Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

POSITION PAPER HOMEWORK SHOULD BE ABOLISHED (DISAGREE

Profile image of Elyssa Mharie Felix

This position paper is all about why homework should not be abolished under any circumstances. Students nowadays are all under the impression that homework is something that is unnecessary and is just something that makes their life a lot more difficult. But this is not true, homework has a lot of benefits. Some of these benefits are as follows: homework helps improve the student's overall performance, it also encourages the communication between the students, parents and the teachers, and it helps the students gain traits and skills that are essential for their growth like time management and self-discipline. Homework should not be abolished just because it is hard because its point is to be hard. It would be useless if it was rather easy and can be done in just a few minutes. It gives the students real life experiences and let them know how they can handle their future jobs and their future responsibilities. And this is why homework should be kept and not be abolished and the people should be aware of its importance and benefits for the better of everyone.

Related Papers

DAD discussion forum on faculty and student …

Sahalu Junaidu

giving of homework to students position paper

Do Students Express Their Actual Opinions in Class?

Brad Barker

This paper reports on a study conducted at a private Japanese university in order to determine whether students were expressing their actual opinions (as opposed to false opinions) in English Discussion Class (EDC) and the factors that can prevent students from expressing their actual opinions. A questionnaire was developed and administered to 95 students. A clear majority of students (87%) reported that they did in fact express their actual opinions during group discussion tasks. However, 73% percent of students reported that they did not express their actual opinions in class at least some of the time. The main reasons given were general lack of ability and lack of vocabulary.

Puteri Nur Aqiliah

Advances in Applied Mathematics

Wenchang Chu

Serge Belongie

British Journal of Educational Technology

Hamad Odhabi

Adeliza Marasigan

Merita Toska (Boka) , Genti Hashorva

The importance of inflation expectations for monetary policy requires an analysis of their nature: rational or adaptive? This is essential, especially in the inflation targeting regime, recently implemented by the Bank of Albania (BoA). In this paper, we explore inflation expectations obtained through surveys from BoA, over the period 2003 Q2 – 2015 Q1. Qualitative inflation expectations were quantified using different probabilistic approaches and balances, in addition to quantitative ones. Statistical analysis suggests that inflation expectations provide useful information about the direction of future inflationary pressures. Rationality tests confirm the mixed nature of inflation expectations, while at the beginning of 2009 they were assessed as fully-adaptive. Although expectations continue to be dominated by the adaptive component, several of them gained some rational properties over the years. Longer time series of expectations, improvements in the quantification process and higher transparency in the monetary policy communication have enhanced the rational component In terms of the contribution from rational inflation expectations to the forecasting process, econometric results suggest for a higher value of the forward-looking inflation parameter in the respective equations of different models in use. Meanwhile, in the current model, the calibrated parameter is assumed at a minimal level.

Ana Balula , Fábio Marques , Ciro Martins

Within the business context, communication and interaction tends to be considerably rooted in the use of English (as lingua franca), as well as in ICT use. Thus, professionals have to be able to speak the English language, resorting to specific, internationally recognised terminology and be proficient in the use of manifold ICT tools. In fact, the tendency is for the great majority of higher education (HE) students to own mobile devices (laptops, smartphones and/or tablets) and use them to access information and communicate/interact with content and other people. Bearing this in mind, a teaching and learning strategy was designed, in which m-learning (i.e. learning in which the delivery platform is a mobile device) was used to approach Business English Terminology (BET). The strategy was labelled as .‘BET on Top Hat.’, once the selected application was Top Hat (https://tophat.com/) and the idea was for students to face it as if it were a game/challenge. In this scenario, the main goals of this exploratory study were to find evidence as to: i) the utility of mlearning activities for learning BET and ii) if and how m-learning activities can generate intrinsic motivation in students to learn BET. Participants (n=23) were enrolled in English II, a curricular unit of the 1st cycle degree in Retail Management offered at Águeda School of Technology and Management .– University of Aveiro (2014/15 edition). The data gathered included the students.’ results in quizzes and their answers to a short final evaluation questionnaire regarding their experience with BET on Top Hat. Consequently, data were treated and analysed resorting to descriptive statistical analysis, and, when considered pertinent, the teacher.’s observation notes were also considered. The results unveil that, on the one hand, the strategy had a clear positive impact on the students.’ intrinsic motivation and, on the other hand, the students.’ performance as to BET use tended to improve over time.

Chemistry Education Research and Practice

Chin-cheng Chou

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

RELATED PAPERS

Darrin Miller

Procedia - Social and Behavioral Sciences

CHRISTOS SKOURLAS

Performance Improvement Quarterly

Abm Abdullah

OECD Economics Department Working Papers

Philippe Briard , Franck Sédillot , Patrice Ollivaud , Rafal Kierzenkowski

Pakistan Journal of Statistics

Ummara Shahid

Erling Moxnes

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024
  • Teacher Training

STAKEHOLDERS' PERCEPTIONS ON"NO HOMEWORK POLICY" IN A PHILIPPINE PUBLIC SECONDARY SCHOOL

  • Thesis for: Master of Educational Management
  • Advisor: Joe Salamia

Ma.Veronica Labata at Department of Education of the Philippines

  • Department of Education of the Philippines
  • This person is not on ResearchGate, or hasn't claimed this research yet.

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • S AFR J EDUC

Verbra Pfeiffer

  • Kishore Singh

Cherly Cordova

  • New Dir Teach Learn

Hefer Bembenutty

  • Shelby M. Neier
  • Susan D. Holloway
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up
  • Our Mission

Adolescent girl doing homework.

What’s the Right Amount of Homework?

Decades of research show that homework has some benefits, especially for students in middle and high school—but there are risks to assigning too much.

Many teachers and parents believe that homework helps students build study skills and review concepts learned in class. Others see homework as disruptive and unnecessary, leading to burnout and turning kids off to school. Decades of research show that the issue is more nuanced and complex than most people think: Homework is beneficial, but only to a degree. Students in high school gain the most, while younger kids benefit much less.

The National PTA and the National Education Association support the “ 10-minute homework guideline ”—a nightly 10 minutes of homework per grade level. But many teachers and parents are quick to point out that what matters is the quality of the homework assigned and how well it meets students’ needs, not the amount of time spent on it.

The guideline doesn’t account for students who may need to spend more—or less—time on assignments. In class, teachers can make adjustments to support struggling students, but at home, an assignment that takes one student 30 minutes to complete may take another twice as much time—often for reasons beyond their control. And homework can widen the achievement gap, putting students from low-income households and students with learning disabilities at a disadvantage.

However, the 10-minute guideline is useful in setting a limit: When kids spend too much time on homework, there are real consequences to consider.

Small Benefits for Elementary Students

As young children begin school, the focus should be on cultivating a love of learning, and assigning too much homework can undermine that goal. And young students often don’t have the study skills to benefit fully from homework, so it may be a poor use of time (Cooper, 1989 ; Cooper et al., 2006 ; Marzano & Pickering, 2007 ). A more effective activity may be nightly reading, especially if parents are involved. The benefits of reading are clear: If students aren’t proficient readers by the end of third grade, they’re less likely to succeed academically and graduate from high school (Fiester, 2013 ).

For second-grade teacher Jacqueline Fiorentino, the minor benefits of homework did not outweigh the potential drawback of turning young children against school at an early age, so she experimented with dropping mandatory homework. “Something surprising happened: They started doing more work at home,” Fiorentino writes . “This inspiring group of 8-year-olds used their newfound free time to explore subjects and topics of interest to them.” She encouraged her students to read at home and offered optional homework to extend classroom lessons and help them review material.

Moderate Benefits for Middle School Students

As students mature and develop the study skills necessary to delve deeply into a topic—and to retain what they learn—they also benefit more from homework. Nightly assignments can help prepare them for scholarly work, and research shows that homework can have moderate benefits for middle school students (Cooper et al., 2006 ). Recent research also shows that online math homework, which can be designed to adapt to students’ levels of understanding, can significantly boost test scores (Roschelle et al., 2016 ).

There are risks to assigning too much, however: A 2015 study found that when middle school students were assigned more than 90 to 100 minutes of daily homework, their math and science test scores began to decline (Fernández-Alonso, Suárez-Álvarez, & Muñiz, 2015 ). Crossing that upper limit can drain student motivation and focus. The researchers recommend that “homework should present a certain level of challenge or difficulty, without being so challenging that it discourages effort.” Teachers should avoid low-effort, repetitive assignments, and assign homework “with the aim of instilling work habits and promoting autonomous, self-directed learning.”

In other words, it’s the quality of homework that matters, not the quantity. Brian Sztabnik, a veteran middle and high school English teacher, suggests that teachers take a step back and ask themselves these five questions :

  • How long will it take to complete?
  • Have all learners been considered?
  • Will an assignment encourage future success?
  • Will an assignment place material in a context the classroom cannot?
  • Does an assignment offer support when a teacher is not there?

More Benefits for High School Students, but Risks as Well

By the time they reach high school, students should be well on their way to becoming independent learners, so homework does provide a boost to learning at this age, as long as it isn’t overwhelming (Cooper et al., 2006 ; Marzano & Pickering, 2007 ). When students spend too much time on homework—more than two hours each night—it takes up valuable time to rest and spend time with family and friends. A 2013 study found that high school students can experience serious mental and physical health problems, from higher stress levels to sleep deprivation, when assigned too much homework (Galloway, Conner, & Pope, 2013 ).

Homework in high school should always relate to the lesson and be doable without any assistance, and feedback should be clear and explicit.

Teachers should also keep in mind that not all students have equal opportunities to finish their homework at home, so incomplete homework may not be a true reflection of their learning—it may be more a result of issues they face outside of school. They may be hindered by issues such as lack of a quiet space at home, resources such as a computer or broadband connectivity, or parental support (OECD, 2014 ). In such cases, giving low homework scores may be unfair.

Since the quantities of time discussed here are totals, teachers in middle and high school should be aware of how much homework other teachers are assigning. It may seem reasonable to assign 30 minutes of daily homework, but across six subjects, that’s three hours—far above a reasonable amount even for a high school senior. Psychologist Maurice Elias sees this as a common mistake: Individual teachers create homework policies that in aggregate can overwhelm students. He suggests that teachers work together to develop a school-wide homework policy and make it a key topic of back-to-school night and the first parent-teacher conferences of the school year.

Parents Play a Key Role

Homework can be a powerful tool to help parents become more involved in their child’s learning (Walker et al., 2004 ). It can provide insights into a child’s strengths and interests, and can also encourage conversations about a child’s life at school. If a parent has positive attitudes toward homework, their children are more likely to share those same values, promoting academic success.

But it’s also possible for parents to be overbearing, putting too much emphasis on test scores or grades, which can be disruptive for children (Madjar, Shklar, & Moshe, 2015 ). Parents should avoid being overly intrusive or controlling—students report feeling less motivated to learn when they don’t have enough space and autonomy to do their homework (Orkin, May, & Wolf, 2017 ; Patall, Cooper, & Robinson, 2008 ; Silinskas & Kikas, 2017 ). So while homework can encourage parents to be more involved with their kids, it’s important to not make it a source of conflict.

You are using an outdated browser. Please upgrade your browser to improve your experience.

giving of homework to students position paper

Health & Nursing

Courses and certificates.

  • Bachelor's Degrees
  • View all Business Bachelor's Degrees
  • Business Management – B.S. Business Administration
  • Healthcare Administration – B.S.
  • Human Resource Management – B.S. Business Administration
  • Information Technology Management – B.S. Business Administration
  • Marketing – B.S. Business Administration
  • Accounting – B.S. Business Administration
  • Finance – B.S.
  • Supply Chain and Operations Management – B.S.
  • Communications – B.S.
  • Accelerated Information Technology Bachelor's and Master's Degree (from the School of Technology)
  • Health Information Management – B.S. (from the Leavitt School of Health)

Master's Degrees

  • View all Business Master's Degrees
  • Master of Business Administration (MBA)
  • MBA Information Technology Management
  • MBA Healthcare Management
  • Management and Leadership – M.S.
  • Accounting – M.S.
  • Marketing – M.S.
  • Human Resource Management – M.S.
  • Master of Healthcare Administration (from the Leavitt School of Health)
  • Data Analytics – M.S. (from the School of Technology)
  • Information Technology Management – M.S. (from the School of Technology)
  • Education Technology and Instructional Design – M.Ed. (from the School of Education)

Certificates

  • Supply Chain
  • Accounting Fundamentals
  • Digital Marketing and E-Commerce
  • View all Business Degrees

Bachelor's Preparing For Licensure

  • View all Education Bachelor's Degrees
  • Elementary Education – B.A.
  • Special Education and Elementary Education (Dual Licensure) – B.A.
  • Special Education (Mild-to-Moderate) – B.A.
  • Mathematics Education (Middle Grades) – B.S.
  • Mathematics Education (Secondary)– B.S.
  • Science Education (Middle Grades) – B.S.
  • Science Education (Secondary Chemistry) – B.S.
  • Science Education (Secondary Physics) – B.S.
  • Science Education (Secondary Biological Sciences) – B.S.
  • Science Education (Secondary Earth Science)– B.S.
  • View all Education Degrees

Bachelor of Arts in Education Degrees

  • Educational Studies – B.A.

Master of Science in Education Degrees

  • View all Education Master's Degrees
  • Curriculum and Instruction – M.S.
  • Educational Leadership – M.S.
  • Education Technology and Instructional Design – M.Ed.

Master's Preparing for Licensure

  • Teaching, Elementary Education – M.A.
  • Teaching, English Education (Secondary) – M.A.
  • Teaching, Mathematics Education (Middle Grades) – M.A.
  • Teaching, Mathematics Education (Secondary) – M.A.
  • Teaching, Science Education (Secondary) – M.A.
  • Teaching, Special Education (K-12) – M.A.

Licensure Information

  • State Teaching Licensure Information

Master's Degrees for Teachers

  • Mathematics Education (K-6) – M.A.
  • Mathematics Education (Middle Grade) – M.A.
  • Mathematics Education (Secondary) – M.A.
  • English Language Learning (PreK-12) – M.A.
  • Endorsement Preparation Program, English Language Learning (PreK-12)
  • Science Education (Middle Grades) – M.A.
  • Science Education (Secondary Chemistry) – M.A.
  • Science Education (Secondary Physics) – M.A.
  • Science Education (Secondary Biological Sciences) – M.A.
  • Science Education (Secondary Earth Science)– M.A.
  • View all Technology Bachelor's Degrees
  • Cloud Computing – B.S.
  • Computer Science – B.S.
  • Cybersecurity and Information Assurance – B.S.
  • Data Analytics – B.S.
  • Information Technology – B.S.
  • Network Engineering and Security – B.S.
  • Software Engineering – B.S.
  • Accelerated Information Technology Bachelor's and Master's Degree
  • Information Technology Management – B.S. Business Administration (from the School of Business)
  • View all Technology Master's Degrees
  • Cybersecurity and Information Assurance – M.S.
  • Data Analytics – M.S.
  • Information Technology Management – M.S.
  • MBA Information Technology Management (from the School of Business)
  • Full Stack Engineering
  • Web Application Deployment and Support
  • Front End Web Development
  • Back End Web Development

3rd Party Certifications

  • IT Certifications Included in WGU Degrees
  • View all Technology Degrees
  • View all Health & Nursing Bachelor's Degrees
  • Nursing (RN-to-BSN online) – B.S.
  • Nursing (Prelicensure) – B.S. (Available in select states)
  • Health Information Management – B.S.
  • Health and Human Services – B.S.
  • Psychology – B.S.
  • Health Science – B.S.
  • Public Health – B.S.
  • Healthcare Administration – B.S. (from the School of Business)
  • View all Nursing Post-Master's Certificates
  • Nursing Education—Post-Master's Certificate
  • Nursing Leadership and Management—Post-Master's Certificate
  • Family Nurse Practitioner—Post-Master's Certificate
  • Psychiatric Mental Health Nurse Practitioner —Post-Master's Certificate
  • View all Health & Nursing Degrees
  • View all Nursing & Health Master's Degrees
  • Nursing – Education (BSN-to-MSN Program) – M.S.
  • Nursing – Leadership and Management (BSN-to-MSN Program) – M.S.
  • Nursing – Nursing Informatics (BSN-to-MSN Program) – M.S.
  • Nursing – Family Nurse Practitioner (BSN-to-MSN Program) – M.S. (Available in select states)
  • Nursing – Psychiatric Mental Health Nurse Practitioner (BSN-to-MSN Program) – M.S. (Available in select states)
  • Nursing – Education (RN-to-MSN Program) – M.S.
  • Nursing – Leadership and Management (RN-to-MSN Program) – M.S.
  • Nursing – Nursing Informatics (RN-to-MSN Program) – M.S.
  • Master of Healthcare Administration
  • Master of Public Health
  • MBA Healthcare Management (from the School of Business)
  • Business Leadership (with the School of Business)
  • Supply Chain (with the School of Business)
  • Accounting Fundamentals (with the School of Business)
  • Digital Marketing and E-Commerce (with the School of Business)
  • Back End Web Development (with the School of Technology)
  • Front End Web Development (with the School of Technology)
  • Web Application Deployment and Support (with the School of Technology)
  • Full Stack Engineering (with the School of Technology)
  • Single Courses
  • Course Bundles

Apply for Admission

Admission requirements.

  • New Students
  • WGU Returning Graduates
  • WGU Readmission
  • Enrollment Checklist
  • Accessibility
  • Accommodation Request
  • School of Education Admission Requirements
  • School of Business Admission Requirements
  • School of Technology Admission Requirements
  • Leavitt School of Health Admission Requirements

Additional Requirements

  • Computer Requirements
  • No Standardized Testing
  • Clinical and Student Teaching Information

Transferring

  • FAQs about Transferring
  • Transfer to WGU
  • Transferrable Certifications
  • Request WGU Transcripts
  • International Transfer Credit
  • Tuition and Fees
  • Financial Aid
  • Scholarships

Other Ways to Pay for School

  • Tuition—School of Business
  • Tuition—School of Education
  • Tuition—School of Technology
  • Tuition—Leavitt School of Health
  • Your Financial Obligations
  • Tuition Comparison
  • Applying for Financial Aid
  • State Grants
  • Consumer Information Guide
  • Responsible Borrowing Initiative
  • Higher Education Relief Fund

FAFSA Support

  • Net Price Calculator
  • FAFSA Simplification
  • See All Scholarships
  • Military Scholarships
  • State Scholarships
  • Scholarship FAQs

Payment Options

  • Payment Plans
  • Corporate Reimbursement
  • Current Student Hardship Assistance
  • Military Tuition Assistance

WGU Experience

  • How You'll Learn
  • Scheduling/Assessments
  • Accreditation
  • Student Support/Faculty
  • Military Students
  • Part-Time Options
  • Virtual Military Education Resource Center
  • Student Outcomes
  • Return on Investment
  • Students and Gradutes
  • Career Growth
  • Student Resources
  • Communities
  • Testimonials
  • Career Guides
  • Skills Guides
  • Online Degrees
  • All Degrees
  • Explore Your Options

Admissions & Transfers

  • Admissions Overview

Tuition & Financial Aid

Student Success

  • Prospective Students
  • Current Students
  • Military and Veterans
  • Commencement
  • Careers at WGU
  • Advancement & Giving
  • Partnering with WGU

Should Students Have Homework?

  • Classroom Strategies
  • See More Tags

giving of homework to students position paper

By Suzanne Capek Tingley, Veteran Educator, M.A. Degree

It used to be that students were the only ones complaining about the practice of assigning homework. For years, teachers and parents thought that homework was a necessary tool when educating children. But studies about the effectiveness of homework have been conflicting and inconclusive, leading some adults to argue that homework should become a thing of the past.

What Research Says about Homework

According to Duke professor Harris Cooper, it's important that students have homework. His meta-analysis of homework studies showed a correlation between completing homework and academic success, at least in older grades. He recommends following a  "10 minute rule" : students should receive 10 minutes of homework per day in first grade, and 10 additional minutes each subsequent year, so that by twelfth grade they are completing 120 minutes of homework daily.

But his analysis didn't prove that students did better because they did homework; it simply  showed a correlation . This could simply mean that kids who do homework are more committed to doing well in school. Cooper also found that some research showed that homework caused physical and emotional stress, and created negative attitudes about learning. He suggested that more research needed to be done on homework's effect on kids.

Some researchers say that the question isn't whether kids should have homework. It's more about what kind of homework students have and how much. To be effective, homework has to meet students' needs. For example, some  middle school teachers have found success with online math homework  that's adapted to each student's level of understanding. But when middle school students were assigned more than an hour and a half of homework, their  math and science test scores went down .

Researchers at Indiana University discovered that math and science homework may improve standardized test grades, but they  found no difference in course grades  between students who did homework and those who didn't. These researchers theorize that homework doesn't result in more content mastery, but in greater familiarity with the kinds of questions that appear on standardized tests. According to Professor Adam Maltese, one of the study's authors, "Our results hint that maybe homework is not being used as well as it could be."

So while many teachers and parents support daily homework, it's hard to find strong evidence that the long-held practice produces positive results.

Problems with Homework

In an article in  Education Week Teacher , teacher Samantha Hulsman said she's frequently heard parents complain that a 30-minute homework assignment turns into a three-hour battle with their kids. Now, she's facing the same problem with her own kids, which has her rethinking her former beliefs about homework. "I think parents expect their children to have homework nightly, and teachers assign daily homework because it's what we've always done," she explained. Today, Hulsman said, it's more important to know how to collaborate and solve problems than it is to know specific facts.

Child psychologist Kenneth Barish wrote in  Psychology Today  that  battles over homework rarely result in a child's improvement in school . Children who don't do their homework are not lazy, he said, but they may be frustrated, discouraged, or anxious. And for kids with learning disabilities, homework is like "running with a sprained ankle. It's doable, but painful."

Barish suggests that parents and kids have a "homework plan" that limits the time spent on homework. The plan should include turning off all devices—not just the student's, but those belonging to all family members.

One of the  best-known critics of homework, Alfie Kohn , says that some people wrongly believe "kids are like vending machines—put in an assignment, get out learning." Kohn points to the lack of evidence that homework is an effective learning tool; in fact, he calls it "the greatest single extinguisher of children's curiosity that we have yet invented."

Homework Bans

Last year, the public schools in Marion County, Florida,  decided on a no-homework policy for all of their elementary students . Instead,  kids read nightly  for 20 minutes. Superintendent Heidi Maier said the decision was based on Cooper's research showing that elementary students gain little from homework, but a lot from reading.

Orchard Elementary School in South Burlington, Vermont, followed the same path, substituting reading for homework. The  homework policy has four parts : read nightly, go outside and play, have dinner with your family, and get a good night's sleep. Principal Mark Trifilio says that his staff and parents support the idea.

But while many elementary schools are considering no-homework policies, middle schools and high schools have been reluctant to abandon homework. Schools say parents support homework and teachers know it can be helpful when it is specific and follows certain guidelines. For example, practicing solving word problems can be helpful, but there's no reason to assign 50 problems when 10 will do. Recognizing that not all kids have the time, space, and home support to do homework is important, so it shouldn't be counted as part of a student's grade.

So Should Students Have Homework?

Should you ban homework in your classroom? If you teach lower grades, it's possible. If you teach middle or high school, probably not. But all teachers should think carefully about their homework policies. By limiting the amount of homework and improving the quality of assignments, you can improve learning outcomes for your students.

Ready to Start Your Journey?

HEALTH & NURSING

Recommended Articles

Take a look at other articles from WGU. Our articles feature information on a wide variety of subjects, written with the help of subject matter experts and researchers who are well-versed in their industries. This allows us to provide articles with interesting, relevant, and accurate information. 

{{item.date}}

{{item.preTitleTag}}

{{item.title}}

The university, for students.

  • Student Portal
  • Alumni Services

Most Visited Links

  • Business Programs
  • Student Experience
  • Diversity, Equity, and Inclusion
  • Student Communities

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Psychol

Students' Achievement and Homework Assignment Strategies

Rubén fernández-alonso.

1 Department of Education Sciences, University of Oviedo, Oviedo, Spain

2 Department of Education, Principality of Asturias Government, Oviedo, Spain

Marcos Álvarez-Díaz

Javier suárez-Álvarez.

3 Department of Psychology, University of Oviedo, Oviedo, Spain

José Muñiz

The optimum time students should spend on homework has been widely researched although the results are far from unanimous. The main objective of this research is to analyze how homework assignment strategies in schools affect students' academic performance and the differences in students' time spent on homework. Participants were a representative sample of Spanish adolescents ( N = 26,543) with a mean age of 14.4 (±0.75), 49.7% girls. A test battery was used to measure academic performance in four subjects: Spanish, Mathematics, Science, and Citizenship. A questionnaire allowed the measurement of the indicators used for the description of homework and control variables. Two three-level hierarchical-linear models (student, school, autonomous community) were produced for each subject being evaluated. The relationship between academic results and homework time is negative at the individual level but positive at school level. An increase in the amount of homework a school assigns is associated with an increase in the differences in student time spent on homework. An optimum amount of homework is proposed which schools should assign to maximize gains in achievement for students overall.

The role of homework in academic achievement is an age-old debate (Walberg et al., 1985 ) that has swung between times when it was thought to be a tool for improving a country's competitiveness and times when it was almost outlawed. So Cooper ( 2001 ) talks about the battle over homework and the debates and rows continue (Walberg et al., 1985 , 1986 ; Barber, 1986 ). It is considered a complicated subject (Corno, 1996 ), mysterious (Trautwein and Köller, 2003 ), a chameleon (Trautwein et al., 2009b ), or Janus-faced (Flunger et al., 2015 ). One must agree with Cooper et al. ( 2006 ) that homework is a practice full of contradictions, where positive and negative effects coincide. As such, depending on our preferences, it is possible to find data which support the argument that homework benefits all students (Cooper, 1989 ), or that it does not matter and should be abolished (Barber, 1986 ). Equally, one might argue a compensatory effect as it favors students with more difficulties (Epstein and Van Voorhis, 2001 ), or on the contrary, that it is a source of inequality as it specifically benefits those better placed on the social ladder (Rømming, 2011 ). Furthermore, this issue has jumped over the school wall and entered the home, contributing to the polemic by becoming a common topic about which it is possible to have an opinion without being well informed, something that Goldstein ( 1960 ) warned of decades ago after reviewing almost 300 pieces of writing on the topic in Education Index and finding that only 6% were empirical studies.

The relationship between homework time and educational outcomes has traditionally been the most researched aspect (Cooper, 1989 ; Cooper et al., 2006 ; Fan et al., 2017 ), although conclusions have evolved over time. The first experimental studies (Paschal et al., 1984 ) worked from the hypothesis that time spent on homework was a reflection of an individual student's commitment and diligence and as such the relationship between time spent on homework and achievement should be positive. This was roughly the idea at the end of the twentieth century, when more positive effects had been found than negative (Cooper, 1989 ), although it was also known that the relationship was not strictly linear (Cooper and Valentine, 2001 ), and that its strength depended on the student's age- stronger in post-compulsory secondary education than in compulsory education and almost zero in primary education (Cooper et al., 2012 ). With the turn of the century, hierarchical-linear models ran counter to this idea by showing that homework was a multilevel situation and the effect of homework on outcomes depended on classroom factors (e.g., frequency or amount of assigned homework) more than on an individual's attitude (Trautwein and Köller, 2003 ). Research with a multilevel approach indicated that individual variations in time spent had little effect on academic results (Farrow et al., 1999 ; De Jong et al., 2000 ; Dettmers et al., 2010 ; Murillo and Martínez-Garrido, 2013 ; Fernández-Alonso et al., 2014 ; Núñez et al., 2014 ; Servicio de Evaluación Educativa del Principado de Asturias, 2016 ) and that when statistically significant results were found, the effect was negative (Trautwein, 2007 ; Trautwein et al., 2009b ; Lubbers et al., 2010 ; Chang et al., 2014 ). The reasons for this null or negative relationship lie in the fact that those variables which are positively associated with homework time are antagonistic when predicting academic performance. For example, some students may not need to spend much time on homework because they learn quickly and have good cognitive skills and previous knowledge (Trautwein, 2007 ; Dettmers et al., 2010 ), or maybe because they are not very persistent in their work and do not finish homework tasks (Flunger et al., 2015 ). Similarly, students may spend more time on homework because they have difficulties learning and concentrating, low expectations and motivation or because they need more direct help (Trautwein et al., 2006 ), or maybe because they put in a lot of effort and take a lot of care with their work (Flunger et al., 2015 ). Something similar happens with sociological variables such as gender: Girls spend more time on homework (Gershenson and Holt, 2015 ) but, compared to boys, in standardized tests they have better results in reading and worse results in Science and Mathematics (OECD, 2013a ).

On the other hand, thanks to multilevel studies, systematic effects on performance have been found when homework time is considered at the class or school level. De Jong et al. ( 2000 ) found that the number of assigned homework tasks in a year was positively and significantly related to results in mathematics. Equally, the volume or amount of homework (mean homework time for the group) and the frequency of homework assignment have positive effects on achievement. The data suggests that when frequency and volume are considered together, the former has more impact on results than the latter (Trautwein et al., 2002 ; Trautwein, 2007 ). In fact, it has been estimated that in classrooms where homework is always assigned there are gains in mathematics and science of 20% of a standard deviation over those classrooms which sometimes assign homework (Fernández-Alonso et al., 2015 ). Significant results have also been found in research which considered only homework volume at the classroom or school level. Dettmers et al. ( 2009 ) concluded that the school-level effect of homework is positive in the majority of participating countries in PISA 2003, and the OECD ( 2013b ), with data from PISA 2012, confirms that schools in which students have more weekly homework demonstrate better results once certain school and student-background variables are discounted. To put it briefly, homework has a multilevel nature (Trautwein and Köller, 2003 ) in which the variables have different significance and effects according to the level of analysis, in this case a positive effect at class level, and a negative or null effect in most cases at the level of the individual. Furthermore, the fact that the clearest effects are seen at the classroom and school level highlights the role of homework policy in schools and teaching, over and above the time individual students spend on homework.

From this complex context, this current study aims to explore the relationships between the strategies schools use to assign homework and the consequences that has on students' academic performance and on the students' own homework strategies. There are two specific objectives, firstly, to systematically analyze the differential effect of time spent on homework on educational performance, both at school and individual level. We hypothesize a positive effect for homework time at school level, and a negative effect at the individual level. Secondly, the influence of homework quantity assigned by schools on the distribution of time spent by students on homework will be investigated. This will test the previously unexplored hypothesis that an increase in the amount of homework assigned by each school will create an increase in differences, both in time spent on homework by the students, and in academic results. Confirming this hypothesis would mean that an excessive amount of homework assigned by schools would penalize those students who for various reasons (pace of work, gaps in learning, difficulties concentrating, overexertion) need to spend more time completing their homework than their peers. In order to resolve this apparent paradox we will calculate the optimum volume of homework that schools should assign in order to benefit the largest number of students without contributing to an increase in differences, that is, without harming educational equity.

Participants

The population was defined as those students in year 8 of compulsory education in the academic year 2009/10 in Spain. In order to provide a representative sample, a stratified random sampling was carried out from the 19 autonomous regions in Spain. The sample was selected from each stratum according to a two-stage cluster design (OECD, 2009 , 2011 , 2014a ; Ministerio de Educación, 2011 ). In the first stage, the primary units of the sample were the schools, which were selected with a probability proportional to the number of students in the 8th grade. The more 8th grade students in a given school, the higher the likelihood of the school being selected. In the second stage, 35 students were selected from each school through simple, systematic sampling. A detailed, step-by-step description of the sampling procedure may be found in OECD ( 2011 ). The subsequent sample numbered 29,153 students from 933 schools. Some students were excluded due to lack of information (absences on the test day), or for having special educational needs. The baseline sample was finally made up of 26,543 students. The mean student age was 14.4 with a standard deviation of 0.75, rank of age from 13 to 16. Some 66.2% attended a state school; 49.7% were girls; 87.8% were Spanish nationals; 73.5% were in the school year appropriate to their age, the remaining 26.5% were at least 1 year behind in terms of their age.

Test application, marking, and data recording were contracted out via public tendering, and were carried out by qualified personnel unconnected to the schools. The evaluation, was performed on two consecutive days, each day having two 50 min sessions separated by a break. At the end of the second day the students completed a context questionnaire which included questions related to homework. The evaluation was carried out in compliance with current ethical standards in Spain. Families of the students selected to participate in the evaluation were informed about the study by the school administrations, and were able to choose whether those students would participate in the study or not.

Instruments

Tests of academic performance.

The performance test battery consisted of 342 items evaluating four subjects: Spanish (106 items), mathematics (73 items), science (78), and citizenship (85). The items, completed on paper, were in various formats and were subject to binary scoring, except 21 items which were coded on a polytomous scale, between 0 and 2 points (Ministerio de Educación, 2011 ). As a single student is not capable of answering the complete item pool in the time given, the items were distributed across various booklets following a matrix design (Fernández-Alonso and Muñiz, 2011 ). The mean Cronbach α for the booklets ranged from 0.72 (mathematics) to 0.89 (Spanish). Student scores were calculated adjusting the bank of items to Rasch's IRT model using the ConQuest 2.0 program (Wu et al., 2007 ) and were expressed in a scale with mean and standard deviation of 500 and 100 points respectively. The student's scores were divided into five categories, estimated using the plausible values method. In large scale assessments this method is better at recovering the true population parameters (e.g., mean, standard deviation) than estimates of scores using methods of maximum likelihood or expected a-posteriori estimations (Mislevy et al., 1992 ; OECD, 2009 ; von Davier et al., 2009 ).

Homework variables

A questionnaire was made up of a mix of items which allowed the calculation of the indicators used for the description of homework variables. Daily minutes spent on homework was calculated from a multiple choice question with the following options: (a) Generally I don't have homework; (b) 1 h or less; (c) Between 1 and 2 h; (d) Between 2 and 3 h; (e) More than 3 h. The options were recoded as follows: (a) = 0 min.; (b) = 45 min.; (c) = 90 min.; (d) = 150 min.; (e) = 210 min. According to Trautwein and Köller ( 2003 ) the average homework time of the students in a school could be regarded as a good proxy for the amount of homework assigned by the teacher. So the mean of this variable for each school was used as an estimator of Amount or volume of homework assigned .

Control variables

Four variables were included to describe sociological factors about the students, three were binary: Gender (1 = female ); Nationality (1 = Spanish; 0 = other ); School type (1 = state school; 0 = private ). The fourth variable was Socioeconomic and cultural index (SECI), which is constructed with information about family qualifications and professions, along with the availability of various material and cultural resources at home. It is expressed in standardized points, N(0,1) . Three variables were used to gather educational history: Appropriate School Year (1 = being in the school year appropriate to their age ; 0 = repeated a school year) . The other two adjustment variables were Academic Expectations and Motivation which were included for two reasons: they are both closely connected to academic achievement (Suárez-Álvarez et al., 2014 ). Their position as adjustment factors is justified because, in an ex-post facto descriptive design such as this, both expectations and motivation may be thought of as background variables that the student brings with them on the day of the test. Academic expectations for finishing education was measured with a multiple-choice item where the score corresponds to the years spent in education in order to reach that level of qualification: compulsory secondary education (10 points); further secondary education (12 points); non-university higher education (14 points); University qualification (16 points). Motivation was constructed from the answers to six four-point Likert items, where 1 means strongly disagree with the sentence and 4 means strongly agree. Students scoring highly in this variable are agreeing with statements such as “at school I learn useful and interesting things.” A Confirmatory Factor Analysis was performed using a Maximum Likelihood robust estimation method (MLMV) and the items fit an essentially unidimensional scale: CFI = 0.954; TLI = 0.915; SRMR = 0.037; RMSEA = 0.087 (90% CI = 0.084–0.091).

As this was an official evaluation, the tests used were created by experts in the various fields, contracted by the Spanish Ministry of Education in collaboration with the regional education authorities.

Data analyses

Firstly the descriptive statistics and Pearson correlations between the variables were calculated. Then, using the HLM 6.03 program (Raudenbush et al., 2004 ), two three-level hierarchical-linear models (student, school, autonomous community) were produced for each subject being evaluated: a null model (without predictor variables) and a random intercept model in which adjustment variables and homework variables were introduced at the same time. Given that HLM does not return standardized coefficients, all of the variables were standardized around the general mean, which allows the interpretation of the results as classical standardized regression analysis coefficients. Levels 2 and 3 variables were constructed from means of standardized level 1 variables and were not re-standardized. Level 1 variables were introduced without centering except for four cases: study time, motivation, expectation, and socioeconomic and cultural level which were centered on the school mean to control composition effects (Xu and Wu, 2013 ) and estimate the effect of differences in homework time among the students within the same school. The range of missing variable cases was very small, between 1 and 3%. Recovery was carried out using the procedure described in Fernández-Alonso et al. ( 2012 ).

The results are presented in two ways: the tables show standardized coefficients while in the figures the data are presented in a real scale, taking advantage of the fact that a scale with a 100 point standard deviation allows the expression of the effect of the variables and the differences between groups as percentage increases in standardized points.

Table ​ Table1 1 shows the descriptive statistics and the matrix of correlations between the study variables. As can be seen in the table, the relationship between the variables turned out to be in the expected direction, with the closest correlations between the different academic performance scores and socioeconomic level, appropriate school year, and student expectations. The nationality variable gave the highest asymmetry and kurtosis, which was to be expected as the majority of the sample are Spanish.

Descriptive statistics and Pearson correlation matrix between the variables .

1. Mathematics
2. Spanish0.45
3. Sciences0.480.61
4. Citizenship0.420.590.55
5. SEC0.290.360.340.29
6. Female−0.050.11−0.050.13−0.01
7. Spanish national0.120.160.140.120.18−0.01
8. Appropriate school year0.260.340.320.280.310.080.15
9. Expectations0.260.380.330.350.360.130.070.42
10. Motivation0.020.060.060.11−0.020.12−0.040.060.16
11. Homework time0.030.070.050.070.130.140.020.140.190.16
12. State school−0.15−0.21−0.17−0.19−0.29−0.01−0.09−0.12−0.16−0.01−0.09
13.School SEC0.250.310.280.240.550.010.110.210.23−0.060.09−0.53
14. HWTIME_mean0.090.120.110.130.150.040.080.060.110.070.34−0.260.27
15. AC SEC0.170.160.160.110.240.01−0.040.100.05−0.13−0.04−0.170.44−0.10
Mean506.47509.65509.37508.100.060.500.880.7414.062.8791.260.660.0691.260.06
Standard deviation99.4495.6996.3797.081,000.500.330.432,340.4942.400.480.5514.350.24
Asymmetry0.17−0.14−0.05−0.18−0.18−0.03−2.34−1.19−0.54−0.391.26−0.650.010.67−0.11
Kurtosis0.130.110.05−0.07−0.53−2.003.46−0.59−1.480.621.87−1.58−0.011.20−0.55

Table ​ Table2 2 shows the distribution of variance in the null model. In the four subjects taken together, 85% of the variance was found at the student level, 10% was variance between schools, and 5% variance between regions. Although the 10% of variance between schools could seem modest, underlying that there were large differences. For example, in Spanish the 95% plausible value range for the school means ranged between 577 and 439 points, practically 1.5 standard deviations, which shows that schools have a significant impact on student results.

Distribution of the variance in the null model .

Level 10.87540.85210.81910.8391
Level 20.07710.10480.13530.1259
Level 30.04820.05080.05720.0430

Table ​ Table3 3 gives the standardized coefficients of the independent variables of the four multilevel models, as well as the percentage of variance explained by each level.

Multilevel models for prediction of achievement in four subjects .

    SECI0.126 (0.010) 0.144 (0.008) 0.151 (0.009) 0.116 (0.007)
    Women−0.072 (0.007) −0.089 (0.007) 0.068 (0.007) 0.089 (0.008)
    Country: Spain0.060 (0.008) 0.069 (0.008) 0.088 (0.007) 0.060 (0.007)
    Appropriate school year0.129 (0.008) 0.162 (0.008) 0.158 (0.008) 0.127 (0.007)
    Expectations0.146 (0.009) 0.191 (0.011) 0.211 (0.008) 0.204 (0.007)
    Motivation0.026 (0.007) 0.058 (0.008) 0.035 (0.006) 0.066 (0.007)
    State school−0.021 (0.014)−0.027 (0.012) −0.054 (0.013) −0.077 (0.013)
    School SECI0.163 (0.013) 0.177 (0.013) 0.192 (0.020) 0.132 (0.013)
    AC SECI0.370 (0.123) 0.261 (0.247)0.224 (0.225)0.131 (0.237)
HW Time (student)−0.050 (0.008) −0.053 (0.006) −0.055 (0.006) −0.055 (0.007)
HW Amount (school)0.046 (0.011) 0.075 (0.009) 0.068 (0.011) 0.083 (0.011)
Level 19.715.918.715.0
Level 257.158.759.347.7
Level 367.353.050.136.2
Total16.122.225.920.0

β, Standardized weight; SE, Standard Error; SECI, Socioeconomic and cultural index; AC, Autonomous Communities .

The results indicated that the adjustment variables behaved satisfactorily, with enough control to analyze the net effects of the homework variables. This was backed up by two results, firstly, the two variables with highest standardized coefficients were those related to educational history: academic expectations at the time of the test, and being in the school year corresponding to age. Motivation demonstrated a smaller effect but one which was significant in all cases. Secondly, the adjustment variables explained the majority of the variance in the results. The percentages of total explained variance in Table ​ Table2 2 were calculated with all variables. However, if the strategy had been to introduce the adjustment variables first and then add in the homework variables, the explanatory gain in the second model would have been about 2% in each subject.

The amount of homework turned out to be positively and significantly associated with the results in the four subjects. In a 100 point scale of standard deviation, controlling for other variables, it was estimated that for each 10 min added to the daily volume of homework, schools would achieve between 4.1 and 4.8 points more in each subject, with the exception of mathematics where the increase would be around 2.5 points. In other words, an increase of between 15 and 29 points in the school mean is predicted for each additional hour of homework volume of the school as a whole. This school level gain, however, would only occur if the students spent exactly the same time on homework as their school mean. As the regression coefficient of student homework time is negative and the variable is centered on the level of the school, the model predicts deterioration in results for those students who spend more time than their class mean on homework, and an improvement for those who finish their homework more quickly than the mean of their classmates.

Furthermore, the results demonstrated a positive association between the amount of homework assigned in a school and the differences in time needed by the students to complete their homework. Figure ​ Figure1 1 shows the relationship between volume of homework (expressed as mean daily minutes of homework by school) and the differences in time spent by students (expressed as the standard deviation from the mean school daily minutes). The correlation between the variables was 0.69 and the regression gradient indicates that schools which assigned 60 min of homework per day had a standard deviation in time spent by students on homework of approximately 25 min, whereas in those schools assigning 120 min of homework, the standard deviation was twice as long, and was over 50 min. So schools which assigned more homework also tended to demonstrate greater differences in the time students need to spend on that homework.

An external file that holds a picture, illustration, etc.
Object name is fpsyg-08-00286-g0001.jpg

Relationship between school homework volume and differences in time needed by students to complete homework .

Figure ​ Figure2 2 shows the effect on results in mathematics of the combination of homework time, homework amount, and the variance of homework time associated with the amount of homework assigned in two types of schools: in type 1 schools the amount of homework assigned is 1 h, and in type 2 schools the amount of homework 2 h. The result in mathematics was used as a dependent variable because, as previously noted, it was the subject where the effect was smallest and as such is the most conservative prediction. With other subjects the results might be even clearer.

An external file that holds a picture, illustration, etc.
Object name is fpsyg-08-00286-g0002.jpg

Prediction of results for quick and slow students according to school homework size .

Looking at the first standard deviation of student homework time shown in the first graph, it was estimated that in type 1 schools, which assign 1 h of daily homework, a quick student (one who finishes their homework before 85% of their classmates) would spend a little over half an hour (35 min), whereas the slower student, who spends more time than 85% of classmates, would need almost an hour and a half of work each day (85 min). In type 2 schools, where the homework amount is 2 h a day, the differences increase from just over an hour (65 min for a quick student) to almost 3 h (175 min for a slow student). Figure ​ Figure2 2 shows how the differences in performance would vary within a school between the more and lesser able students according to amount of homework assigned. In type 1 schools, with 1 h of homework per day, the difference in achievement between quick and slow students would be around 5% of a standard deviation, while in schools assigning 2 h per day the difference would be 12%. On the other hand, the slow student in a type 2 school would score 6 points more than the quick student in a type 1 school. However, to achieve this, the slow student in a type 2 school would need to spend five times as much time on homework in a week (20.4 weekly hours rather than 4.1). It seems like a lot of work for such a small gain.

Discussion and conclusions

The data in this study reaffirm the multilevel nature of homework (Trautwein and Köller, 2003 ) and support this study's first hypothesis: the amount of homework (mean daily minutes the student spends on homework) is positively associated with academic results, whereas the time students spent on homework considered individually is negatively associated with academic results. These findings are in line with previous research, which indicate that school-level variables, such as amount of homework assigned, have more explanatory power than individual variables such as time spent (De Jong et al., 2000 ; Dettmers et al., 2010 ; Scheerens et al., 2013 ; Fernández-Alonso et al., 2015 ). In this case it was found that for each additional hour of homework assigned by a school, a gain of 25% of a standard deviation is expected in all subjects except mathematics, where the gain is around 15%. On the basis of this evidence, common sense would dictate the conclusion that frequent and abundant homework assignment may be one way to improve school efficiency.

However, as noted previously, the relationship between homework and achievement is paradoxical- appearances are deceptive and first conclusions are not always confirmed. Analysis demonstrates another two complementary pieces of data which, read together, raise questions about the previous conclusion. In the first place, time spent on homework at the individual level was found to have a negative effect on achievement, which confirms the findings of other multilevel-approach research (Trautwein, 2007 ; Trautwein et al., 2009b ; Chang et al., 2014 ; Fernández-Alonso et al., 2016 ). Furthermore, it was found that an increase in assigned homework volume is associated with an increase in the differences in time students need to complete it. Taken together, the conclusion is that, schools with more homework tend to exhibit more variation in student achievement. These results seem to confirm our second hypothesis, as a positive covariation was found between the amount of homework in a school (the mean homework time by school) and the increase in differences within the school, both in student homework time and in the academic results themselves. The data seem to be in line with those who argue that homework is a source of inequity because it affects those less academically-advantaged students and students with greater limitations in their home environments (Kohn, 2006 ; Rømming, 2011 ; OECD, 2013b ).

This new data has clear implications for educational action and school homework policies, especially in compulsory education. If quality compulsory education is that which offers the best results for the largest number (Barber and Mourshed, 2007 ; Mourshed et al., 2010 ), then assigning an excessive volume of homework at those school levels could accentuate differences, affecting students who are slower, have more gaps in their knowledge, or are less privileged, and can make them feel overwhelmed by the amount of homework assigned to them (Martinez, 2011 ; OECD, 2014b ; Suárez et al., 2016 ). The data show that in a school with 60 min of assigned homework, a quick student will need just 4 h a week to finish their homework, whereas a slow student will spend 10 h a week, 2.5 times longer, with the additional aggravation of scoring one twentieth of a standard deviation below their quicker classmates. And in a school assigning 120 min of homework per day, a quick student will need 7.5 h per week whereas a slow student will have to triple this time (20 h per week) to achieve a result one eighth worse, that is, more time for a relatively worse result.

It might be argued that the differences are not very large, as between 1 and 2 h of assigned homework, the level of inequality increases 7% on a standardized scale. But this percentage increase has been estimated after statistically, or artificially, accounting for sociological and psychological student factors and other variables at school and region level. The adjustment variables influence both achievement and time spent on homework, so it is likely that in a real classroom situation the differences estimated here might be even larger. This is especially important in comprehensive education systems, like the Spanish (Eurydice, 2015 ), in which the classroom groups are extremely heterogeneous, with a variety of students in the same class in terms of ability, interest, and motivation, in which the aforementioned variables may operate more strongly.

The results of this research must be interpreted bearing in mind a number of limitations. The most significant limitation in the research design is the lack of a measure of previous achievement, whether an ad hoc test (Murillo and Martínez-Garrido, 2013 ) or school grades (Núñez et al., 2014 ), which would allow adjustment of the data. In an attempt to alleviate this, our research has placed special emphasis on the construction of variables which would work to exclude academic history from the model. The use of the repetition of school year variable was unavoidable because Spain has one of the highest levels of repetition in the European Union (Eurydice, 2011 ) and repeating students achieve worse academic results (Ministerio de Educación, 2011 ). Similarly, the expectation and motivation variables were included in the group of adjustment factors assuming that in this research they could be considered background variables. In this way, once the background factors are discounted, the homework variables explain 2% of the total variance, which is similar to estimations from other multilevel studies (De Jong et al., 2000 ; Trautwein, 2007 ; Dettmers et al., 2009 ; Fernández-Alonso et al., 2016 ). On the other hand, the statistical models used to analyze the data are correlational, and as such, one can only speak of an association between variables and not of directionality or causality in the analysis. As Trautwein and Lüdtke ( 2009 ) noted, the word “effect” must be understood as “predictive effect.” In other words, it is possible to say that the amount of homework is connected to performance; however, it is not possible to say in which direction the association runs. Another aspect to be borne in mind is that the homework time measures are generic -not segregated by subject- when it its understood that time spent and homework behavior are not consistent across all subjects (Trautwein et al., 2006 ; Trautwein and Lüdtke, 2007 ). Nonetheless, when the dependent variable is academic results it has been found that the relationship between homework time and achievement is relatively stable across all subjects (Lubbers et al., 2010 ; Chang et al., 2014 ) which leads us to believe that the results given here would have changed very little even if the homework-related variables had been separated by subject.

Future lines of research should be aimed toward the creation of comprehensive models which incorporate a holistic vision of homework. It must be recognized that not all of the time spent on homework by a student is time well spent (Valle et al., 2015 ). In addition, research has demonstrated the importance of other variables related to student behavior such as rate of completion, the homework environment, organization, and task management, autonomy, parenting styles, effort, and the use of study techniques (Zimmerman and Kitsantas, 2005 ; Xu, 2008 , 2013 ; Kitsantas and Zimmerman, 2009 ; Kitsantas et al., 2011 ; Ramdass and Zimmerman, 2011 ; Bembenutty and White, 2013 ; Xu and Wu, 2013 ; Xu et al., 2014 ; Rosário et al., 2015a ; Osorio and González-Cámara, 2016 ; Valle et al., 2016 ), as well as the role of expectation, value given to the task, and personality traits (Lubbers et al., 2010 ; Goetz et al., 2012 ; Pedrosa et al., 2016 ). Along the same lines, research has also indicated other important variables related to teacher homework policies, such as reasons for assignment, control and feedback, assignment characteristics, and the adaptation of tasks to the students' level of learning (Trautwein et al., 2009a ; Dettmers et al., 2010 ; Patall et al., 2010 ; Buijs and Admiraal, 2013 ; Murillo and Martínez-Garrido, 2013 ; Rosário et al., 2015b ). All of these should be considered in a comprehensive model of homework.

In short, the data seem to indicate that in year 8 of compulsory education, 60–70 min of homework a day is a recommendation that, slightly more optimistically than Cooper's ( 2001 ) “10 min rule,” gives a reasonable gain for the whole school, without exaggerating differences or harming students with greater learning difficulties or who work more slowly, and is in line with other available evidence (Fernández-Alonso et al., 2015 ). These results have significant implications when it comes to setting educational policy in schools, sending a clear message to head teachers, teachers and those responsible for education. The results of this research show that assigning large volumes of homework increases inequality between students in pursuit of minimal gains in achievement for those who least need it. Therefore, in terms of school efficiency, and with the aim of improving equity in schools it is recommended that educational policies be established which optimize all students' achievement.

Ethics statement

This study was carried out in accordance with the recommendations of the University of Oviedo with written informed consent from all subjects. All subjects gave written informed consent in accordance with the Declaration of Helsinki. The protocol was approved by the University of Oviedo.

Author contributions

RF and JM have designed the research; RF and JS have analyzed the data; MA and JM have interpreted the data; RF, MA, and JS have drafted the paper; JM has revised it critically; all authors have provided final approval of the version to be published and have ensured the accuracy and integrity of the work.

This research was funded by the Ministerio de Economía y Competitividad del Gobierno de España. References: PSI2014-56114-P, BES2012-053488. We would like to express our utmost gratitude to the Ministerio de Educación Cultura y Deporte del Gobierno de España and to the Consejería de Educación y Cultura del Gobierno del Principado de Asturias, without whose collaboration this research would not have been possible.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

  • Barber B. (1986). Homework does not belong on the agenda for educational reform . Educ. Leadersh. 43 , 55–57. [ Google Scholar ]
  • Barber M., Mourshed M. (2007). How the World's Best-Performing School Systems Come Out on Top. McKinsey and Company . Available online at: http://mckinseyonsociety.com/downloads/reports/Education/Worlds_School_Systems_Final.pdf (Accessed January 25, 2016).
  • Bembenutty H., White M. C. (2013). Academic performance and satisfaction with homework completion among college students . Learn. Individ. Differ. 24 , 83–88. 10.1016/j.lindif.2012.10.013 [ CrossRef ] [ Google Scholar ]
  • Buijs M., Admiraal W. (2013). Homework assignments to enhance student engagement in secondary education . Eur. J. Psychol. Educ. 28 , 767–779. 10.1007/s10212-012-0139-0 [ CrossRef ] [ Google Scholar ]
  • Chang C. B., Wall D., Tare M., Golonka E., Vatz K. (2014). Relations of attitudes toward homework and time spent on homework to course outcomes: the case of foreign language learning . J. Educ. Psychol. 106 , 1049–1065. 10.1037/a0036497 [ CrossRef ] [ Google Scholar ]
  • Cooper H. (1989). Synthesis of research on homework . Educ. Leadersh. 47 , 85–91. [ Google Scholar ]
  • Cooper H. (2001). The Battle Over Homework: Common Ground for Administrators, Teachers, and Parents . Thousand Oaks, CA: Sage. [ Google Scholar ]
  • Cooper H., Robinson J. C., Patall E. A. (2006). Does homework improve academic achievement? A synthesis of research, 1987-2003 . Rev. Educ. Res. 76 , 1–62. 10.3102/00346543076001001 [ CrossRef ] [ Google Scholar ]
  • Cooper H., Steenbergen-Hu S., Dent A. L. (2012). Homework , in APA Educational Psychology Handbook , Vol. 3 : Application to Learning and Teaching , eds Harris K. R., Graham S., Urdan T. (Washington, DC: American Psychological Association; ), 475–495. [ Google Scholar ]
  • Cooper H., Valentine J. C. (2001). Using research to answer practical questions about homework . Educ. Psychol. 36 , 143–153. 10.1207/S15326985EP3603_1 [ CrossRef ] [ Google Scholar ]
  • Corno L. (1996). Homework is a complicated thing . Educ. Res. 25 , 27–30. 10.3102/0013189X025008027 [ CrossRef ] [ Google Scholar ]
  • De Jong R., Westerhof K. J., Creemers B. P. M. (2000). Homework and student math achievement in junior high schools . Educ. Res. Eval. 6 , 130–157. 10.1076/1380-3611(200006)6:2;1-E;F130 [ CrossRef ] [ Google Scholar ]
  • Dettmers S., Trautwein U., Lüdtke M., Kunter M., Baumert J. (2010). Homework works if homework quality is high: using multilevel modeling to predict the development of achievement in mathematics . J. Educ. Psychol. 102 , 467–482. 10.1037/a0018453 [ CrossRef ] [ Google Scholar ]
  • Dettmers S., Trautwein U., Lüdtke O. (2009). The relationship between homework time and achievement is not universal: evidence from multilevel analyses in 40 countries . Sch. Eff. Sch. Improv. 20 , 375–405. 10.1080/09243450902904601 [ CrossRef ] [ Google Scholar ]
  • Epstein J. L., Van Voorhis F. L. (2001). More than minutes: teachers' roles in designing homework . Educ. Psychol. 36 , 181–193. 10.1207/S15326985EP3603_4 [ CrossRef ] [ Google Scholar ]
  • Eurydice (2015). The Structure of the European Education Systems 2015/16: Schematic Diagrams. Luxembourg: Publications Office of the European Union . Available online at: https://webgate.ec.europa.eu/fpfis/mwikis/eurydice/index.php/Publications:The_Structure_of_the_European_Education_Systems_2015/16:_Schematic_Diagrams (Accessed January 25, 2016).
  • Eurydice (2011). Grade Retention during Compulsory Education in Europe: Regulations and Statistics . Luxembourg: Publications Office of the European Union. [ Google Scholar ]
  • Fan H., Xu J., Cai Z., He J., Fan X. (2017). Homework and students' achievement in math and science: a 30-year meta-analysis, 1986-2015 . Educ. Res. Rev. 20 , 35–54. 10.1016/j.edurev.2016.11.003 [ CrossRef ] [ Google Scholar ]
  • Farrow S., Tymms P., Henderson B. (1999). Homework and attainment in primary schools . Br. Educ. Res. J. 25 , 323–341. 10.1080/0141192990250304 [ CrossRef ] [ Google Scholar ]
  • Fernández-Alonso R., Muñiz J. (2011). Diseños de cuadernillos para la evaluación de competencias b1sicas . Aula Abierta 39 , 3–34. [ Google Scholar ]
  • Fernández-Alonso R., Suárez-Álvarez J., Muñiz J. (2012). Imputación de datos perdidos en las evaluaciones diagnósticas educativas. [Imputation methods for missing data in educational diagnostic evaluation]. Psicothema 24 , 167–175. [ PubMed ] [ Google Scholar ]
  • Fernández-Alonso R., Suárez-Álvarez J., Muñiz J. (2014). Tareas escolares en el hogar y rendimiento en matemáticas: una aproximación multinivel con estudiantes de enseñanza primaria. [Homework and academic performance in mathematics: A multilevel approach with primary school student]. Rev. Psicol. Educ. 9 , 15–30. [ Google Scholar ]
  • Fernández-Alonso R., Suárez-Álvarez J., Muñiz J. (2015). Adolescents' homework performance in mathematics and science: personal factors and teaching practices . J. Educ. Psychol. 107 , 1075–1085. 10.1037/edu0000032 [ CrossRef ] [ Google Scholar ]
  • Fernández-Alonso R., Suárez-Álvarez J., Muñiz J. (2016). Homework and performance in mathematics: the role of the teacher, the family and the student's background . Rev. Psicod. 21 , 5–23. 10.1387/RevPsicodidact.13939 [ CrossRef ] [ Google Scholar ]
  • Flunger B., Trautwein U., Nagengast B., Lüdtke O., Niggli A., Schnyder I. (2015). The Janus-faced nature of time spent on homework: using latent profile analyses to predict academic achievement over a school year . Lear. Instr. 39 , 97–106. 10.1016/j.learninstruc.2015.05.008 [ CrossRef ] [ Google Scholar ]
  • Gershenson S., Holt S. B. (2015). Gender gaps in high school students' homework time . Educ. Res. 44 , 432–441. 10.3102/0013189X15616123 [ CrossRef ] [ Google Scholar ]
  • Goetz T., Nett U. E., Martiny S. E., Hall N. C., Pekrun R., Dettmers S., et al. (2012). Students' emotions during homework: structures, self-concept antecedents, and achievement outcomes . Learn. Individ. Differ. 22 , 225–234. 10.1016/j.lindif.2011.04.006 [ CrossRef ] [ Google Scholar ]
  • Goldstein A. (1960). Does homework help? A review of research . Elementary Sch. J. 60 , 212–224. 10.1086/459804 [ CrossRef ] [ Google Scholar ]
  • Kitsantas A., Cheema J., Ware H. (2011). The role of homework support resources, time spent on homework, and self-efficacy beliefs in mathematics achievement . J. Adv. Acad. 22 , 312–341. 10.1177/1932202X1102200206 [ CrossRef ] [ Google Scholar ]
  • Kitsantas A., Zimmerman B. J. (2009). College students homework and academic achievement: the mediating role of self-regulatory beliefs . Metacognition Learn. 4 , 1556–1623. 10.1007/s11409-008-9028-y [ CrossRef ] [ Google Scholar ]
  • Kohn A. (2006). Abusing research: the study of homework and other examples . Phi Delta Kappan 88 , 9–22. 10.1177/003172170608800105 [ CrossRef ] [ Google Scholar ]
  • Lubbers M. J., Van Der Werf M. P. C., Kuyper H., Hendriks A. A. J. (2010). Does homework behavior mediate the relation between personality and academic performance? Learn. Individ. Differ. 20 , 203–208. 10.1016/j.lindif.2010.01.005 [ CrossRef ] [ Google Scholar ]
  • Martinez S. (2011). An examination of Latino students' homework routines . J. Latinos Educ. 10 , 354–368. 10.1080/15348431.2011.605688 [ CrossRef ] [ Google Scholar ]
  • Mislevy R. J., Beaton A. E., Kaplan B., Sheehan K. M. (1992). Estimating population characteristics from sparse matrix samples of item responses . J. Educ. Meas. 29 , 133–161. 10.1111/j.1745-3984.1992.tb00371.x [ CrossRef ] [ Google Scholar ]
  • Ministerio de Educación (2011). Evaluación General de Diagnóstico 2010. Educación Secundaria Obligatoria. Informe de Resultados . Madrid: Instituto de Evaluación; Available online at: http://www.mecd.gob.es/dctm/ievaluacion/informe-egd-2010.pdf?documentId=0901e72b80d5ad3e (Accessed January 25, 2016). [ Google Scholar ]
  • Mourshed M., Chijioke C., Barber M. (2010). How the World's Most Improved School Systems Keep Getting Better. McKinsey and Company . Available online at: http://mckinseyonsociety.com/downloads/reports/Education/How-the-Worlds-Most-Improved-School-Systems-Keep-Getting-Better_Download-version_Final.pdf (Accessed January 25, 2016).
  • Murillo F. J., Martínez-Garrido C. (2013). Homework influence on academic performance. A study of iberoamerican students of primary education . J. Psychodidactics 18 , 157–171. 10.1387/RevPsicodidact.6156 [ CrossRef ] [ Google Scholar ]
  • Núñez J. C., Vallejo G., Rosário P., Tuero E., Valle A. (2014). Student, teacher, and school context variables predicting academic achievement in biology: analysis from a multilevel perspective . J. Psychodidactics 19 , 145–171. 10.1387/RevPsicodidact.7127 [ CrossRef ] [ Google Scholar ]
  • OECD (2009). PISA Data Analysis Manual: SPSS, 2nd Edn . Paris: OECD Publishing. [ Google Scholar ]
  • OECD (2011). School Sampling Preparation Manual. PISA 2012 Main Survey. Paris: OECD Publishing; Available online at: https://www.oecd.org/pisa/pisaproducts/PISA2012MS-SamplingGuidelines-.pdf (Accessed January 6, 2017). [ Google Scholar ]
  • OECD (2013a). PISA 2012 Results: What Students Know and Can Do. Student Performance in Mathematics, Reading and Science (Volume I) . Paris: OECD Publishing. [ Google Scholar ]
  • OECD (2013b). PISA 2012 Results: What Makes Schools Successful? Resources, Policies and Practices (Volume IV). Paris: OECD Publishing. [ Google Scholar ]
  • OECD (2014a). PISA 2012 Technical Report. Paris: OECD Publishing; Available online at: http://www.oecd.org/pisa/pisaproducts/PISA-2012-technical-report-final.pdf (Accessed January 25, 2016). [ Google Scholar ]
  • OECD (2014b). Does Homework Perpetuate Inequities in Education? PISA in Focus . Paris: OECD Publishing. [ Google Scholar ]
  • Osorio A., González-Cámara M. (2016). Testing the alleged superiority of the indulgent parenting style among Spanish adolescents . Psicothema 28 , 414–420. 10.7334/psicothema2015.314 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Paschal R. A., Weinstein T., Walberg H. J. (1984). The effects of homework on learning: a quantitative synthesis . J. Educ. Res. 78 , 97–104. 10.1080/00220671.1984.10885581 [ CrossRef ] [ Google Scholar ]
  • Patall E. A., Cooper H., Wynn S. R. (2010). The effectiveness and relative importance of providing choices in the classroom . J. Educ. Psychol. 102 , 896–915. 10.1037/a0019545 [ CrossRef ] [ Google Scholar ]
  • Pedrosa I., Suárez-Álvarez J., García-Cueto E., Muñiz J. (2016). A computerized adaptive test for enterprising personality assessment in youth . Psicothema 28 , 471–478. 10.7334/psicothema2016.68 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ramdass D., Zimmerman B. J. (2011). Developing self-regulation skills: the important role of homework . J. Adv. Acad. 22 , 194–218. 10.1177/1932202X1102200202 [ CrossRef ] [ Google Scholar ]
  • Raudenbush S. W., Bryk A. S., Cheong Y. F., Congdon R. T. (2004). HLM6: Hierarchical Linear and Nonlinear Modeling . Chicago: Scientific Software International. [ Google Scholar ]
  • Rømming M. (2011). Who benefits from homework assignments? Econ. Educ. Rev. 30 , 55–64. 10.1016/j.econedurev.2010.07.001 [ CrossRef ] [ Google Scholar ]
  • Rosário P., Núñez J. C., Vallejo G., Cunha J., Nunes T., Mourão R., et al. (2015a). Does homework design matter? The role of homework's purpose in student mathematics achievement . Contemp. Educ. Psychol. 43 , 10–24. 10.1016/j.cedpsych.2015.08.001 [ CrossRef ] [ Google Scholar ]
  • Rosário P., Núñez J. C., Vallejo G., Cunha J., Nunes T., Suárez N., et al.. (2015b). The effects of teachers' homework follow-up practices on students' EFL performance: a randomized-group design . Front. Psychol. 6 :1528. 10.3389/fpsyg.2015.01528 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Servicio de Evaluación Educativa del Principado de Asturias (2016). La relación entre el tiempo de deberes y los resultados académicos [The Relationship between Homework Time and Academic Performance]. Informes de Evaluación, 1 . Oviedo: Consejería de Educación y Cultura del Gobierno del Principado de Asturias. [ Google Scholar ]
  • Scheerens J., Hendriks M., Luyten H., Sleegers P., Cees G. (2013). Productive Time in Education. A Review of the Effectiveness of Teaching Time at School, Homework and Extended Time Outside School Hours. Enschede: University of Twente . Available online at: http://doc.utwente.nl/86371/ (Accessed January 25, 2016).
  • Suárez-Álvarez J., Fernández-Alonso R., Muñiz J. (2014). Self-concept, motivation, expectations and socioeconomic level as predictors of academic performance in mathematics . Learn. Indiv. Diff. 30 , 118–123. 10.1016/j.lindif.2013.10.019 [ CrossRef ] [ Google Scholar ]
  • Suárez N., Regueiro B., Epstein J. L., Piñeiro I., Díaz S. M., Valle A. (2016). Homework involvement and academic achievement of native and immigrant students . Front. Psychol. 7 :1517. 10.3389/fpsyg.2016.01517 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Trautwein U. (2007). The homework–achievement relation reconsidered: differentiating homework time, homework frequency, and homework effort . Learn. Instr. 17 , 372–388. 10.1016/j.learninstruc.2007.02.009 [ CrossRef ] [ Google Scholar ]
  • Trautwein U., Köller O. (2003). The relationship between homework and achievement: still much of a mystery . Educ. Psychol. Rev. 15 , 115–145. 10.1023/A:1023460414243 [ CrossRef ] [ Google Scholar ]
  • Trautwein U., Köller O., Schmitz B., Baumert J. (2002). Do homework assignments enhance achievement? A multilevel analysis in 7th grade mathematics . Contemp. Educ. Psychol. 27 , 26–50. 10.1006/ceps.2001.1084 [ CrossRef ] [ Google Scholar ]
  • Trautwein U., Lüdtke O., Schnyder I., Niggli A. (2006). Predicting homework effort: support for a domain-specific, multilevel homework model . J. Educ. Psychol. 98 , 438–456. 10.1037/0022-0663.98.2.438 [ CrossRef ] [ Google Scholar ]
  • Trautwein U., Lüdtke O. (2007). Students' self-reported effort and time on homework in six school subjects: between-student differences and within-student variation . J. Educ. Psychol. 99 , 432–444. 10.1037/0022-0663.99.2.432 [ CrossRef ] [ Google Scholar ]
  • Trautwein U., Lüdtke O. (2009). Predicting homework motivation and homework effort in six school subjects: the role of person and family characteristics, classroom factors, and school track . Learn. Instr. 19 , 243–258. 10.1016/j.learninstruc.2008.05.001 [ CrossRef ] [ Google Scholar ]
  • Trautwein U., Niggli A., Schnyder I., Lüdtke O. (2009a). Between-teacher differences in homework assignments and the development of students' homework effort, homework emotions, and achievement . J. Educ. Psychol. 101 , 176–189. 10.1037/0022-0663.101.1.176 [ CrossRef ] [ Google Scholar ]
  • Trautwein U., Schnyder I., Niggli A., Neumann M., Lüdtke O. (2009b). Chameleon effects in homework research: the homework–achievement association depends on the measures used and the level of analysis chosen . Contemp. Educ. Psychol. 34 , 77–88. 10.1016/j.cedpsych.2008.09.001 [ CrossRef ] [ Google Scholar ]
  • Valle A., Pan I., Regueiro B., Suárez N., Tuero E., Nunes A. R. (2015). Predicting approach to homework in primary school students . Psicothema 27 , 334–340. 10.7334/psicothema2015.118 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Valle A., Regueiro B., Núñez J. C., Rodríguez S., Piñero I., Rosário P. (2016). Academic goals, student homework engagement, and academic achievement in elementary school . Front. Psychol. 7 :463. 10.3389/fpsyg.2016.00463 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • von Davier M., Gonzalez E., Mislevy R. J. (2009). What are Plausible Values and Why are They Useful?. IERI Monograph Series. Issues and Methodologies in Large-Scale Assessments. Available online at: http://www.ierinstitute.org/fileadmin/Documents/IERI_Monograph/IERI_Monograph_Volume_02.pdf (Accessed January 15, 2017).
  • Walberg H. J., Paschal R. A., Weinstein T. (1985). Homework's powerful effects on learning . Educ. Leadersh. 42 , 76–79. [ Google Scholar ]
  • Walberg H. J., Paschal R. A., Weinstein T. (1986). Walberg and colleagues reply: effective schools use homework effectively . Educ. Leadersh. 43 , 58. [ Google Scholar ]
  • Wu M. L., Adams R. J., Wilson M. R., Haldane S. A. (2007). ACER ConQuest 2.0: Generalised Item Response Modelling Software . Camberwell, VIC: Australian Council for Educational Research. [ Google Scholar ]
  • Xu J. (2008). Models of secondary school students' interest in homework: a multilevel analysis . Am. Educ. Res. J. 45 , 1180–1205. 10.3102/0002831208323276 [ CrossRef ] [ Google Scholar ]
  • Xu J. (2013). Why do students have difficulties completing homework? The need for homework management . J. Educ. Train. Stud. 1 , 98–105. 10.11114/jets.v1i1.78 [ CrossRef ] [ Google Scholar ]
  • Xu J., Wu H. (2013). Self-regulation of homework behavior: homework management at the secondary school level . J. Educ. Res. 106 , 1–13. 10.1080/00220671.2012.658457 [ CrossRef ] [ Google Scholar ]
  • Xu J., Yuan R., Xu B., Xu M. (2014). Modeling students' time management in math homework . Learn. Individ. Differ. 34 , 33–42. 10.1016/j.lindif.2014.05.011 [ CrossRef ] [ Google Scholar ]
  • Zimmerman B. J., Kitsantas A. (2005). Homework practices and academic achievement: the mediating role of self-efficacy and perceived responsibility beliefs . Contemp. Educ. Psychol. 30 , 397–417. 10.1016/j.cedpsych.2005.05.003 [ CrossRef ] [ Google Scholar ]

TeachBeyond

Homework: To give and how much to give, that is the question

giving of homework to students position paper

So, how much homework do you give per night? How do you determine what is the best amount? In addition to the impact that homework has on academic achievement, Christian teachers also are thinking about the impact of homework on the total well-being of students and their families. What about homework’s intrusion into precious family time? What about the student with slow processing who takes twice the time as other students to complete assignments? What about a parent’s choice to engage their child in other types of learning or work outside of the normal school day hours, essentially eliminating time to complete homework? These questions require the Christian teachers’ consideration because our role is to assist parents in the education of their children. Biblically, the parents “make the call,” so to speak.

Research informs one area of decision-making regarding homework. That area is the connection between academic achievement and the amount of time a student spends doing homework. Harris Cooper reviewed more than 60 research studies on homework between 1987 and 2003 and drew some conclusions which may be helpful. [1] Here is a brief summary of the meta-analysis of the research on homework: 1. The amount of homework assigned to students should be different based on the grade of the student.

  • Elementary: homework does not increase academic performance, but can positively contribute to establishing work habits.  Recommended: grade in school times 10 minutes = time spent on homework (a student in fifth grade would be 5 x 10=50 minutes a night)
  • Middle School:   Recommended:  90-120 minutes average per night
  • High School:   every 30 minutes of additional homework per night yields a 5% increase in the student’s GPA up to a point.  Recommended: 120-180 minutes per night

IMAGES

  1. How to Write a Position Paper

    giving of homework to students position paper

  2. SOLUTION: Position Paper- Mandatory Homework Among Students

    giving of homework to students position paper

  3. Position Paper Template

    giving of homework to students position paper

  4. Position Paper Format Examples

    giving of homework to students position paper

  5. How To Write A Position Paper

    giving of homework to students position paper

  6. Teacher Giving Task To Pupils Stock Photo

    giving of homework to students position paper

VIDEO

  1. Homework Help explained

  2. How that one teacher be giving homework like we don't have other classes

  3. How the teacher feels after giving homework #memes #roblox

  4. Who started giving homework| Real enemy of students| Like and Subscribe for more|

  5. Best Position Paper of UNESCO for Muskitnas MUN 2023 SMA PKP JIS

  6. Position Paper Guidelines

COMMENTS

  1. POSITION PAPER HOMEWORK SHOULD BE ABOLISHED (DISAGREE

    Some of these benefits are as follows: homework helps improve the student's overall performance, it also encourages the communication between the students, parents and the teachers, and it helps the students gain traits and skills that are essential for their growth like time management and self-discipline. Homework should not be abolished ...

  2. PDF What the research says about HOMEWORK

    school age students. RESEARCH SAYS:Homework serves the distinct purpose to "provide students with an opportunity to practice," according to a 25 year quantitat. ve metaanalysis (Cooper, et al 2006). Homework has the highest impact on achievement in high school and the lowest in e.

  3. (PDF) Investigating the Effects of Homework on Student Learning and

    Homework has long been a topic of social research, but rela-tively few studies have focused on the teacher's role in the homework process. Most research examines what students do, and whether and ...

  4. NO ASSIGNMENT POLICY: A BOON OR A BANE?

    Homework or assignment is widely known as an educational activity, which primary purpose is to help the students improve their performances however some studies showed that assignment has a ...

  5. Teachers' perspectives on homework: manifestations of culturally

    Also, while primary teachers typically use homework for reviewing material and secondary teachers use it to prepare students for subsequent lessons (Muhlenbruck et al., Citation 1999), students at the border of the two benefit most from homework presented as extensions to current work (Medwell & Wray, Citation 2019; Rosário et al., Citation 2015).

  6. (PDF) STAKEHOLDERS' PERCEPTIONS ON"NO HOMEWORK POLICY ...

    Homework or assignment is widely known as an educational activity, which primary purpose is to help the students improve their performances however some studies showed that assignment has a ...

  7. PDF Cpm'S Position Paper on Homework

    !"#$%&"'%()('*&"+",-&'*&.'#,/'-0!"#$%&'(())(%*&+,#$-)(#&(.&/0##,-0102&"%3&455$552$%) /67&8$1,$9$5&):")&:(2$;(#<&,5&"%& (==(#)0%,)>&.(#&5)03$%)5&)(&,%3,9,30"11 ...

  8. Homework : burden or benefit?

    benefits of homework are ones that affect primarily the student. Immediate academic effects of. homework include retaining the information that is taught in class, giving the students time to. practice the skills so the students better understand it, and providing enrichment in the school's.

  9. Types of Homework and Their Effect on Student Achievement

    Variations of homework can be classified according. to its amount, skill area, purpose, degree of individualization and choice of the student, completion deadline, and social context (Cooper et al., 2006). Purpose of the homework task: Pre-learning: This type of homework is designed to encourage students to think.

  10. PDF Assigning Effective Homework

    Do not assign homework as a "time filler" to keep students busy, a "paper-and-pencil babysitter" or a punishment for not doing class work. 3. Do plan ahead so that there is sufficient class time to give explicit directions for the homework assignment and to answer questions. Do not wait until the last minute to organize and assign the ...

  11. PDF Does Homework Really Improve Achievement? Kevin C. Costley, Ph.D ...

    Cooper, Robinson, and Patall (2006) issued a strong warning about too much homework. "Even for these older students, too much homework may diminish its effectiveness or even become counterproductive (pg.53)". The Homework Literature Review stated that "excessive homework may impact negatively on student achievement" (2004, p.3).

  12. What's the Right Amount of Homework?

    The National PTA and the National Education Association support the " 10-minute homework guideline "—a nightly 10 minutes of homework per grade level. But many teachers and parents are quick to point out that what matters is the quality of the homework assigned and how well it meets students' needs, not the amount of time spent on it.

  13. Should Students Have Homework?

    According to Duke professor Harris Cooper, it's important that students have homework. His meta-analysis of homework studies showed a correlation between completing homework and academic success, at least in older grades. He recommends following a "10 minute rule": students should receive 10 minutes of homework per day in first grade, and 10 ...

  14. Students' Achievement and Homework Assignment Strategies

    The main objective of this research is to analyze how homework assignment strategies in schools affect students' academic performance and the differences in students' time spent on homework. Participants were a representative sample of Spanish adolescents ( N = 26,543) with a mean age of 14.4 (±0.75), 49.7% girls.

  15. Homework: To give and how much to give, that is the question

    Parental involvement should be limited to facilitating the student's work such as providing a structured time and place. Of course, the implication is that teachers should assign independent level homework. 3. The purpose of the homework should be identified and articulated to the student. Teachers should make the home work purposeful and ...