wide-ares storage systems
  • Consistency and protocol design
  • Type-safe concurrency
  • Language design
  • Gradual typing
  • Domain-specific languages
  • Languages for distributed systems

Andrés Monroy-Hernández, Room 405

  • Research Areas: Human-Computer Interaction, Social Computing, Public-Interest Technology, Augmented Reality, Urban Computing
  • Research interests:developing public-interest socio-technical systems.  We are currently creating alternatives to gig work platforms that are more equitable for all stakeholders. For instance, we are investigating the socio-technical affordances necessary to support a co-op food delivery network owned and managed by workers and restaurants. We are exploring novel system designs that support self-governance, decentralized/federated models, community-centered data ownership, and portable reputation systems.  We have opportunities for students interested in human-centered computing, UI/UX design, full-stack software development, and qualitative/quantitative user research.
  • Beyond our core projects, we are open to working on research projects that explore the use of emerging technologies, such as AR, wearables, NFTs, and DAOs, for creative and out-of-the-box applications.

Christopher Moretti, Corwin Hall, Room 036

  • Research areas: Distributed systems, high-throughput computing, computer science/engineering education
  • Expansion, improvement, and evaluation of open-source distributed computing software.
  • Applications of distributed computing for "big science" (e.g. biometrics, data mining, bioinformatics)
  • Software and best practices for computer science education and study, especially Princeton's 126/217/226 sequence or MOOCs development
  • Sports analytics and/or crowd-sourced computing

Radhika Nagpal, F316 Engineering Quadrangle

  • Research areas: control, robotics and dynamical systems

Karthik Narasimhan, Room 422

  • Research areas: Natural Language Processing, Reinforcement Learning
  • Autonomous agents for text-based games ( https://www.microsoft.com/en-us/research/project/textworld/ )
  • Transfer learning/generalization in NLP
  • Techniques for generating natural language
  • Model-based reinforcement learning

Arvind Narayanan, 308 Sherrerd Hall 

Research Areas: fair machine learning (and AI ethics more broadly), the social impact of algorithmic systems, tech policy

Pedro Paredes, Corwin Hall, Room 041

My primary research work is in Theoretical Computer Science.

 * Research Interest: Spectral Graph theory, Pseudorandomness, Complexity theory, Coding Theory, Quantum Information Theory, Combinatorics.

The IW projects I am interested in advising can be divided into three categories:

 1. Theoretical research

I am open to advise work on research projects in any topic in one of my research areas of interest. A project could also be based on writing a survey given results from a few papers. Students should have a solid background in math (e.g., elementary combinatorics, graph theory, discrete probability, basic algebra/calculus) and theoretical computer science (226 and 240 material, like big-O/Omega/Theta, basic complexity theory, basic fundamental algorithms). Mathematical maturity is a must.

A (non exhaustive) list of topics of projects I'm interested in:   * Explicit constructions of better vertex expanders and/or unique neighbor expanders.   * Construction deterministic or random high dimensional expanders.   * Pseudorandom generators for different problems.   * Topics around the quantum PCP conjecture.   * Topics around quantum error correcting codes and locally testable codes, including constructions, encoding and decoding algorithms.

 2. Theory informed practical implementations of algorithms   Very often the great advances in theoretical research are either not tested in practice or not even feasible to be implemented in practice. Thus, I am interested in any project that consists in trying to make theoretical ideas applicable in practice. This includes coming up with new algorithms that trade some theoretical guarantees for feasible implementation yet trying to retain the soul of the original idea; implementing new algorithms in a suitable programming language; and empirically testing practical implementations and comparing them with benchmarks / theoretical expectations. A project in this area doesn't have to be in my main areas of research, any theoretical result could be suitable for such a project.

Some examples of areas of interest:   * Streaming algorithms.   * Numeric linear algebra.   * Property testing.   * Parallel / Distributed algorithms.   * Online algorithms.    3. Machine learning with a theoretical foundation

I am interested in projects in machine learning that have some mathematical/theoretical, even if most of the project is applied. This includes topics like mathematical optimization, statistical learning, fairness and privacy.

One particular area I have been recently interested in is in the area of rating systems (e.g., Chess elo) and applications of this to experts problems.

Final Note: I am also willing to advise any project with any mathematical/theoretical component, even if it's not the main one; please reach out via email to chat about project ideas.

Iasonas Petras, Corwin Hall, Room 033

  • Research Areas: Information Based Complexity, Numerical Analysis, Quantum Computation.
  • Prerequisites: Reasonable mathematical maturity. In case of a project related to Quantum Computation a certain familiarity with quantum mechanics is required (related courses: ELE 396/PHY 208).
  • Possible research topics include:

1.   Quantum algorithms and circuits:

  • i. Design or simulation quantum circuits implementing quantum algorithms.
  • ii. Design of quantum algorithms solving/approximating continuous problems (such as Eigenvalue problems for Partial Differential Equations).

2.   Information Based Complexity:

  • i. Necessary and sufficient conditions for tractability of Linear and Linear Tensor Product Problems in various settings (for example worst case or average case). 
  • ii. Necessary and sufficient conditions for tractability of Linear and Linear Tensor Product Problems under new tractability and error criteria.
  • iii. Necessary and sufficient conditions for tractability of Weighted problems.
  • iv. Necessary and sufficient conditions for tractability of Weighted Problems under new tractability and error criteria.

3. Topics in Scientific Computation:

  • i. Randomness, Pseudorandomness, MC and QMC methods and their applications (Finance, etc)

Yuri Pritykin, 245 Carl Icahn Lab

  • Research interests: Computational biology; Cancer immunology; Regulation of gene expression; Functional genomics; Single-cell technologies.
  • Potential research projects: Development, implementation, assessment and/or application of algorithms for analysis, integration, interpretation and visualization of multi-dimensional data in molecular biology, particularly single-cell and spatial genomics data.

Benjamin Raphael, Room 309  

  • Research interests: Computational biology and bioinformatics; Cancer genomics; Algorithms and machine learning approaches for analysis of large-scale datasets
  • Implementation and application of algorithms to infer evolutionary processes in cancer
  • Identifying correlations between combinations of genomic mutations in human and cancer genomes
  • Design and implementation of algorithms for genome sequencing from new DNA sequencing technologies
  • Graph clustering and network anomaly detection, particularly using diffusion processes and methods from spectral graph theory

Vikram Ramaswamy, 035 Corwin Hall

  • Research areas: Interpretability of AI systems, Fairness in AI systems, Computer vision.
  • Constructing a new method to explain a model / create an interpretable by design model
  • Analyzing a current model / dataset to understand bias within the model/dataset
  • Proposing new fairness evaluations
  • Proposing new methods to train to improve fairness
  • Developing synthetic datasets for fairness / interpretability benchmarks
  • Understanding robustness of models

Ran Raz, Room 240

  • Research Area: Computational Complexity
  • Independent Research Topics: Computational Complexity, Information Theory, Quantum Computation, Theoretical Computer Science

Szymon Rusinkiewicz, Room 406

  • Research Areas: computer graphics; computer vision; 3D scanning; 3D printing; robotics; documentation and visualization of cultural heritage artifacts
  • Research ways of incorporating rotation invariance into computer visiontasks such as feature matching and classification
  • Investigate approaches to robust 3D scan matching
  • Model and compensate for imperfections in 3D printing
  • Given a collection of small mobile robots, apply control policies learned in simulation to the real robots.

Olga Russakovsky, Room 408

  • Research Areas: computer vision, machine learning, deep learning, crowdsourcing, fairness&bias in AI
  • Design a semantic segmentation deep learning model that can operate in a zero-shot setting (i.e., recognize and segment objects not seen during training)
  • Develop a deep learning classifier that is impervious to protected attributes (such as gender or race) that may be erroneously correlated with target classes
  • Build a computer vision system for the novel task of inferring what object (or part of an object) a human is referring to when pointing to a single pixel in the image. This includes both collecting an appropriate dataset using crowdsourcing on Amazon Mechanical Turk, creating a new deep learning formulation for this task, and running extensive analysis of both the data and the model

Sebastian Seung, Princeton Neuroscience Institute, Room 153

  • Research Areas: computational neuroscience, connectomics, "deep learning" neural networks, social computing, crowdsourcing, citizen science
  • Gamification of neuroscience (EyeWire  2.0)
  • Semantic segmentation and object detection in brain images from microscopy
  • Computational analysis of brain structure and function
  • Neural network theories of brain function

Jaswinder Pal Singh, Room 324

  • Research Areas: Boundary of technology and business/applications; building and scaling technology companies with special focus at that boundary; parallel computing systems and applications: parallel and distributed applications and their implications for software and architectural design; system software and programming environments for multiprocessors.
  • Develop a startup company idea, and build a plan/prototype for it.
  • Explore tradeoffs at the boundary of technology/product and business/applications in a chosen area.
  • Study and develop methods to infer insights from data in different application areas, from science to search to finance to others. 
  • Design and implement a parallel application. Possible areas include graphics, compression, biology, among many others. Analyze performance bottlenecks using existing tools, and compare programming models/languages.
  • Design and implement a scalable distributed algorithm.

Mona Singh, Room 420

  • Research Areas: computational molecular biology, as well as its interface with machine learning and algorithms.
  • Whole and cross-genome methods for predicting protein function and protein-protein interactions.
  • Analysis and prediction of biological networks.
  • Computational methods for inferring specific aspects of protein structure from protein sequence data.
  • Any other interesting project in computational molecular biology.

Robert Tarjan, 194 Nassau St., Room 308

  • Research Areas: Data structures; graph algorithms; combinatorial optimization; computational complexity; computational geometry; parallel algorithms.
  • Implement one or more data structures or combinatorial algorithms to provide insight into their empirical behavior.
  • Design and/or analyze various data structures and combinatorial algorithms.

Olga Troyanskaya, Room 320

  • Research Areas: Bioinformatics; analysis of large-scale biological data sets (genomics, gene expression, proteomics, biological networks); algorithms for integration of data from multiple data sources; visualization of biological data; machine learning methods in bioinformatics.
  • Implement and evaluate one or more gene expression analysis algorithm.
  • Develop algorithms for assessment of performance of genomic analysis methods.
  • Develop, implement, and evaluate visualization tools for heterogeneous biological data.

David Walker, Room 211

  • Research Areas: Programming languages, type systems, compilers, domain-specific languages, software-defined networking and security
  • Independent Research Topics:  Any other interesting project that involves humanitarian hacking, functional programming, domain-specific programming languages, type systems, compilers, software-defined networking, fault tolerance, language-based security, theorem proving, logic or logical frameworks.

Shengyi Wang, Postdoctoral Research Associate, Room 216

Available for Fall 2024 single-semester IW, only

  • Independent Research topics: Explore Escher-style tilings using (introductory) group theory and automata theory to produce beautiful pictures.

Kevin Wayne, Corwin Hall, Room 040

  • Research Areas: design, analysis, and implementation of algorithms; data structures; combinatorial optimization; graphs and networks.
  • Design and implement computer visualizations of algorithms or data structures.
  • Develop pedagogical tools or programming assignments for the computer science curriculum at Princeton and beyond.
  • Develop assessment infrastructure and assessments for MOOCs.

Matt Weinberg, 194 Nassau St., Room 222

  • Research Areas: algorithms, algorithmic game theory, mechanism design, game theoretical problems in {Bitcoin, networking, healthcare}.
  • Theoretical questions related to COS 445 topics such as matching theory, voting theory, auction design, etc. 
  • Theoretical questions related to incentives in applications like Bitcoin, the Internet, health care, etc. In a little bit more detail: protocols for these systems are often designed assuming that users will follow them. But often, users will actually be strictly happier to deviate from the intended protocol. How should we reason about user behavior in these protocols? How should we design protocols in these settings?

Huacheng Yu, Room 310

  • data structures
  • streaming algorithms
  • design and analyze data structures / streaming algorithms
  • prove impossibility results (lower bounds)
  • implement and evaluate data structures / streaming algorithms

Ellen Zhong, Room 314

Opportunities outside the department.

We encourage students to look in to doing interdisciplinary computer science research and to work with professors in departments other than computer science.  However, every CS independent work project must have a strong computer science element (even if it has other scientific or artistic elements as well.)  To do a project with an adviser outside of computer science you must have permission of the department.  This can be accomplished by having a second co-adviser within the computer science department or by contacting the independent work supervisor about the project and having he or she sign the independent work proposal form.

Here is a list of professors outside the computer science department who are eager to work with computer science undergraduates.

Maria Apostolaki, Engineering Quadrangle, C330

  • Research areas: Computing & Networking, Data & Information Science, Security & Privacy

Branko Glisic, Engineering Quadrangle, Room E330

  • Documentation of historic structures
  • Cyber physical systems for structural health monitoring
  • Developing virtual and augmented reality applications for documenting structures
  • Applying machine learning techniques to generate 3D models from 2D plans of buildings
  •  Contact : Rebecca Napolitano, rkn2 (@princeton.edu)

Mihir Kshirsagar, Sherrerd Hall, Room 315

Center for Information Technology Policy.

  • Consumer protection
  • Content regulation
  • Competition law
  • Economic development
  • Surveillance and discrimination

Sharad Malik, Engineering Quadrangle, Room B224

Select a Senior Thesis Adviser for the 2020-21 Academic Year.

  • Design of reliable hardware systems
  • Verifying complex software and hardware systems

Prateek Mittal, Engineering Quadrangle, Room B236

  • Internet security and privacy 
  • Social Networks
  • Privacy technologies, anonymous communication
  • Network Science
  • Internet security and privacy: The insecurity of Internet protocols and services threatens the safety of our critical network infrastructure and billions of end users. How can we defend end users as well as our critical network infrastructure from attacks?
  • Trustworthy social systems: Online social networks (OSNs) such as Facebook, Google+, and Twitter have revolutionized the way our society communicates. How can we leverage social connections between users to design the next generation of communication systems?
  • Privacy Technologies: Privacy on the Internet is eroding rapidly, with businesses and governments mining sensitive user information. How can we protect the privacy of our online communications? The Tor project (https://www.torproject.org/) is a potential application of interest.

Ken Norman,  Psychology Dept, PNI 137

  • Research Areas: Memory, the brain and computation 
  • Lab:  Princeton Computational Memory Lab

Potential research topics

  • Methods for decoding cognitive state information from neuroimaging data (fMRI and EEG) 
  • Neural network simulations of learning and memory

Caroline Savage

Office of Sustainability, Phone:(609)258-7513, Email: cs35 (@princeton.edu)

The  Campus as Lab  program supports students using the Princeton campus as a living laboratory to solve sustainability challenges. The Office of Sustainability has created a list of campus as lab research questions, filterable by discipline and topic, on its  website .

An example from Computer Science could include using  TigerEnergy , a platform which provides real-time data on campus energy generation and consumption, to study one of the many energy systems or buildings on campus. Three CS students used TigerEnergy to create a  live energy heatmap of campus .

Other potential projects include:

  • Apply game theory to sustainability challenges
  • Develop a tool to help visualize interactions between complex campus systems, e.g. energy and water use, transportation and storm water runoff, purchasing and waste, etc.
  • How can we learn (in aggregate) about individuals’ waste, energy, transportation, and other behaviors without impinging on privacy?

Janet Vertesi, Sociology Dept, Wallace Hall, Room 122

  • Research areas: Sociology of technology; Human-computer interaction; Ubiquitous computing.
  • Possible projects: At the intersection of computer science and social science, my students have built mixed reality games, produced artistic and interactive installations, and studied mixed human-robot teams, among other projects.

David Wentzlaff, Engineering Quadrangle, Room 228

Computing, Operating Systems, Sustainable Computing.

  • Instrument Princeton's Green (HPCRC) data center
  • Investigate power utilization on an processor core implemented in an FPGA
  • Dismantle and document all of the components in modern electronics. Invent new ways to build computers that can be recycled easier.
  • Other topics in parallel computer architecture or operating systems

Facebook

  • Faculty of Arts and Sciences
  • FAS Theses and Dissertations
  • Communities & Collections
  • By Issue Date
  • FAS Department
  • Quick submit
  • Waiver Generator
  • DASH Stories
  • Accessibility
  • COVID-related Research

Terms of Use

  • Privacy Policy
  • By Collections
  • By Departments

Undergraduate Fundamentals of Machine Learning

Thumbnail

Citable link to this page

Collections.

  • FAS Theses and Dissertations [6136]

Contact administrator regarding this item (to report mistakes or request changes)

  • Bibliography
  • More Referencing guides Blog Automated transliteration Relevant bibliographies by topics
  • Automated transliteration
  • Relevant bibliographies by topics
  • Referencing guides

Dissertations / Theses on the topic 'Machine Learning (ML)'

Create a spot-on reference in apa, mla, chicago, harvard, and other styles.

Consult the top 50 dissertations / theses for your research on the topic 'Machine Learning (ML).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

Holmberg, Lars. "Human In Command Machine Learning." Licentiate thesis, Malmö universitet, Malmö högskola, Institutionen för datavetenskap och medieteknik (DVMT), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-42576.

Nangalia, V. "ML-EWS - Machine Learning Early Warning System : the application of machine learning to predict in-hospital patient deterioration." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1565193/.

John, Meenu Mary. "Design Methods and Processes for ML/DL models." Licentiate thesis, Malmö universitet, Institutionen för datavetenskap och medieteknik (DVMT), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-45026.

Tabell, Johnsson Marco, and Ala Jafar. "Efficiency Comparison Between Curriculum Reinforcement Learning & Reinforcement Learning Using ML-Agents." Thesis, Blekinge Tekniska Högskola, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20218.

Mattsson, Fredrik, and Anton Gustafsson. "Optimize Ranking System With Machine Learning." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-37431.

Kakadost, Naser, and Charif Ramadan. "Empirisk undersökning av ML strategier vid prediktion av cykelflöden baserad på cykeldata och veckodagar." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20168.

Sammaritani, Gloria. "Google BigQuery ML. Analisi comparativa di un nuovo framework per il Machine Learning." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Gustafsson, Sebastian. "Interpretable serious event forecasting using machine learning and SHAP." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444363.

Schoenfeld, Brandon J. "Metalearning by Exploiting Granular Machine Learning Pipeline Metadata." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8730.

Hellborg, Per. "Optimering av datamängder med Machine learning : En studie om Machine learning och Internet of Things." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-13747.

Nämerforslund, Tim. "Machine Learning Adversaries in Video Games : Using reinforcement learning in the Unity Engine to create compelling enemy characters." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42746.

Mahfouz, Tarek Said. "Construction legal support for differing site conditions (DSC) through statistical modeling and machine learning (ML)." [Ames, Iowa : Iowa State University], 2009.

REPETTO, MARCO. "Black-box supervised learning and empirical assessment: new perspectives in credit risk modeling." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402366.

Björkberg, David. "Comparison of cumulative reward withone, two and three layered artificialneural network in a simple environmentwhen using ml-agents." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21188.

Ucci, Graziano. "The Interstellar Medium of Galaxies: a Machine Learning Approach." Doctoral thesis, Scuola Normale Superiore, 2019. http://hdl.handle.net/11384/85928.

Gilmore, Eugene M. "Learning Interpretable Decision Tree Classifiers with Human in the Loop Learning and Parallel Coordinates." Thesis, Griffith University, 2022. http://hdl.handle.net/10072/418633.

Sridhar, Sabarish. "SELECTION OF FEATURES FOR ML BASED COMMANDING OF AUTONOMOUS VEHICLES." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-287450.

Lagerkvist, Love. "Neural Novelty — How Machine Learning Does Interactive Generative Literature." Thesis, Malmö universitet, Fakulteten för kultur och samhälle (KS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-21222.

Bhogi, Keerthana. "Two New Applications of Tensors to Machine Learning for Wireless Communications." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104970.

Garg, Anushka. "Comparing Machine Learning Algorithms and Feature Selection Techniques to Predict Undesired Behavior in Business Processesand Study of Auto ML Frameworks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285559.

Hanski, Jari, and Kaan Baris Biçak. "An Evaluation of the Unity Machine Learning Agents Toolkit in Dense and Sparse Reward Video Game Environments." Thesis, Uppsala universitet, Institutionen för speldesign, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444982.

Stellmar, Justin. "Predicting the Deformation of 3D Printed ABS Plastic Using Machine Learning Regressions." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1587462911261523.

Krüger, Franz David, and Mohamad Nabeel. "Hyperparameter Tuning Using Genetic Algorithms : A study of genetic algorithms impact and performance for optimization of ML algorithms." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42404.

Björkman, Desireé. "Machine Learning Evaluation of Natural Language to Computational Thinking : On the possibilities of coding without syntax." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-424269.

Lundin, Lowe. "Artificial Intelligence for Data Center Power Consumption Optimisation." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447627.

Wessman, Filip. "Advanced Algorithms for Classification and Anomaly Detection on Log File Data : Comparative study of different Machine Learning Approaches." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-43175.

Narmack, Kirilll. "Dynamic Speed Adaptation for Curves using Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233545.

Mathias, Berggren, and Sonesson Daniel. "Design Optimization in Gas Turbines using Machine Learning : A study performed for Siemens Energy AB." Thesis, Linköpings universitet, Programvara och system, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-173920.

Giuliani, Luca. "Extending the Moving Targets Method for Injecting Constraints in Machine Learning." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23885/.

Tarullo, Viviana. "Artificial Neural Networks for classification of EMG data in hand myoelectric control." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19195/.

Wallner, Vanja. "Mapping medical expressions to MedDRA using Natural Language Processing." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-426916.

Hellberg, Johan, and Kasper Johansson. "Building Models for Prediction and Forecasting of Service Quality." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295617.

Nardello, Matteo. "Low-Power Smart Devices for the IoT Revolution." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/274371.

Nardello, Matteo. "Low-Power Smart Devices for the IoT Revolution." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/274371.

Michelini, Mattia. "Barcode detection by neural networks on Android mobile platforms." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21080/.

Lundström, Robin. "Machine Learning for Air Flow Characterization : An application of Theory-Guided Data Science for Air Fow characterization in an Industrial Foundry." Thesis, Karlstads universitet, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-72782.

Daneshvar, Saman. "User Modeling in Social Media: Gender and Age Detection." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39535.

Rosell, Felicia. "Tracking a ball during bounce and roll using recurrent neural networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239733.

Hallberg, Jesper. "Searching for the charged Higgs boson in the tau nu analysis using Boosted Decision Trees." Thesis, Uppsala universitet, Högenergifysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-301351.

Klingvall, Emelie. "Artificiell intelligens som ett beslutsstöd inom mammografi : En kvalitativ studie om radiologers perspektiv på icke-tekniska utmaningar." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-18768.

Alatram, Ala'a A. M. "A forensic framework for detecting denial-of-service attacks in IoT networks using the MQTT protocol." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2022. https://ro.ecu.edu.au/theses/2561.

Forssell, Melker, and Gustav Janér. "Product Matching Using Image Similarity." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413481.

Bengtsson, Theodor, and Jonas Hägerlöf. "Stora mängder användardata för produktutveckling : Möjligheter och utmaningar vid integrering av stora mängder användardata i produktutvecklingsprocesser." Thesis, KTH, Integrerad produktutveckling, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297966.

Nordqvist, My. "Classify part of day and snow on the load of timber stacks : A comparative study between partitional clustering and competitive learning." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42238.

Mele, Matteo. "Convolutional Neural Networks for the Classification of Olive Oil Geographical Origin." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Hjerpe, Adam. "Computing Random Forests Variable Importance Measures (VIM) on Mixed Numerical and Categorical Data." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-185496.

Ahlm, Kristoffer. "IDENTIFIKATION AV RISKINDIKATORER I FINANSIELL INFORMATION MED HJÄLP AV AI/ML : Ökade möjligheter för myndigheter att förebygga ekonomisk brottslighet." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-184818.

Zanghieri, Marcello. "sEMG-based hand gesture recognition with deep learning." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18112/.

Benatti, Mattia. "Progettazione e Sviluppo di una Piattaforma Multi-Sorgente per l’Ottimizzazione dei Servizi di Emergenza." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Sibelius, Parmbäck Sebastian. "HMMs and LSTMs for On-line Gesture Recognition on the Stylaero Board : Evaluating and Comparing Two Methods." Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162237.

machine learning thesis topics

  • Current Members
  • Off-Campus Students
  • Robot Videos
  • Funded Projects
  • Publications by Year
  • Publications by Type
  • Robot Learning Lecture
  • Robot Learning IP
  • Humanoid Robotics Seminar
  • Research Oberseminar
  • New, Open Topics
  • Ongoing Theses
  • Completed Theses
  • External Theses
  • Advice for Thesis Students
  • Thesis Checklist and Template
  • Jobs and Open Positions
  • Current Openings
  • Information for Applicants
  • Apply Here!
  • TU Darmstadt Student Hiwi Jobs
  • Contact Information

Currently Open Theses Topics

We offer these current topics directly for Bachelor and Master students at TU Darmstadt who can feel free to DIRECTLY contact the thesis advisor if you are interested in one of these topics. Excellent external students from another university may be accepted but are required to first email Jan Peters before contacting any other lab member for a thesis topic. Note that we cannot provide funding for any of these theses projects.

We highly recommend that you do either our robotics and machine learning lectures ( Robot Learning , Statistical Machine Learning ) or our colleagues ( Grundlagen der Robotik , Probabilistic Graphical Models and/or Deep Learning). Even more important to us is that you take both Robot Learning: Integrated Project, Part 1 (Literature Review and Simulation Studies) and Part 2 (Evaluation and Submission to a Conference) before doing a thesis with us.

In addition, we are usually happy to devise new topics on request to suit the abilities of excellent students. Please DIRECTLY contact the thesis advisor if you are interested in one of these topics. When you contact the advisor, it would be nice if you could mention (1) WHY you are interested in the topic (dreams, parts of the problem, etc), and (2) WHAT makes you special for the projects (e.g., class work, project experience, special programming or math skills, prior work, etc.). Supplementary materials (CV, grades, etc) are highly appreciated. Of course, such materials are not mandatory but they help the advisor to see whether the topic is too easy, just about right or too hard for you.

Only contact *ONE* potential advisor at the same time! If you contact a second one without first concluding discussions with the first advisor (i.e., decide for or against the thesis with her or him), we may not consider you at all. Only if you are super excited for at most two topics send an email to both supervisors, so that the supervisors are aware of the additional interest.

FOR FB16+FB18 STUDENTS: Students from other depts at TU Darmstadt (e.g., ME, EE, IST), you need an additional formal supervisor who officially issues the topic. Please do not try to arrange your home dept advisor by yourself but let the supervising IAS member get in touch with that person instead. Multiple professors from other depts have complained that they were asked to co-supervise before getting contacted by our advising lab member.

NEW THESES START HERE

Imitation Learning for High-Speed Robot Air Hockey

Scope: Master thesis Advisor: Puze Liu and Julen Urain De Jesus Start: ASAP Topic:

High-speed reactive motion is one of the fundamental capabilities of robots to achieve human-level behavior. Optimization-based methods suffer from real-time requirement when the problem is non-convex and contains constraints. Reinforcement learning requires extensive reward engineering to achieve the desired performance. Imitation learning, on the other hand, gathers human knowledge directly from data collection and enables robots to learn natural movements efficiently. In this paper, we explore how imitation learning can be performed in a complex robot Air Hockey Task. The robot needs to learn not only low-level skills, but also high-level tactics from human demonstrations.

Requirements

  • Strong Python programming skills
  • Knowledge in Machine Learning / Supervised Learning
  • Good Knowledge in Robotics
  • Experience with deep learning libraries is a plus

References * Chi, Cheng, et al. "Diffusion policy: Visuomotor policy learning via action diffusion." arXiv preprint arXiv:2303.04137 (2023). * Liu, Puze, et al. "Robot reinforcement learning on the constraint manifold." Conference on Robot Learning. PMLR (2022). * Pan, Yunpeng, et al. "Imitation learning for agile autonomous driving." The International Journal of Robotics Research 39.2-3 (2020). Interested students can apply by sending an e-mail to [email protected] and attaching the required documents mentioned above.

Walk your network: investigating neural network’s location in Q-learning methods.

Scope: Master thesis Advisor: Theo Vincent and Boris Belousov Start: Flexible Topic:

Q-learning methods are at the heart of Reinforcement Learning. They have been shown to outperform humans on some complex tasks such as playing video games [1]. In robotics, where the action space is in most cases continuous, actor-critic methods are relying on Q-learning methods to learn the critic [2]. Although Q-learning methods have been extensively studied in the past, little focus has been placed on the way the online neural network is exploring the space of Q functions. Most approaches focus on crafting a loss that would make the agent learn better policies [3]. Here, we offer a thesis that focuses on the position of the online Q neural network in the space of Q functions. The student will first investigate this idea on simple problems before comparing the performance to strong baselines such as DQN or REM [1, 4] on Atari games. Depending on the result, the student might as well get into MuJoCo and compare the results with SAC [2]. The student will be welcome to propose some ideas as well.

Highly motivated students can apply by sending an email to [email protected] . Please attach your CV and clearly state why you are interested in this topic.

  • Knowledge in Reinforcement Learning

References [1] Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." nature 518.7540 (2015): 529-533. [2] Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor." International conference on machine learning. PMLR, 2018. [3] Hessel, Matteo, et al. "Rainbow: Combining improvements in deep reinforcement learning." Proceedings of the AAAI conference on artificial intelligence. Vol. 32. No. 1. 2018. [4] Agarwal, R., Schuurmans, D. & Norouzi, M.. (2020). An Optimistic Perspective on Offline Reinforcement Learning International Conference on Machine Learning (ICML).

Co-optimizing Hand and Action for Robotic Grasping of Deformable objects

machine learning thesis topics

This project aims to advance deformable object manipulation by co-optimizing robot gripper morphology and control policies. The project will involve utilizing existing simulation environments for deformable object manipulation [2] and implementing a method to jointly optimize gripper morphology and grasp policies within the simulation.

Required Qualification:

  • Familiarity with deep learning libraries such as PyTorch or Tensorflow

Preferred Qualification:

  • Attendance of the lectures "Statistical Machine Learning", "Computational Engineering and Robotics" and "Robot Learning"

Application Requirements:

  • Curriculum Vitae
  • Motivation letter explaining why you would like to work on this topic and why you are the perfect candidate

Interested students can apply by sending an e-mail to [email protected] and attaching the required documents mentioned above.

References: [1] Xu, Jie, et al. "An End-to-End Differentiable Framework for Contact-Aware Robot Design." Robotics: Science & Systems. 2021. [2] Huang, Isabella, et al. "DefGraspNets: Grasp Planning on 3D Fields with Graph Neural Nets." arXiv preprint arXiv:2303.16138 (2023).

Geometry-Aware Diffusion Models for Robotics

In this thesis, you will work on developing an imitation learning algorithm using diffusion models for robotic manipulation tasks, such as the ones in [2, 3, 4], but taking into account the geometry of the task space.

If this sounds interesting, please send an email to [email protected] and [email protected] , and possibly attach your CV, highlighting the relevant courses you took in robotics and machine learning.

What's in it for you:

  • You get to work on an exciting topic at the intersection of deep-learning and robotics
  • We will supervise you closely throughout your thesis
  • Depending on the results, we will aim for an international conference publication

Requirements:

  • Be motivated -- we will support you a lot, but we expect you to contribute a lot too
  • Robotics knowledge
  • Experience setting up deep learning pipelines -- from data collection, architecture design, training, and evaluation
  • PyTorch -- especially experience writing good parallelizable code (i.e., runs fast in the GPU)

References: [1] https://arxiv.org/abs/2112.10752 [2] https://arxiv.org/abs/2308.01557 [3] https://arxiv.org/abs/2209.03855 [4] https://arxiv.org/abs/2303.04137 [5] https://arxiv.org/abs/2205.09991

Learning Latent Representations for Embodied Agents

machine learning thesis topics

Interested students can apply by sending an E-Mail to [email protected] and attaching the required documents mentioned below.

  • Experience with TensorFlow/PyTorch
  • Familiarity with core Machine Learning topics
  • Experience programming/controlling robots (either simulated or real world)
  • Knowledgeable about different robot platforms (quadrupeds and bipedal robots)
  • Resume / CV
  • Cover letter explaining why this topic fits you well and why you are an ideal candidate

References: [1] Ho and Ermon. "Generative adversarial imitation learning" [2] Arenz, et al. "Efficient Gradient-Free Variational Inference using Policy Search"

Characterizing Fear-induced Adaptation of Balance by Inverse Reinforcement Learning

machine learning thesis topics

Interested students can apply by sending an E-Mail to [email protected] and attaching the required documents mentioned below.

  • Basic knowledge of reinforcement learning
  • Hand-on experience with reinforcement learning or inverse reinforcement learning
  • Cognitive science background

References: [1] Maki, et al. "Fear of Falling and Postural Performance in the Elderly" [2] Davis et al. "The relationship between fear of falling and human postural control" [3] Ho and Ermon. "Generative adversarial imitation learning"

Timing is Key: CPGs for regularizing Quadruped Gaits learned with DRL

To tackle this problem we want to utilize Central Pattern Generators (CPGs), which can generate timings for ground contacts for the four feet. The policy gets rewarded for complying with the contact patterns of the CPGs. This leads to a straightforward way of regularizing and steering the policy to a natural gait without posing too strong restrictions on it. We first want to manually find fitting CPG parameters for different gait velocities and later move to learning those parameters in an end-to-end fashion.

Highly motivated students can apply by sending an E-Mail to [email protected] and attaching the required documents mentioned below.

Minimum Qualification:

  • Good Python programming skills
  • Basic knowledge of the PyTorch library
  • Basic knowledge of Reinforcement Learning
  • Good knowledge of the PyTorch library
  • Basic knowledge of the MuJoCo simulator

References: [1] Cheng, Xuxin, et al. "Extreme Parkour with Legged Robots."

Damage-aware Reinforcement Learning for Deformable and Fragile Objects

machine learning thesis topics

Goal of this thesis will be the development and application of a model-based reinforcement learning method on real robots. Your tasks will include: 1. Setting up a simulation environment for deformable object manipulation 2. Utilizing existing models for stress and deformability prediction[1] 3. Implementing a reinforcement learning method to work in simulation and, if possible, on the real robot methods.

If you are interested in this thesis topic and believe you possess the necessary skills and qualifications, please submit your application, including a resume and a brief motivation letter explaining your interest and relevant experience. Please send your application to [email protected].

Required Qualification :

  • Enthusiasm for and experience in robotics, machine learning, and simulation
  • Strong programming skills in Python

Desired Qualification :

  • Attendance of the lectures "Statistical Machine Learning", "Computational Engineering and Robotics" and (optionally) "Robot Learning"

References: [1] Huang, I., Narang, Y., Bajcsy, R., Ramos, F., Hermans, T., & Fox, D. (2023). DefGraspNets: Grasp Planning on 3D Fields with Graph Neural Nets. arXiv preprint arXiv:2303.16138.

Imitation Learning meets Diffusion Models for Robotics

machine learning thesis topics

The objective of this thesis is to build upon prior research [2, 3] to establish a connection between Diffusion Models and Imitation Learning. We aim to explore how to exploit Diffusion Models and improve the performance of Imitation learning algorithms that interact with the world.

We welcome highly motivated students to apply for this opportunity by sending an email expressing their interest to Firas Al-Hafez ( [email protected] ) Julen Urain ( [email protected] ). Please attach your letter of motivation and CV, and clearly state why you are interested in this topic and why you are the ideal candidate for this position.

Required Qualification : 1. Strong Python programming skills 2. Basic Knowledge in Imitation Learning 3. Interest in Diffusion models, Reinforcement Learning

Desired Qualification : 1. Attendance of the lectures "Statistical Machine Learning", "Computational Engineering and Robotics" and/or "Reinforcement Learning: From Fundamentals to the Deep Approaches"

References: [1] Song, Yang, and Stefano Ermon. "Generative modeling by estimating gradients of the data distribution." Advances in neural information processing systems 32 (2019). [2] Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation learning." Advances in neural information processing systems 29 (2016). [3] Garg, D., Chakraborty, S., Cundy, C., Song, J., & Ermon, S. (2021). Iq-learn: Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems, 34, 4028-4039. [4] Chen, R. T., & Lipman, Y. (2023). Riemannian flow matching on general geometries. arXiv preprint arXiv:2302.03660.

  • Be extremely motivated -- we will support you a lot, but we expect you to contribute a lot too

Scaling Behavior Cloning to Humanoid Locomotion

Scope: Bachelor / Master thesis Advisor: Joe Watson Added: 2023-10-07 Start: ASAP Topic: In a previous project [1], I found that behavior cloning (BC) was a surprisingly poor baseline for imitating humanoid locomotion. I suspect the issue may lie in the challenges of regularizing high-dimensional regression.

The goal of this project is to investigate BC for humanoid imitation, understand the scaling issues present, and evaluate possible solutions, e.g. regularization strategies from the regression literature.

The project will be building off Google Deepmind's Acme library [2], which has BC algorithms and humanoid demonstration datasets [3] already implemented, and will serve as the foundation of the project.

To apply, email [email protected] , ideally with a CV and transcript so I can assess your suitability.

  • Experience, interest and enthusiasm for the intersection of robot learning and machine learning
  • Experience with Acme and JAX would be a benefit, but not necessary

References: [1] https://arxiv.org/abs/2305.16498 [2] https://github.com/google-deepmind/acme [3] https://arxiv.org/abs/2106.00672

Robot Gaze for Communicating Collision Avoidance Intent in Shared Workspaces

Scope: Bachelor/Master thesis Advisor: Alap Kshirsagar , Dorothea Koert Added: 2023-09-27 Start: ASAP

machine learning thesis topics

Topic: In order to operate close to non-experts, future robots require both an intuitive form of instruction accessible to lay users and the ability to react appropriately to a human co-worker. Instruction by imitation learning with probabilistic movement primitives (ProMPs) [1] allows capturing tasks by learning robot trajectories from demonstrations including the motion variability. However, appropriate responses to human co-workers during the execution of the learned movements are crucial for fluent task execution, perceived safety, and subjective comfort. To facilitate such appropriate responsive behaviors in human-robot interaction, the robot needs to be able to react to its human workspace co-inhabitant online during the execution. Also, the robot needs to communicate its motion intent to the human through non-verbal gestures such as eye and head gazes [2][3]. In particular for humanoid robots, combining motions of arms with expressive head and gaze directions is a promising approach that has not yet been extensively studied in related work.

Goals of the thesis:

  • Develop a method to combine robot head/gaze motion with ProMPs for online collision avoidance
  • Implement the method on a Franka-Emika Panda Robot
  • Evaluate and compare the implemented behaviors in a study with human participants

Highly motivated students can apply by sending an email to [email protected]. Please attach your CV and transcript, and clearly state your prior experiences and why you are interested in this topic.

  • Strong Programming Skills in python
  • Prior experience with Robot Operating System (ROS) and user studies would be beneficial
  • Strong motivation for human-centered robotics including design and implementation of a user study

References : [1] Koert, Dorothea, et al. "Learning intention aware online adaptation of movement primitives." IEEE Robotics and Automation Letters 4.4 (2019): 3719-3726. [2] Admoni, Henny, and Brian Scassellati. "Social eye gaze in human-robot interaction: a review." Journal of Human-Robot Interaction 6.1 (2017): 25-63. [3] Lemasurier, Gregory, et al. "Methods for expressing robot intent for human–robot collaboration in shared workspaces." ACM Transactions on Human-Robot Interaction (THRI) 10.4 (2021): 1-27.

Tactile Sensing for the Real World

Topic: Tactile sensing is a crucial sensing modality that allows humans to perform dexterous manipulation[1]. In recent years, the development of artificial tactile sensors has made substantial progress, with current models relying on cameras inside the fingertips to extract information about the points of contact [2]. However, robotic tactile sensing is still a largely unsolved topic despite these developments. A central challenge of tactile sensing is the extraction of usable representations of sensor readings, especially since these generally contain an incomplete view of the environment.

Recent model-based reinforcement learning methods like Dreamer [3] leverage latent state-space models to reason about the environment from partial and noisy observations. However, more work has yet to be done to apply such methods to real-world manipulation tasks. Hence, this thesis will explore whether Dreamer can solve challenging real-world manipulation tasks by leveraging tactile information. Initial results suggest that tasks like peg-in-a-hole can indeed be solved with Dreamer in simulation (see figure above), but the applicability of this method in the real world has yet to be shown.

In this work, you will work with state-of-the-art hardware and compute resources on a hot research topic with the option of publishing your work at a scientific conference.

Highly motivated students can apply by sending an email to [email protected]. Please attach a transcript of records and clearly state your prior experiences and why you are interested in this topic.

  • Ideally experience with deep learning libraries like JAX or PyTorch
  • Experience with reinforcement learning is a plus
  • Experience with Linux

References [1] 2S Match Anest2, Roland Johansson Lab (2005), https://www.youtube.com/watch?v=HH6QD0MgqDQ [2] Gelsight Inc., Gelsight Mini, https://www.gelsight.com/gelsightmini/ [3] Hafner, D., Lillicrap, T., Ba, J., & Norouzi, M. (2019). Dream to control: Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603.

Large Vision-Language Neural Networks for Open-Vocabulary Robotic Manipulation

machine learning thesis topics

Robots are expected to soon leave their factory/laboratory enclosures and operate autonomously in everyday unstructured environments such as households. Semantic information is especially important when considering real-world robotic applications where the robot needs to re-arrange objects as per a set of language instructions or human inputs (as shown in the figure). Many sophisticated semantic segmentation networks exist [1]. However, a challenge when using such methods in the real world is that the semantic classes rarely align perfectly with the language input received by the robot. For instance, a human language instruction might request a ‘glass’ or ‘water’, but the semantic classes detected might be ‘cup’ or ‘drink’.

Nevertheless, with the rise of large language and vision-language models, we now have capable segmentation models that do not directly predict semantic classes but use learned associations between language queries and classes to give us ’open-vocabulary’ segmentation [2]. Some models are especially powerful since they can be used with arbitrary language queries.

In this thesis, we aim to build on advances in 3D vision-based robot manipulation and large open-vocabulary vision models [2] to build a full pick-and-place pipeline for real-world manipulation. We also aim to find synergies between scene reconstruction and semantic segmentation to determine if knowing the object semantics can aid the reconstruction of the objects and, in turn, aid manipulation.

Highly motivated students can apply by sending an e-mail expressing their interest to Snehal Jauhri (email: [email protected]) or Ali Younes (email: [email protected]), attaching your letter of motivation and possibly your CV.

Topic in detail : Thesis_Doc.pdf

Requirements: Enthusiasm, ambition, and a curious mind go a long way. There will be ample supervision provided to help the student understand basic as well as advanced concepts. However, prior knowledge of computer vision, robotics, and Python programming would be a plus.

References: [1] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2”, https://github.com/facebookresearch/detectron2 , 2019. [2] F. Liang, B. Wu, X. Dai, K. Li, Y. Zhao, H. Zhang, P. Zhang, P. Vajda, and D. Marculescu, “Open-vocabulary semantic segmentation with mask-adapted clip,” in CVPR, 2023, pp. 7061–7070, https://github.com/facebookresearch/ov-seg

Dynamic Tiles for Deep Reinforcement Learning

machine learning thesis topics

Linear approximators in Reinforcement Learning are well-studied and come with an in-depth theoretical analysis. However, linear methods require defining a set of features of the state to be used by the linear approximation. Unfortunately, the feature construction process is a particularly problematic and challenging task. Deep Reinforcement learning methods have been introduced to mitigate the feature construction problem: these methods do not require handcrafted features, as features are extracted automatically by the network during learning, using gradient descent techniques.

In simple reinforcement learning tasks, however, it is possible to use tile coding as features: Tiles are simply a convenient discretization of the state space that allows us to easily control the generalization capabilities of the linear approximator. The objective of this thesis is to design a novel algorithm for automatic feature extraction that generates a set of features similar to tile coding, but that can arbitrarily partition the state space and deal with arbitrary complex state space, such as images. The idea is to combine the feature extraction problem directly with Linear Reinforcement Learning methods, defining an algorithm that is able both to have the theoretical guarantees and good convergence properties of these methods and the flexibility of Deep Learning approaches.

  • Curriculum Vitae (CV);
  • A motivation letter explaining the reason for applying for this thesis and academic/career objectives.

Minimum knowledge

  • Good Python programming skills;
  • Basic knowledge of Reinforcement Learning.

Preferred knowledge

  • Knowledge of the PyTorch library;
  • Knowledge of the Atari environments (ale-py library).
  • Knowledge of the MushroomRL library.

Accepted candidate will

  • Define a generalization of tile coding working with an arbitrary input set (including images);
  • Design a learning algorithm to adapt the tiles using data of interaction with the environment;
  • Combine feature learning with standard linear methods for Reinforcement Learning;
  • Verify the novel methodology in simple continuous state and discrete actions environments;
  • (Optionally) Extend the experimental analysis to the Atari environment setting.

Deep Learning Meets Teleoperation: Constructing Learnable and Stable Inductive Guidance for Shared Control

This work considers policies as learnable inductive guidance for shared control. In particular, we use the class of Riemannian motion policies [3] and consider them as differentiable optimization layers [4]. We analyze (i) if RMPs can be pre-trained by learning from demonstrations [5] or reinforcement learning [6] given a specific context; (ii) and subsequently employed seamlessly for human-guided teleoperation thanks to their physically consistent properties, such as stability [3]. We believe this step eliminates the laborious process of constructing complex policies and leads to improved and generalizable shared control architectures.

Highly motivated students can apply by sending an e-mail expressing your interest to [email protected] and [email protected] , attaching your letter of motivation and possibly your CV.

  • Experience with deep learning libraries (in particular Pytorch)
  • Knowledge in reinforcement learning and/or machine learning

References: [1] Niemeyer, Günter, et al. "Telerobotics." Springer handbook of robotics (2016); [2] Selvaggio, Mario, et al. "Autonomy in physical human-robot interaction: A brief survey." IEEE RAL (2021); [3] Cheng, Ching-An, et al. "RMP flow: A Computational Graph for Automatic Motion Policy Generation." Springer (2020); [4] Jaquier, Noémie, et al. "Learning to sequence and blend robot skills via differentiable optimization." IEEE RAL (2022); [5] Mukadam, Mustafa, et al. "Riemannian motion policy fusion through learnable lyapunov function reshaping." CoRL (2020); [6] Xie, Mandy, et al. "Neural geometric fabrics: Efficiently learning high-dimensional policies from demonstration." CoRL (2023).

Dynamic symphony: Seamless human-robot collaboration through hierarchical policy blending

This work focuses on arbitration between the user and assistive policy, i.e., shared autonomy. Various works allow the user to influence the dynamic behavior explicitly and, therefore, could not satisfy stability guarantees [3]. We pursue the idea of formulating arbitration as a trajectory-tracking problem that implicitly considers the user's desired behavior as an objective [4]. Therefore, we extend the work of Hansel et al. [5], who employed probabilistic inference for policy blending in robot motion control. The proposed method corresponds to a sampling-based online planner that superposes reactive policies given a predefined objective. This method enables the user to implicitly influence the behavior without injecting energy into the system, thus satisfying stability properties. We believe this step leads to an alternative view of shared autonomy with an improved and generalizable framework.

Highly motivated students can apply by sending an e-mail expressing your interest to [email protected] or [email protected] , attaching your letter of motivation and possibly your CV.

References: [1] Niemeyer, Günter, et al. "Telerobotics." Springer handbook of robotics (2016); [2] Selvaggio, Mario, et al. "Autonomy in physical human-robot interaction: A brief survey." IEEE RAL (2021); [3] Dragan, Anca D., and Siddhartha S. Srinivasa. "A policy-blending formalism for shared control." IJRR (2013); [4] Javdani, Shervin, et al. "Shared autonomy via hindsight optimization for teleoperation and teaming." IJRR (2018); [5] Hansel, Kay, et al. "Hierarchical Policy Blending as Inference for Reactive Robot Control." IEEE ICRA (2023).

Feeling the Heat: Igniting Matches via Tactile Sensing and Human Demonstrations

In this thesis, we want to investigate the effectiveness of vision-based tactile sensors for solving dynamic tasks (igniting matches). Since the whole task is difficult to simulate, we directly collect real-world data to learn policies from the human demonstrations [2,3]. We believe that this work is an important step towards more advanced tactile skills.

Highly motivated students can apply by sending an e-mail expressing your interest to [email protected] and [email protected] , attaching your letter of motivation and possibly your CV.

  • Good knowledge of Python
  • Prior experience with real robots and Linux is a plus

References: [1] https://www.youtube.com/watch?v=HH6QD0MgqDQ [2] Learning Compliant Manipulation through Kinesthetic and Tactile Human-Robot Interaction; Klas Kronander and Aude Billard. [3] https://www.youtube.com/watch?v=jAtNvfPrKH8

Inverse Reinforcement Learning for Neuromuscular Control of Humanoids

Within this thesis, the problems of learning from observations and efficient exploration in overactued systems should be addressed. Regarding the former, novel methods incorporating inverse dynamics models into the inverse reinforcement learning problem [1] should be adapted and applied. To address the problem of efficient exploration in overactuted systems, two approaches should be implemented and compared. The first approach uses a handcrafted action space, which disables and modulates actions in different phases of the gait based on biomechanics knowledge [2]. The second approach uses a stateful policy to incorporate an inductive bias into the policy [3]. The thesis will be supervised in conjunction with Guoping Zhao ( [email protected] ) from the locomotion lab.

Highly motivated students can apply by sending an e-mail expressing their interest to Firas Al-Hafez ( [email protected] ), attaching your letter of motivation and possibly your CV. Try to make clear why you would like to work on this topic, and why you would be the perfect candidate for the latter.

Required Qualification : 1. Strong Python programming skills 2. Knowledge in Reinforcement Learning 3. Interest in understanding human locomotion

Desired Qualification : 1. Hands-on experience on robotics-related RL projects 2. Prior experience with different simulators 3. Attendance of the lectures "Statistical Machine Learning", "Computational Engineering and Robotics" and/or "Reinforcement Learning: From Fundamentals to the Deep Approaches"

References: [1] Al-Hafez, F.; Tateo, D.; Arenz, O.; Zhao, G.; Peters, J. (2023). LS-IQ: Implicit Reward Regularization for Inverse Reinforcement Learning, International Conference on Learning Representations (ICLR). [2] Ong CF; Geijtenbeek T.; Hicks JL; Delp SL (2019) Predicting gait adaptations due to ankle plantarflexor muscle weakness and contracture using physics-based musculoskeletal simulations. PLoS Computational Biology [3] Srouji, M.; Zhang, J:;Salakhutdinow, R. (2018) Structured Control Nets for Deep Reinforcement Learning, International Conference on Machine Learning (ICML)

Robotic Tactile Exploratory Procedures for Identifying Object Properties

machine learning thesis topics

Goals of the thesis

  • Literature review of robotic EPs for identifying object properties [2,3,4]
  • Develop and implement robotic EPs for a Digit tactile sensor
  • Compare performance of robotic EPs with human EPs

Desired Qualifications

  • Interested in working with real robotic systems
  • Python programming skills

Literature [1] Lederman and Klatzky, “Haptic perception: a tutorial” [2] Seminara et al., “Active Haptic Perception in Robots: A Review” [3] Chu et al., “Using robotic exploratory procedures to learn the meaning of haptic adjectives” [4] Kerzel et al., “Neuro-Robotic Haptic Object Classification by Active Exploration on a Novel Dataset”

Scaling learned, graph-based assembly policies

machine learning thesis topics

  • scaling our previous methods to incorporate mobile manipulators or the Kobo bi-manual manipulation platform. The increased workspace of both would allow for handling a wider range of objects
  • [2] has shown more powerful, yet, it includes running a MILP for every desired structure. Thus another idea could be to investigate approaches aiming to approximate this solution
  • adapting the methods to handle more irregular-shaped objects / investigate curriculum learning

Highly motivated students can apply by sending an e-mail expressing your interest to [email protected] , attaching your letter of motivation and possibly your CV.

  • Experience with deep learning libraries (in particular Pytorch) is a plus
  • Experience with reinforcement learning / having taken Robot Learning is also a plus

References: [1] Learn2Assemble with Structured Representations and Search for Robotic Architectural Construction; Niklas Funk et al. [2] Graph-based Reinforcement Learning meets Mixed Integer Programs: An application to 3D robot assembly discovery; Niklas Funk et al. [3] Structured agents for physical construction; Victor Bapst et al.

Long-Horizon Manipulation Tasks from Visual Imitation Learning (LHMT-VIL): Algorithm

machine learning thesis topics

The proposed architecture can be broken down into the following sub-tasks: 1. Multi-object 6D pose estimation from video: Identify the object 6D poses in each video frame to generate the object trajectories 2. Action segmentation from video: Classify the action being performed in each video frame 3. High-level task representation learning: Learn the sequence of robotic movement primitives with the associated object poses such that the robot completes the demonstrated task 4. Low-level movement primitives: Create a database of low-level robotic movement primitives which can be sequenced to solve the long-horizon task

Desired Qualification: 1. Strong Python programming skills 2. Prior experience in Computer Vision and/or Robotics is preferred

Long-Horizon Manipulation Tasks from Visual Imitation Learning (LHMT-VIL): Dataset

During the project, we will create a large-scale dataset of videos of humans demonstrating industrial assembly sequences. The dataset will contain information of the 6D poses of the objects, the hand and body poses of the human, the action sequences among numerous other features. The dataset will be open-sourced to encourage further research on VIL.

[1] F. Sener, et al. "Assembly101: A Large-Scale Multi-View Video Dataset for Understanding Procedural Activities". CVPR 2022. [2] P. Sharma, et al. "Multiple Interactions Made Easy (MIME) : Large Scale Demonstrations Data for Imitation." CoRL, 2018.

Adaptive Human-Robot Interactions with Human Trust Maximization

machine learning thesis topics

  • Good knowledge of Python and/or C++;
  • Good knowledge in Robotics and Machine Learning;
  • Good knowledge of Deep Learning frameworks, e.g, PyTorch;

References: [1] Xu, Anqi, and Gregory Dudek. "Optimo: Online probabilistic trust inference model for asymmetric human-robot collaborations." ACM/IEEE HRI, IEEE, 2015; [2] Kwon, Minae, et al. "When humans aren’t optimal: Robots that collaborate with risk-aware humans." ACM/IEEE HRI, IEEE, 2020; [3] Chen, Min, et al. "Planning with trust for human-robot collaboration." ACM/IEEE HRI, IEEE, 2018; [4] Poole, Ben et al. “On variational bounds of mutual information”. ICML, PMLR, 2019.

Causal inference of human behavior dynamics for physical Human-Robot Interactions

machine learning thesis topics

Highly motivated students can apply by sending an e-mail expressing your interest to [email protected] , attaching your a letter of motivation and possibly your CV.

  • Good knowledge of Robotics;
  • Good knowledge of Deep Learning frameworks, e.g, PyTorch
  • Li, Q., Chalvatzaki, G., Peters, J., Wang, Y., Directed Acyclic Graph Neural Network for Human Motion Prediction, 2021 IEEE International Conference on Robotics and Automation (ICRA).
  • Löwe, S., Madras, D., Zemel, R. and Welling, M., 2020. Amortized causal discovery: Learning to infer causal graphs from time-series data. arXiv preprint arXiv:2006.10833.
  • Yang, W., Paxton, C., Mousavian, A., Chao, Y.W., Cakmak, M. and Fox, D., 2020. Reactive human-to-robot handovers of arbitrary objects. arXiv preprint arXiv:2011.08961.

Incorporating First and Second Order Mental Models for Human-Robot Cooperative Manipulation Under Partial Observability

Scope: Master Thesis Advisor: Dorothea Koert , Joni Pajarinen Added: 2021-06-08 Start: ASAP

machine learning thesis topics

The ability to model the beliefs and goals of a partner is an essential part of cooperative tasks. While humans develop theory of mind models for this aim already at a very early age [1] it is still an open question how to implement and make use of such models for cooperative robots [2,3,4]. In particular, in shared workspaces human robot collaboration could potentially profit from the use of such models e.g. if the robot can detect and react to planned human goals or a human's false beliefs during task execution. To make such robots a reality, the goal of this thesis is to investigate the use of first and second order mental models in a cooperative manipulation task under partial observability. Partially observable Markov decision processes (POMDPs) and interactive POMDPs (I-POMDPs) [5] define an optimal solution to the mental modeling task and may provide a solid theoretical basis for modelling. The thesis may also compare related approaches from the literature and setup an experimental design for evaluation with the bi-manual robot platform Kobo.

Highly motivated students can apply by sending an e-mail expressing your interest to [email protected] attaching your CV and transcripts.

References:

  • Wimmer, H., & Perner, J. Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children's understanding of deception (1983)
  • Sandra Devin and Rachid Alami. An implemented theory of mind to improve human-robot shared plans execution (2016)
  • Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami,and Matthew Botvinick. Machine theory of mind (2018)
  • Connor Brooks and Daniel Szafir. Building second-order mental models for human-robot interaction. (2019)
  • Prashant Doshi, Xia Qu, Adam Goodie, and Diana Young. Modeling recursive reasoning by humans using empirically informed interactive pomdps. (2010)

Purdue University Graduate School

File(s) under embargo

until file(s) become available

An Image-based ML Approach for Wi-Fi Intrusion Detection System and Education Modules for Security and Privacy in ML

The research work presented in this thesis focuses on two highly important topics in the modern age. The first topic of research is the development of various image-based Network Intrusion Detection Systems (NIDSs) and performing a comprehensive analysis of their performance. Wi-Fi networks have become ubiquitous in enterprise and home networks which creates opportunities for attackers to target the networks. These attackers exploit various vulnerabilities in Wi-Fi networks to gain unauthorized access to a network or extract data from end users' devices. The deployment of an NIDS helps detect these attacks before they can cause any significant damages to the network's functionalities or security. Within the scope of our research, we provide a comparative analysis of various deep learning (DL)-based NIDSs that utilize various imaging techniques to detect anomalous traffic in a Wi-Fi network. The second topic in this thesis is the development of learning modules for security and privacy in Machine Learning (ML). The increasing integration of ML in various domains raises concerns about its security and privacy. In order to effectively address such concerns, students learning about the basics of ML need to be made aware of the steps that are taken to develop robust and secure ML-based systems. As part of this, we introduce a set of hands-on learning modules designed to educate students on the importance of security and privacy in ML. The modules provide a theoretical learning experience through presentations and practical experience using Python Notebooks. The modules are developed in a manner that allows students to easily absorb the concepts regarding privacy and security of ML models and implement it in real-life scenarios. The efficacy of this process will be obtained from the results of the surveys conducted before and after providing the learning modules. Positive results from the survey will demonstrate the learning modules were effective in imparting knowledge to the students and the need to incorporate security and privacy concepts in introductory ML courses.

Cybersecurity Modules Aligned with Undergraduate Computer Science and Engineering Curricula

Directorate for Education & Human Resources

Degree Type

  • Master of Science
  • Electrical and Computer Engineering

Campus location

Advisor/supervisor/committee chair, additional committee member 2, additional committee member 3, usage metrics.

  • System and network security
  • Data security and protection
  • Data and information privacy
  • Adversarial machine learning
  • Deep learning

CC BY 4.0

  • Career Advice
  • Computer Vision
  • Data Engineering
  • Data Science
  • Language Models
  • Machine Learning
  • Programming
  • Cheat Sheets
  • Recommendations
  • Tech Briefs

5 Machine Learning Papers to Read in 2024

Enrich your knowledge with these papers

5 Machine_Learning_Papers_to_Read_in_2024

Machine learning is a subset of artificial intelligence that could bring value to the business by providing efficiency and predictive insight. It’s a valuable tool for any business.

We know that last year was full of machine learning breakthrough, and this year is not any different. There is just so much to learn about.

With so much to learn, I select a few papers in 2024 that you should read to improve your knowledge.

What are these papers? Let’s get into it.  

  • HyperFast: Instant Classification for Tabular Data

HyperFast is a meta-trained hypernetwork model developed by Bonet et al. (2024) research. It’s designed to provide a classification model that is capable of instant classification of tabular data in a single forward pass.

The author stated that the HyperFast could generate a task-specific neural network for an unseen dataset that can be directly used for classification prediction and eliminate the need for training a model. This approach would significantly reduce the computational demands and time required to deploy machine learning models.

The HyperFast Framework shows that the input data is transformed through standardization and dimensionality reduction, followed by a sequence of hypernetworks that produce weights for the network's layers, which include a nearest neighbor-based classification bias.

Overall, the results show that HyperFast performed excellently. It is faster than many classical methods without the need for fine-tuning. The paper concludes that HyperFast could become a new approach that can be applied in many real-life cases.

  • EasyRL4Rec: A User-Friendly Code Library for Reinforcement Learning Based Recommender Systems

The next paper we will discuss is about a new library proposed by Yu et al. (2024) called EasyRL4Rec.The point of the paper is about a user-friendly code library designed for developing and testing Reinforcement Learning (RL)-based Recommender Systems (RSs) called EasyRL4Rec.

The library offers a modular structure with four core modules (Environment, Policy, StateTracker, and Collector), each addressing different stages of the Reinforcement Learning process.

The overall structure shows that it works around the core modules for the Reinforcement Learning workflow—including Environments (Envs) for simulating user interactions, a Collector for gathering data from interactions, a State Tracker for creating state representations, and a Policy module for decision-making. It also includes a data layer for managing datasets and an Executor layer with a Trainer Evaluator for overseeing the learning and performance assessment of the RL agent.

The author concludes that EasyRL4Rec contains a user-friendly framework that could address practical challenges in RL for recommender systems.

  • Label Propagation for Zero-shot Classification with Vision-Language Models

The paper by Stojnic et al. (2024) introduces a technique called ZLaP, which stands for Zero-shot classification with Label Propagation. It’s an enhancement for the Zero-Shot Classification of Vision Language Models by utilizing geodesic distances for classification.

As we know Vision Models such as GPT-4V or LLaVa, are capable of zero-shot learning, which can perform classification without labeled images. However, it can still be enhanced further which is why the research group developed the ZLaP technique.

The ZLaP core idea is to utilize label propagation on a graph-structured dataset comprising both image and text nodes. ZLaP calculates geodesic distances within this graph to perform classification. The method is also designed to handle the dual modalities of text and images.

Performance-wise, ZLaP shows results that consistently outperform other state-of-the-art methods in zero-shot learning by leveraging both transductive and inductive inference methods across 14 different dataset experiments.

Overall, the technique significantly improved classification accuracy across multiple datasets, which showed promise for the ZLaP technique in the Vision Language Model.

  • Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention

The fourth paper we will discuss is by Munkhdalai et al. (2024). Their paper introduces a method to scale Transformer-based Large Language Models (LLMs) that could handle infinitely long inputs with a limited computational capability called Infini-attention.

The Infini-attention mechanism integrates a compressive memory system into the traditional attention framework. Combining a traditional causal attention model with compressive memory can store and update historical context and efficiently process the extended sequences by aggregating long-term and local information within a transformer network.

Overall, the technique performs superior tasks involving long-context language modelings, such as passkey retrieval from long sequences and book summarization, compared to currently available models.

The technique could provide many future approaches, especially to applications that require the processing of extensive text data.

  • AutoCodeRover: Autonomous Program Improvement

The last paper we will discuss is by Zhang et al. (2024) . The main focus of this paper is on the tool called AutoCodeRover, which utilizes Large Language Models (LLMs) that are able to perform sophisticated code searches to automate the resolution of GitHub issues, mainly bugs, and feature requests. By using LLMs to parse and understand issues from GitHub, AutoCodeRover can navigate and manipulate the code structure more effectively than traditional file-based approaches to solve the issues.

There are two main stages of how AutoCodeRover works: Context Retrieval Stage and Patch Generation target. It works by analyzing the results to check if enough information has been gathered to identify the buggy parts of the code and attempts to generate a patch to fix the issues.

The paper shows that AutoCodeRover improves performance compared to previous methods. For example, it solved 22-23% of issues from the SWE-bench-lite dataset, which resolved 67 issues in an average time of less than 12 minutes each. This is an improvement as on average it could take two days to solve.

Overall, the paper shows promise as AutoCodeRover is capable of significantly reducing the manual effort required in program maintenance and improvement tasks.

There are many machine learning papers to read in 2024, and here are my recommendation papers to read:

I hope it helps!    

Cornellius Yudha Wijaya is a data science assistant manager and data writer. While working full-time at Allianz Indonesia, he loves to share Python and data tips via social media and writing media. Cornellius writes on a variety of AI and machine learning topics.

More On This Topic

  • KDnuggets News, April 27: A Brief Introduction to Papers With Code;…
  • Top Machine Learning Papers to Read in 2023
  • Must Read NLP Papers from the Last 12 Months
  • Generative Agent Research Papers You Should Read
  • Machine Learning Books You Need To Read In 2022
  • Top 10 Kaggle Machine Learning Projects to Become Data Scientist in 2024

machine learning thesis topics

Get the FREE ebook 'The Great Big Natural Language Processing Primer' and 'The Complete Collection of Data Science Cheat Sheets' along with the leading newsletter on Data Science, Machine Learning, AI & Analytics straight to your inbox.

By subscribing you accept KDnuggets Privacy Policy

Latest Posts

  • Free AI Courses from NVIDIA: For All Levels
  • 5 Simple Steps to Automate Data Cleaning with Python
  • 5 Free Stanford AI Courses
  • A Comprehensive Guide to Essential Tools for Data Analysts
  • Containerize Python Apps with Docker in 5 Easy Steps
  • Ollama Tutorial: Running LLMs Locally Made Super Simple
  • Meta’s New Data Analyst Professional Certification Has Dropped!
  • Understanding Python’s Iteration and Membership: A Guide to __contains__ and __iter__ Magic Methods
  • Getting Started with PyTest: Effortlessly Write and Run Tests in Python
  • A Roadmap to Machine Learning Algorithm Selection

machine learning thesis topics

No, thanks!

IMAGES

  1. Overview of PhD Research Thesis Topics in Machine Learning (Guidance)

    machine learning thesis topics

  2. Latest Thesis Topics in Machine Learning for Research Scholars

    machine learning thesis topics

  3. Top 5 Thesis Topics for Machine Learning [Customized Research Support]

    machine learning thesis topics

  4. 10 Machine Learning Project (Thesis) Topics for 2020

    machine learning thesis topics

  5. Thesis topics in machine learning by Techsparks

    machine learning thesis topics

  6. Latest Thesis Topics in Machine Learning for Research Scholars

    machine learning thesis topics

VIDEO

  1. Machine Teaching Demo

  2. Why you should read Research Papers in ML & DL? #machinelearning #deeplearning

  3. Empowering Music Creation with Machine Learning (Thesis Proposal)

  4. Introduction to Machine Learning

  5. Column Generation in Machine Learning| Krunal Thesis background

  6. Real PhD, Virtual Thesis Defense

COMMENTS

  1. Top 10 Research and Thesis Topics for ML Projects in 2022

    In this tech-driven world, selecting research and thesis topics in machine learning projects is the first choice of masters and Doctorate scholars. Selecting and working on a thesis topic in machine learning is not an easy task as machine learning uses statistical algorithms to make computers work in a certain way without being explicitly ...

  2. The Future of AI Research: 20 Thesis Ideas for Undergraduate ...

    This article provides a list of 20 potential thesis ideas for an undergraduate program in machine learning and deep learning in 2023. Each thesis idea includes an introduction, which presents a brief overview of the topic and the research objectives. The ideas provided are related to different areas of machine learning and deep learning, such ...

  3. AI & Machine Learning Research Topics (+ Free Webinar)

    Find inspiration for your dissertation, thesis or research project on AI and machine learning topics. Browse a list of broad and specific ideas, and see examples of recent studies in the field.

  4. Exploring 250+ Machine Learning Research Topics

    Machine learning research is at the heart of the AI revolution. It underpins the development of intelligent systems capable of making predictions, automating tasks, and improving decision-making across industries. The importance of this research can be summarized as follows: Advancements in Technology.

  5. Available Master's thesis topics in machine learning

    Potential thesis topics in this area: a) Compare inference speed with sum-product networks and Bayesian networks. Characterize situations when one model is better than the other. ... and machine learning could now offer a substantial contribution. Security capture-the-flag simulations are particularly well-suited as a testbed for the ...

  6. PhD Dissertations

    PhD Dissertations [All are .pdf files] Probabilistic Reinforcement Learning: Using Data to Define Desired Outcomes, and Inferring How to Get There Benjamin Eysenbach, 2023. Data-driven Decisions - An Anomaly Detection Perspective Shubhranshu Shekhar, 2023. METHODS AND APPLICATIONS OF EXPLAINABLE MACHINE LEARNING Joon Sik Kim, 2023. Applied Mathematics of the Future Kin G. Olivares, 2023

  7. 17 Compelling Machine Learning Ph.D. Dissertations

    This machine learning dissertation comprises four chapters. The first is an introduction to the topics of the dissertation and the remaining chapters contain the main results. Chapter 2 gives new results for consistency of maximum likelihood estimators with a focus on multivariate mixed models.

  8. 10 Compelling Machine Learning Ph.D. Dissertations for 2020

    This dissertation explores three topics related to random forests: tree aggregation, variable importance, and robustness. 10. Climate Data Computing: Optimal Interpolation, Averaging, Visualization and Delivery. This dissertation solves two important problems in the modern analysis of big climate data.

  9. PDF Undergraduate Fundamentals of Machine Learning

    of the basics of machine learning, it might be better understood as a collection of tools that can be applied to a speci c subset of problems. 1.2 What Will This Book Teach Me? The purpose of this book is to provide you the reader with the following: a framework with which to approach problems that machine learning learning might help solve ...

  10. Brown Digital Repository

    Advancements in machine learning techniques have encouraged scholars to focus on convolutional neural network (CNN) based solutions for object detection and pose estimation tasks. Most … Year: 2020 Contributor: Derman, Can Eren (creator) Bahar, Iris (thesis advisor) Taubin, Gabriel (reader) Brown University. School of Engineering (sponsor ...

  11. Thesis Topic Proposals 2022-2023

    Below you can see the thesis topics for 2022-2023. We offer 3 different thesis formats: - Format 1 : Regular thesis (fully supervised by KU Leuven) - Format 2 : Thesis in cooperation with a company (supervised by KU Leuven and the company) - Format 3 : Thesis with a company project within a company (supervised by the company) NOTE: Additional ...

  12. PDF Adversarially Robust Machine Learning With Guarantees a Dissertation

    di er. This thesis focuses on an extreme version of this brittleness, adversarial examples, where even imperceptible (but carefully constructed) changes break ML models. Progress on this widely-studied topic has been limited by the following critical roadblocks which we address in this thesis. Challenge 1: Worst-case evaluation with guarantees.

  13. Open Theses

    Open Topics We offer multiple Bachelor/Master theses, Guided Research projects and IDPs in the area of data mining/machine learning. A non-exhaustive list of open topics is listed below.. If you are interested in a thesis or a guided research project, please send your CV and transcript of records to Prof. Stephan Günnemann via email and we will arrange a meeting to talk about the potential ...

  14. machine learning Latest Research Papers

    Find the latest published documents for machine learning, Related hot topics, top authors, the most cited documents, and related journals

  15. 10 Machine Learning Project (Thesis) Topics for 2020

    2. Intelligent Internet Ads Generation (Classification) This is one of the most interesting topics for me. The reason is because the revenue generated or expended by ads campaign depends not just on the volume of the ads, but also on the relevance of the ads. Therefore it is possible to increase revenue and reduce spending by developing a ...

  16. Thesis Topics for Machine Learning

    Let us now have an idea about various headings to be included in any thesis topics for machine learning. Introduction - overview of the thesis; Related / Existing works - presents of existing research; Problems definition/statements - identify and highlight the problems; Research methodology - convey the proposed concepts; Results and Discussion - discuss the results of the proposed ...

  17. 8 Best Topics for Research and Thesis in Artificial Intelligence

    So without further ado, let's see the different Topics for Research and Thesis in Artificial Intelligence!. 1. Machine Learning. Machine Learning involves the use of Artificial Intelligence to enable machines to learn a task from experience without programming them specifically about that task. (In short, Machines learn automatically without human hand holding!!!)

  18. 1000 Computer Science Thesis Topics and Ideas

    This section offers a well-organized and extensive list of 1000 computer science thesis topics, designed to illuminate diverse pathways for academic inquiry and innovation. Whether your interest lies in the emerging trends of artificial intelligence or the practical applications of web development, this assortment spans 25 critical areas of ...

  19. Undergraduate Research Topics

    Any interesting project related to AI, machine learning, and data analysis. Lydia Liu, Room 414. Available for single-semester IW and senior thesis advising, 2024-2025. Research Areas: algorithmic decision making, machine learning and society; Selected topics:

  20. Undergraduate Fundamentals of Machine Learning

    Abstract. Drawing on lectures, course materials, existing textbooks, and other resources, we synthesize and consolidate the content necessary to offer a successful first exposure to machine learning for students with an undergraduate-level background in linear algebra and statistics. The final product is a textbook for Harvard's introductory ...

  21. Dissertations / Theses: 'Machine Learning (ML)'

    Video (online) Consult the top 50 dissertations / theses for your research on the topic 'Machine Learning (ML).'. Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA ...

  22. PDF Master Thesis Using Machine Learning Methods for Evaluating the ...

    Dr. Ola PETERSSON. HT2015 Computer Science 15HT - 5DV50E/4DV50E. Master Thesis Using Machine Learning Methods for Evaluating the Quality of Technical Documents. Abstract In the context of an increasingly networked world, the availability of high quality transla- tions is critical for success in the context of the growing international competition.

  23. Intelligent Autonomous Systems

    Geometry-Aware Diffusion Models for Robotics . Scope: Master thesis Advisor: Joao Carvalho, An Thai Le Added: 2023-11-20 Start: ASAP Topic: Diffusion-based generative models have shown increasing performance in image generation [1], and, more recently, in reinforcement learning and robotics. E.g., in motion planning [2], grasping [3], imitation learning [4], and offline reinforcement learning [5].

  24. An Image-based ML Approach for Wi-Fi Intrusion Detection System and

    The second topic in this thesis is the development of learning modules for security and privacy in Machine Learning (ML). The increasing integration of ML in various domains raises concerns about its security and privacy. In order to effectively address such concerns, students learning about the basics of ML need to be made aware of the steps ...

  25. 5 Machine Learning Papers to Read in 2024

    Conclusion. There are many machine learning papers to read in 2024, and here are my recommendation papers to read: HyperFast: Instant Classification for Tabular Data. EasyRL4Rec: A User-Friendly Code Library for Reinforcement Learning Based Recommender Systems. Label Propagation for Zero-shot Classification with Vision-Language Models.