• Data Visualization
  • Statistics in R
  • Machine Learning in R
  • Data Science in R
  • Packages in R
  • Multiline Plot using Plotly in R
  • Scaling Variables Parallel Coordinates chart in R
  • R Programming Exercises, Practice Questions and Solutions
  • Poisson Functions in R Programming
  • Find String Matches in a Vector or Matrix in R Programming - str_detect() Function
  • Convert type of data object in R Programming - type.convert() Function
  • Comparing values of data frames in R Programming - all_equal() Function
  • Accessing variables of a data frame in R Programming - attach() and detach() function
  • Bootstrapping in R Programming
  • Convert string from lowercase to uppercase in R programming - toupper() function
  • How to find SubString in R programming?
  • Adding elements in a vector in R programming - append() method
  • Replicate elements of vector in R programming - rep() Method
  • Calculate arc tangent of a value in R programming - atan2(y, x) function
  • Calculate arc cosine of a value in R programming - acos() function
  • Performing F-Test in R programming - var.test() Method
  • Performing Binomial Test in R programming - binom.test() Method
  • Two Dimensional List in R Programming
  • Poisson Regression in R Programming

How to Use the linearHypothesis() Function in R

In statistics, understanding how variables relate to each other is crucial. This helps in making smart decisions. When we build regression models, we need to check if certain combinations of variables are statistically significant. In R Programming Language a tool called linear hypothesis () in the “car” package for this purpose. Also, this article gives a simple guide on using linear hypothesis () in R for such analyses.

What is a linear hypothesis?

The linear hypothesis () function is a tool in R’s “car” package used to test linear hypotheses in regression models. It helps us to determine if certain combinations of variables have a significant impact on our model’s outcome.

H 0 : Cβ = 0
  • H 0 denotes the null hypothesis.
  • C is a matrix representing the coefficients of the linear combination being tested.
  • β represents the vector of coefficients in the regression model.
  • 0 signifies a vector of zeros.
linearHypothesis(model, hypothesis.matrix)
  • model is the fitted regression model for which hypotheses are to be tested.
  • hypothesis.matrix is a matrix specifying the linear hypotheses to be tested.

Implemention of linearHypothesis() Function in R

The hypothesis being tested is whether the coefficients of X1 and X2 are equal (i.e., X1 – X2 = 0).

  • The output provides the results of the linear hypothesis test, including the Residual Degrees of Freedom (Res.Df), Residual Sum of Squares (RSS), the change in the RSS between the restricted and full models, the F-statistic (F), and the corresponding p-value (Pr(>F)).
  • In this case, the p-value is 0.5459, which indicates that we fail to reject the null hypothesis at conventional significance levels, suggesting that there is no significant difference between the coefficients of X1 and X2.

Perform linearHypothesis() Function on mtcars dataset

The hypothesis being tested is whether the coefficients of ‘cyl’ and ‘disp’ sum up to zero (i.e., cyl + disp = 0).

  • In this case, the p-value is 0.3321, which indicates that we fail to reject the null hypothesis at conventional significance levels. Therefore, we don’t have sufficient evidence to conclude that the sum of the coefficients of ‘cyl’ and ‘disp’ is significantly different from zero.

The `linearHypothesis()` function in R’s “car” package provides a straightforward method for testing linear hypotheses in regression models. The significance of specific variable combinations, analysts can make informed decisions about the model’s predictive power.

Please Login to comment...

Similar reads.

author

  • R Machine Learning

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

What Is Hypothesis Testing? Types and Python Code Example

MENE-EJEGI OGBEMI

Curiosity has always been a part of human nature. Since the beginning of time, this has been one of the most important tools for birthing civilizations. Still, our curiosity grows — it tests and expands our limits. Humanity has explored the plains of land, water, and air. We've built underwater habitats where we could live for weeks. Our civilization has explored various planets. We've explored land to an unlimited degree.

These things were possible because humans asked questions and searched until they found answers. However, for us to get these answers, a proven method must be used and followed through to validate our results. Historically, philosophers assumed the earth was flat and you would fall off when you reached the edge. While philosophers like Aristotle argued that the earth was spherical based on the formation of the stars, they could not prove it at the time.

This is because they didn't have adequate resources to explore space or mathematically prove Earth's shape. It was a Greek mathematician named Eratosthenes who calculated the earth's circumference with incredible precision. He used scientific methods to show that the Earth was not flat. Since then, other methods have been used to prove the Earth's spherical shape.

When there are questions or statements that are yet to be tested and confirmed based on some scientific method, they are called hypotheses. Basically, we have two types of hypotheses: null and alternate.

A null hypothesis is one's default belief or argument about a subject matter. In the case of the earth's shape, the null hypothesis was that the earth was flat.

An alternate hypothesis is a belief or argument a person might try to establish. Aristotle and Eratosthenes argued that the earth was spherical.

Other examples of a random alternate hypothesis include:

  • The weather may have an impact on a person's mood.
  • More people wear suits on Mondays compared to other days of the week.
  • Children are more likely to be brilliant if both parents are in academia, and so on.

What is Hypothesis Testing?

Hypothesis testing is the act of testing whether a hypothesis or inference is true. When an alternate hypothesis is introduced, we test it against the null hypothesis to know which is correct. Let's use a plant experiment by a 12-year-old student to see how this works.

The hypothesis is that a plant will grow taller when given a certain type of fertilizer. The student takes two samples of the same plant, fertilizes one, and leaves the other unfertilized. He measures the plants' height every few days and records the results in a table.

After a week or two, he compares the final height of both plants to see which grew taller. If the plant given fertilizer grew taller, the hypothesis is established as fact. If not, the hypothesis is not supported. This simple experiment shows how to form a hypothesis, test it experimentally, and analyze the results.

In hypothesis testing, there are two types of error: Type I and Type II.

When we reject the null hypothesis in a case where it is correct, we've committed a Type I error. Type II errors occur when we fail to reject the null hypothesis when it is incorrect.

In our plant experiment above, if the student finds out that both plants' heights are the same at the end of the test period yet opines that fertilizer helps with plant growth, he has committed a Type I error.

However, if the fertilized plant comes out taller and the student records that both plants are the same or that the one without fertilizer grew taller, he has committed a Type II error because he has failed to reject the null hypothesis.

What are the Steps in Hypothesis Testing?

The following steps explain how we can test a hypothesis:

Step #1 - Define the Null and Alternative Hypotheses

Before making any test, we must first define what we are testing and what the default assumption is about the subject. In this article, we'll be testing if the average weight of 10-year-old children is more than 32kg.

Our null hypothesis is that 10 year old children weigh 32 kg on average. Our alternate hypothesis is that the average weight is more than 32kg. Ho denotes a null hypothesis, while H1 denotes an alternate hypothesis.

Step #2 - Choose a Significance Level

The significance level is a threshold for determining if the test is valid. It gives credibility to our hypothesis test to ensure we are not just luck-dependent but have enough evidence to support our claims. We usually set our significance level before conducting our tests. The criterion for determining our significance value is known as p-value.

A lower p-value means that there is stronger evidence against the null hypothesis, and therefore, a greater degree of significance. A p-value of 0.05 is widely accepted to be significant in most fields of science. P-values do not denote the probability of the outcome of the result, they just serve as a benchmark for determining whether our test result is due to chance. For our test, our p-value will be 0.05.

Step #3 - Collect Data and Calculate a Test Statistic

You can obtain your data from online data stores or conduct your research directly. Data can be scraped or researched online. The methodology might depend on the research you are trying to conduct.

We can calculate our test using any of the appropriate hypothesis tests. This can be a T-test, Z-test, Chi-squared, and so on. There are several hypothesis tests, each suiting different purposes and research questions. In this article, we'll use the T-test to run our hypothesis, but I'll explain the Z-test, and chi-squared too.

T-test is used for comparison of two sets of data when we don't know the population standard deviation. It's a parametric test, meaning it makes assumptions about the distribution of the data. These assumptions include that the data is normally distributed and that the variances of the two groups are equal. In a more simple and practical sense, imagine that we have test scores in a class for males and females, but we don't know how different or similar these scores are. We can use a t-test to see if there's a real difference.

The Z-test is used for comparison between two sets of data when the population standard deviation is known. It is also a parametric test, but it makes fewer assumptions about the distribution of data. The z-test assumes that the data is normally distributed, but it does not assume that the variances of the two groups are equal. In our class test example, with the t-test, we can say that if we already know how spread out the scores are in both groups, we can now use the z-test to see if there's a difference in the average scores.

The Chi-squared test is used to compare two or more categorical variables. The chi-squared test is a non-parametric test, meaning it does not make any assumptions about the distribution of data. It can be used to test a variety of hypotheses, including whether two or more groups have equal proportions.

Step #4 - Decide on the Null Hypothesis Based on the Test Statistic and Significance Level

After conducting our test and calculating the test statistic, we can compare its value to the predetermined significance level. If the test statistic falls beyond the significance level, we can decide to reject the null hypothesis, indicating that there is sufficient evidence to support our alternative hypothesis.

On the other contrary, if the test statistic does not exceed the significance level, we fail to reject the null hypothesis, signifying that we do not have enough statistical evidence to conclude in favor of the alternative hypothesis.

Step #5 - Interpret the Results

Depending on the decision made in the previous step, we can interpret the result in the context of our study and the practical implications. For our case study, we can interpret whether we have significant evidence to support our claim that the average weight of 10 year old children is more than 32kg or not.

For our test, we are generating random dummy data for the weight of the children. We'll use a t-test to evaluate whether our hypothesis is correct or not.

For a better understanding, let's look at what each block of code does.

The first block is the import statement, where we import numpy and scipy.stats . Numpy is a Python library used for scientific computing. It has a large library of functions for working with arrays. Scipy is a library for mathematical functions. It has a stat module for performing statistical functions, and that's what we'll be using for our t-test.

The weights of the children were generated at random since we aren't working with an actual dataset. The random module within the Numpy library provides a function for generating random numbers, which is randint .

The randint function takes three arguments. The first (20) is the lower bound of the random numbers to be generated. The second (40) is the upper bound, and the third (100) specifies the number of random integers to generate. That is, we are generating random weight values for 100 children. In real circumstances, these weight samples would have been obtained by taking the weight of the required number of children needed for the test.

Using the code above, we declared our null and alternate hypotheses stating the average weight of a 10-year-old in both cases.

t_stat and p_value are the variables in which we'll store the results of our functions. stats.ttest_1samp is the function that calculates our test. It takes in two variables, the first is the data variable that stores the array of weights for children, and the second (32) is the value against which we'll test the mean of our array of weights or dataset in cases where we are using a real-world dataset.

The code above prints both values for t_stats and p_value .

Lastly, we evaluated our p_value against our significance value, which is 0.05. If our p_value is less than 0.05, we reject the null hypothesis. Otherwise, we fail to reject the null hypothesis. Below is the output of this program. Our null hypothesis was rejected.

In this article, we discussed the importance of hypothesis testing. We highlighted how science has advanced human knowledge and civilization through formulating and testing hypotheses.

We discussed Type I and Type II errors in hypothesis testing and how they underscore the importance of careful consideration and analysis in scientific inquiry. It reinforces the idea that conclusions should be drawn based on thorough statistical analysis rather than assumptions or biases.

We also generated a sample dataset using the relevant Python libraries and used the needed functions to calculate and test our alternate hypothesis.

Thank you for reading! Please follow me on LinkedIn where I also post more data related content.

Technical support engineer with 4 years of experience & 6 months in data analytics. Passionate about data science, programming, & statistics.

If you read this far, thank the author to show them you care. Say Thanks

Learn to code for free. freeCodeCamp's open source curriculum has helped more than 40,000 people get jobs as developers. Get started

  • Trending Now
  • Foundational Courses
  • Data Science
  • Practice Problem
  • Machine Learning
  • System Design
  • DevOps Tutorial

Improve your Coding Skills with Practice

 alt=

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

1.2 - the 7 step process of statistical hypothesis testing.

We will cover the seven steps one by one.

Step 1: State the Null Hypothesis

The null hypothesis can be thought of as the opposite of the "guess" the researchers made. In the example presented in the previous section, the biologist "guesses" plant height will be different for the various fertilizers. So the null hypothesis would be that there will be no difference among the groups of plants. Specifically, in more statistical language the null for an ANOVA is that the means are the same. We state the null hypothesis as:

\(H_0 \colon \mu_1 = \mu_2 = ⋯ = \mu_T\)

for  T levels of an experimental treatment.

Step 2: State the Alternative Hypothesis

\(H_A \colon \text{ treatment level means not all equal}\)

The alternative hypothesis is stated in this way so that if the null is rejected, there are many alternative possibilities.

For example, \(\mu_1\ne \mu_2 = ⋯ = \mu_T\) is one possibility, as is \(\mu_1=\mu_2\ne\mu_3= ⋯ =\mu_T\). Many people make the mistake of stating the alternative hypothesis as \(\mu_1\ne\mu_2\ne⋯\ne\mu_T\) which says that every mean differs from every other mean. This is a possibility, but only one of many possibilities. A simple way of thinking about this is that at least one mean is different from all others. To cover all alternative outcomes, we resort to a verbal statement of "not all equal" and then follow up with mean comparisons to find out where differences among means exist. In our example, a possible outcome would be that fertilizer 1 results in plants that are exceptionally tall, but fertilizers 2, 3, and the control group may not differ from one another.

Step 3: Set \(\alpha\)

If we look at what can happen in a hypothesis test, we can construct the following contingency table:

You should be familiar with Type I and Type II errors from your introductory courses. It is important to note that we want to set \(\alpha\) before the experiment ( a-priori ) because the Type I error is the more grievous error to make. The typical value of \(\alpha\) is 0.05, establishing a 95% confidence level. For this course, we will assume \(\alpha\) =0.05, unless stated otherwise.

Step 4: Collect Data

Remember the importance of recognizing whether data is collected through an experimental design or observational study.

Step 5: Calculate a test statistic

For categorical treatment level means, we use an F- statistic, named after R.A. Fisher. We will explore the mechanics of computing the F- statistic beginning in Lesson 2. The F- value we get from the data is labeled \(F_{\text{calculated}}\).

Step 6: Construct Acceptance / Rejection regions

As with all other test statistics, a threshold (critical) value of F is established. This F- value can be obtained from statistical tables or software and is referred to as \(F_{\text{critical}}\) or \(F_\alpha\). As a reminder, this critical value is the minimum value of the test statistic (in this case \(F_{\text{calculated}}\)) for us to reject the null.

The F- distribution, \(F_\alpha\), and the location of acceptance/rejection regions are shown in the graph below:

Step 7: Based on Steps 5 and 6, draw a conclusion about \(H_0\)

If \(F_{\text{calculated}}\) is larger than \(F_\alpha\), then you are in the rejection region and you can reject the null hypothesis with \(\left(1-\alpha \right)\) level of confidence.

Note that modern statistical software condenses Steps 6 and 7 by providing a p -value. The p -value here is the probability of getting an \(F_{\text{calculated}}\) even greater than what you observe assuming the null hypothesis is true. If by chance, the \(F_{\text{calculated}} = F_\alpha\), then the p -value would be exactly equal to \(\alpha\). With larger \(F_{\text{calculated}}\) values, we move further into the rejection region and the p- value becomes less than \(\alpha\). So, the decision rule is as follows:

If the p- value obtained from the ANOVA is less than \(\alpha\), then reject \(H_0\) in favor of \(H_A\).

The Hypothesis Testing Library for Python: An Introduction

Hypothesis is a Python library for creating tests which are simple to write and powerful when run, finding cases in your code you wouldn't have thought to look for. It is stable, powerful and easy to add to an existing test suite.

It works by letting you write tests that assert that something should be true for every case, not just the ones you happen to think of.

Think of a normal unit test as being something like the following:

  • Set up some data.
  • Perform some operations on the data.
  • Assert something about the result.

Hypothesis lets you write tests which instead look like this:

  • For all data matching some specification.

This is often called property-based testing, and was popularized by the Haskell library Quickcheck . [1]

I found out about the Hypothesis testing library about a year ago, started using it a few hours later, and have been using it ever since. A few months ago, I realized that I felt so strongly about the value and importance of the library that I should give a talk about it, and a few weeks ago that is just what I did. Here is my talk:

http://www.youtube.com/watch?v=CTi2DRvkNLk

[1]  https://hypothesis.readthedocs.io/en/latest/

  • Red Hat Enterprise Linux
  • Red Hat OpenShift
  • Red Hat Ansible Automation Platform
  • See all products
  • See all technologies
  • Developer Sandbox
  • Developer Tools
  • Interactive Tutorials
  • API Catalog
  • Operators Marketplace
  • Learning Resources
  • Cheat Sheets

Communicate

  • Contact sales
  • Find a partner

Report a website issue

  • Site Status Dashboard
  • Report a security problem

RED HAT DEVELOPER

Build here. Go anywhere.

We serve the builders. The problem solvers who create careers with code.

Join us if you’re a developer, software engineer, web designer, front-end designer, UX designer, computer scientist, architect, tester, product manager, project manager or team lead.

Red Hat legal and privacy links

  • About Red Hat
  • Contact Red Hat
  • Red Hat Blog
  • Diversity, equity, and inclusion
  • Cool Stuff Store
  • Red Hat Summit
  • Privacy statement
  • Terms of use
  • All policies and guidelines
  • Digital accessibility

Statistics Tutorial

Descriptive statistics, inferential statistics, stat reference, statistics - hypothesis testing.

Hypothesis testing is a formal way of checking if a hypothesis about a population is true or not.

Hypothesis Testing

A hypothesis is a claim about a population parameter .

A hypothesis test is a formal procedure to check if a hypothesis is true or not.

Examples of claims that can be checked:

The average height of people in Denmark is more than 170 cm.

The share of left handed people in Australia is not 10%.

The average income of dentists is less the average income of lawyers.

The Null and Alternative Hypothesis

Hypothesis testing is based on making two different claims about a population parameter.

The null hypothesis (\(H_{0} \)) and the alternative hypothesis (\(H_{1}\)) are the claims.

The two claims needs to be mutually exclusive , meaning only one of them can be true.

The alternative hypothesis is typically what we are trying to prove.

For example, we want to check the following claim:

"The average height of people in Denmark is more than 170 cm."

In this case, the parameter is the average height of people in Denmark (\(\mu\)).

The null and alternative hypothesis would be:

Null hypothesis : The average height of people in Denmark is 170 cm.

Alternative hypothesis : The average height of people in Denmark is more than 170 cm.

The claims are often expressed with symbols like this:

\(H_{0}\): \(\mu = 170 \: cm \)

\(H_{1}\): \(\mu > 170 \: cm \)

If the data supports the alternative hypothesis, we reject the null hypothesis and accept the alternative hypothesis.

If the data does not support the alternative hypothesis, we keep the null hypothesis.

Note: The alternative hypothesis is also referred to as (\(H_{A} \)).

The Significance Level

The significance level (\(\alpha\)) is the uncertainty we accept when rejecting the null hypothesis in the hypothesis test.

The significance level is a percentage probability of accidentally making the wrong conclusion.

Typical significance levels are:

  • \(\alpha = 0.1\) (10%)
  • \(\alpha = 0.05\) (5%)
  • \(\alpha = 0.01\) (1%)

A lower significance level means that the evidence in the data needs to be stronger to reject the null hypothesis.

There is no "correct" significance level - it only states the uncertainty of the conclusion.

Note: A 5% significance level means that when we reject a null hypothesis:

We expect to reject a true null hypothesis 5 out of 100 times.

Advertisement

The Test Statistic

The test statistic is used to decide the outcome of the hypothesis test.

The test statistic is a standardized value calculated from the sample.

Standardization means converting a statistic to a well known probability distribution .

The type of probability distribution depends on the type of test.

Common examples are:

  • Standard Normal Distribution (Z): used for Testing Population Proportions
  • Student's T-Distribution (T): used for Testing Population Means

Note: You will learn how to calculate the test statistic for each type of test in the following chapters.

The Critical Value and P-Value Approach

There are two main approaches used for hypothesis tests:

  • The critical value approach compares the test statistic with the critical value of the significance level.
  • The p-value approach compares the p-value of the test statistic and with the significance level.

The Critical Value Approach

The critical value approach checks if the test statistic is in the rejection region .

The rejection region is an area of probability in the tails of the distribution.

The size of the rejection region is decided by the significance level (\(\alpha\)).

The value that separates the rejection region from the rest is called the critical value .

Here is a graphical illustration:

If the test statistic is inside this rejection region, the null hypothesis is rejected .

For example, if the test statistic is 2.3 and the critical value is 2 for a significance level (\(\alpha = 0.05\)):

We reject the null hypothesis (\(H_{0} \)) at 0.05 significance level (\(\alpha\))

The P-Value Approach

The p-value approach checks if the p-value of the test statistic is smaller than the significance level (\(\alpha\)).

The p-value of the test statistic is the area of probability in the tails of the distribution from the value of the test statistic.

If the p-value is smaller than the significance level, the null hypothesis is rejected .

The p-value directly tells us the lowest significance level where we can reject the null hypothesis.

For example, if the p-value is 0.03:

We reject the null hypothesis (\(H_{0} \)) at a 0.05 significance level (\(\alpha\))

We keep the null hypothesis (\(H_{0}\)) at a 0.01 significance level (\(\alpha\))

Note: The two approaches are only different in how they present the conclusion.

Steps for a Hypothesis Test

The following steps are used for a hypothesis test:

  • Check the conditions
  • Define the claims
  • Decide the significance level
  • Calculate the test statistic

One condition is that the sample is randomly selected from the population.

The other conditions depends on what type of parameter you are testing the hypothesis for.

Common parameters to test hypotheses are:

  • Proportions (for qualitative data)
  • Mean values (for numerical data)

You will learn the steps for both types in the following pages.

Get Certified

COLOR PICKER

colorpicker

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail: [email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail: [email protected]

Top Tutorials

Top references, top examples, get certified.

Table of Contents

Testing your python code with hypothesis, installing & using hypothesis, a quick example, understanding hypothesis, using hypothesis strategies, filtering and mapping strategies, composing strategies, constraints & satisfiability, writing reusable strategies with functions.

  • @composite: Declarative Strategies
  • @example: Explicitly Testing Certain Values

Hypothesis Example: Roman Numeral Converter

I can think of a several Python packages that greatly improved the quality of the software I write. Two of them are pytest and hypothesis . The former adds an ergonomic framework for writing tests and fixtures and a feature-rich test runner. The latter adds property-based testing that can ferret out all but the most stubborn bugs using clever algorithms, and that’s the package we’ll explore in this course.

In an ordinary test you interface with the code you want to test by generating one or more inputs to test against, and then you validate that it returns the right answer. But that, then, raises a tantalizing question: what about all the inputs you didn’t test? Your code coverage tool may well report 100% test coverage, but that does not, ipso facto , mean the code is bug-free.

One of the defining features of Hypothesis is its ability to generate test cases automatically in a manner that is:

Repeated invocations of your tests result in reproducible outcomes, even though Hypothesis does use randomness to generate the data.

You are given a detailed answer that explains how your test failed and why it failed. Hypothesis makes it clear how you, the human, can reproduce the invariant that caused your test to fail.

You can refine its strategies and tell it where or what it should or should not search for. At no point are you compelled to modify your code to suit the whims of Hypothesis if it generates nonsensical data.

So let’s look at how Hypothesis can help you discover errors in your code.

You can install hypothesis by typing pip install hypothesis . It has few dependencies of its own, and should install and run everywhere.

Hypothesis plugs into pytest and unittest by default, so you don’t have to do anything to make it work with it. In addition, Hypothesis comes with a CLI tool you can invoke with hypothesis . But more on that in a bit.

I will use pytest throughout to demonstrate Hypothesis, but it works equally well with the builtin unittest module.

Before I delve into the details of Hypothesis, let’s start with a simple example: a naive CSV writer and reader. A topic that seems simple enough: how hard is it to separate fields of data with a comma and then read it back in later?

But of course CSV is frighteningly hard to get right. The US and UK use '.' as a decimal separator, but in large parts of the world they use ',' which of course results in immediate failure. So then you start quoting things, and now you need a state machine that can distinguish quoted from unquoted; and what about nested quotes, etc.

The naive CSV reader and writer is an excellent stand-in for any number of complex projects where the requirements outwardly seem simple but there lurks a large number of edge cases that you must take into account.

Here the writer simply string quotes each field before joining them together with ',' . The reader does the opposite: it assumes each field is quoted after it is split by the comma.

A naive roundtrip pytest proves the code “works”:

And evidently so:

And for a lot of code that’s where the testing would begin and end. A couple of lines of code to test a couple of functions that outwardly behave in a manner that anybody can read and understand. Now let’s look at what a Hypothesis test would look like, and what happens when we run it:

At first blush there’s nothing here that you couldn’t divine the intent of, even if you don’t know Hypothesis. I’m asking for the argument fields to have a list ranging from one element of generated text up to ten. Aside from that, the test operates in exactly the same manner as before.

Now watch what happens when I run the test:

Hypothesis quickly found an example that broke our code. As it turns out, a list of [','] breaks our code. We get two fields back after round-tripping the code through our CSV writer and reader — uncovering our first bug.

In a nutshell, this is what Hypothesis does. But let’s look at it in detail.

Simply put, Hypothesis generates data using a number of configurable strategies . Strategies range from simple to complex. A simple strategy may generate bools; another integers. You can combine strategies to make larger ones, such as lists or dicts that match certain patterns or structures you want to test. You can clamp their outputs based on certain constraints, like only positive integers or strings of a certain length. You can also write your own strategies if you have particularly complex requirements.

Strategies are the gateway to property-based testing and are a fundamental part of how Hypothesis works. You can find a detailed list of all the strategies in the Strategies reference of their documentation or in the hypothesis.strategies module.

The best way to get a feel for what each strategy does in practice is to import them from the hypothesis.strategies module and call the example() method on an instance:

You may have noticed that the floats example included inf in the list. By default, all strategies will – where feasible – attempt to test all legal (but possibly obscure) forms of values you can generate of that type. That is particularly important as corner cases like inf or NaN are legal floating-point values but, I imagine, not something you’d ordinarily test against yourself.

And that’s one pillar of how Hypothesis tries to find bugs in your code: by testing edge cases that you would likely miss yourself. If you ask it for a text() strategy you’re as likely to be given Western characters as you are a mishmash of unicode and escape-encoded garbage. Understanding why Hypothesis generates the examples it does is a useful way to think about how your code may interact data it has no control over.

Now if it were simply generating text or numbers from an inexhaustible source of numbers or strings, it wouldn’t catch as many errors as it actually does . The reason for that is that each test you write is subjected to a battery of examples drawn from the strategies you’ve designed. If a test case fails, it’s put aside and tested again but with a reduced subset of inputs, if possible. In Hypothesis it’s known as shrinking the search space to try and find the smallest possible result that will cause your code to fail. So instead of a 10,000-length string, if it can find one that’s only 3 or 4, it will try to show that to you instead.

You can tell Hypothesis to filter or map the examples it draws to further reduce them if the strategy does not meet your requirements:

Here I ask for integers where the number is greater than 0 and is evenly divisible by 8. Hypothesis will then attempt to generate examples that meets the constraints you have imposed on it.

You can also map , which works in much the same way as filter. Here I’m asking for lowercase ASCII and then uppercasing them:

Having said that, using either when you don’t have to (I could have asked for uppercase ASCII characters to begin with) is likely to result in slower strategies.

A third option, flatmap , lets you build strategies from strategies; but that deserves closer scrutiny, so I’ll talk about it later.

You can tell Hypothesis to pick one of a number of strategies by composing strategies with | or st.one_of() :

An essential feature when you have to draw from multiple sources of examples for a single data point.

When you ask Hypothesis to draw an example it takes into account the constraints you may have imposed on it: only positive integers; only lists of numbers that add up to exactly 100; any filter() calls you may have applied; and so on. Those are constraints. You’re taking something that was once unbounded (with respect to the strategy you’re drawing an example from, that is) and introducing additional limitations that constrain the possible range of values it can give you.

But consider what happens if I pass filters that will yield nothing at all:

At some point Hypothesis will give up and declare it cannot find anything that satisfies that strategy and its constraints.

Hypothesis gives up after a while if it’s not able to draw an example. Usually that indicates an invariant in the constraints you’ve placed that makes it hard or impossible to draw examples from. In the example above, I asked for numbers that are simultaneously below zero and greater than zero, which is an impossible request.

As you can see, the strategies are simple functions, and they behave as such. You can therefore refactor each strategy into reusable patterns:

The benefit of this approach is that if you discover edge cases that Hypothesis does not account for, you can update the pattern in one place and observe its effects on your code. It’s functional and composable.

One caveat of this approach is that you cannot draw examples and expect Hypothesis to behave correctly. So I don’t recommend you call example() on a strategy only to pass it into another strategy.

For that, you want the @composite decorator.

@composite : Declarative Strategies

If the previous approach is unabashedly functional in nature, this approach is imperative.

The @composite decorator lets you write imperative Python code instead. If you cannot easily structure your strategy with the built-in ones, or if you require more granular control over the values it emits, you should consider the @composite strategy.

Instead of returning a compound strategy object like you would above, you instead draw examples using a special function you’re given access to in the decorated function.

This example draws two randomized names and returns them as a tuple:

Note that the @composite decorator passes in a special draw callable that you must use to draw samples from. You cannot – well, you can , but you shouldn’t – use the example() method on the strategy object you get back. Doing so will break Hypothesis’s ability to synthesize test cases properly.

Because the code is imperative you’re free to modify the drawn examples to your liking. But what if you’re given an example you don’t like or one that breaks a known invariant you don’t wish to test for? For that you can use the assume() function to state the assumptions that Hypothesis must meet if you try to draw an example from generate_full_name .

Let’s say that first_name and last_name must not be equal:

Like the assert statement in Python, the assume() function teaches Hypothesis what is, and is not, a valid example. You use this to great effect to generate complex compound strategies.

I recommend you observe the following rules of thumb if you write imperative strategies with @composite :

If you want to draw a succession of examples to initialize, say, a list or a custom object with values that meet certain criteria you should use filter , where possible, and assume to teach Hypothesis why the value(s) you drew and subsequently discarded weren’t any good.

The example above uses assume() to teach Hypothesis that first_name and last_name must not be equal.

If you can put your functional strategies in separate functions, you should. It encourages code re-use and if your strategies are failing (or not generating the sort of examples you’d expect) you can inspect each strategy in turn. Large nested strategies are harder to untangle and harder still to reason about.

If you can express your requirements with filter and map or the builtin constraints (like min_size or max_size ), you should. Imperative strategies that use assume may take more time to converge on a valid example.

@example : Explicitly Testing Certain Values

Occasionally you’ll come across a handful of cases that either fails or used to fail, and you want to ensure that Hypothesis does not forget to test them, or to indicate to yourself or your fellow developers that certain values are known to cause issues and should be tested explicitly.

The @example decorator does just that:

You can add as many as you like.

Let’s say I wanted to write a simple converter to and from Roman numerals.

Here I’m collecting Roman numerals into numerals , one at a time, by looping over SYMBOLS of valid numerals, subtracting the value of the symbol from number , until the while loop’s condition ( number >= 1 ) is False .

The test is also simple and serves as a smoke test. I generate a random integer and convert it to Roman numerals with to_roman . When it’s all said and done I turn the string of numerals into a set and check that all members of the set are legal Roman numerals.

Now if I run pytest on it seems to hang . But thanks to Hypothesis’s debug mode I can inspect why:

Ah. Instead of testing with tiny numbers like a human would ordinarily do, it used a fantastically large one… which is altogether slow.

OK, so there’s at least one gotcha; it’s not really a bug , but it’s something to think about: limiting the maximum value. I’m only going to limit the test, but it would be reasonable to limit it in the code also.

Changing the max_value to something sensible, like st.integers(max_value=5000) and the test now fails with another error:

It seems our code’s not able to handle the number 0! Which… is correct. The Romans didn’t really use the number zero as we would today; that invention came later, so they had a bunch of workarounds to deal with the absence of something. But that’s neither here nor there in our example. Let’s instead set min_value=1 also, as there is no support for negative numbers either:

OK… not bad. We’ve proven that given a random assortment of numbers between our defined range of values that, indeed, we get something resembling Roman numerals.

One of the hardest things about Hypothesis is framing questions to your testable code in a way that tests its properties but without you, the developer, knowing the answer (necessarily) beforehand. So one simple way to test that there’s at least something semi-coherent coming out of our to_roman function is to check that it can generate the very numerals we defined in SYMBOLS from before:

Here I’m sampling from a tuple of the SYMBOLS from earlier. The sampling algorithm’ll decide what values it wants to give us, all we care about is that we are given examples like ("I", 1) or ("V", 5) to compare against.

So let’s run pytest again:

Oops. The Roman numeral V is equal to 5 and yet we get five IIIII ? A closer examination reveals that, indeed, the code only yields sequences of I equal to the number we pass it. There’s a logic error in our code.

In the example above I loop over the elements in the SYMBOLS dictionary but as it’s ordered the first element is always I . And as the smallest representable value is 1, we end up with just that answer. It’s technically correct as you can count with just I but it’s not very useful.

Fixing it is easy though:

Rerunning the test yields a pass. Now we know that, at the very least, our to_roman function is capable of mapping numbers that are equal to any symbol in SYMBOLS .

Now the litmus test is taking the numeral we’re given and making sense of it. So let’s write a function that converts a Roman numeral back into decimal:

Like to_roman we walk through each character, get the numeral’s numeric value, and add it to the running total. The test is a simple roundtrip test as to_roman has an inverse function from_roman (and vice versa) such that :

Invertible functions are easier to test because you can compare the output of one against the input of another and check if it yields the original value. But not every function has an inverse, though.

Running the test yields a pass:

So now we’re in a pretty good place. But there’s a slight oversight in our Roman numeral converters, though: they don’t respect the subtraction rule for some of the numerals. For instance VI is 6; but IV is 4. The value XI is 11; and IX is 9. Only some (sigh) numerals exhibit this property.

So let’s write another test. This time it’ll fail as we’ve yet to write the modified code. Luckily we know the subtractive numerals we must accommodate:

Pretty simple test. Check that certain numerals yield the value, and that the values yield the right numeral.

With an extensive test suite we should feel fairly confident making changes to the code. If we break something, one of our preexisting tests will fail.

The rules around which numerals are subtractive is rather subjective. The SUBTRACTIVE_SYMBOLS dictionary holds the most common ones. So all we need to do is read ahead of the numerals list to see if there exists a two-digit numeral that has a prescribed value and then we use that instead of the usual value.

The to_roman change is simple. A union of the two numeral symbol dictionaries is all it takes . The code already understands how to turn numbers into numerals — we just added a few more.

This method requires Python 3.9 or later. Read how to merge dictionaries

If done right, running the tests should yield a pass:

And that’s it. We now have useful tests and a functional Roman numeral converter that converts to and from with ease. But one thing we didn’t do is create a strategy that generates Roman numerals using st.text() . A custom composite strategy to generate both valid and invalid Roman numerals to test the ruggedness of our converter is left as an exercise to you.

In the next part of this course we’ll look at more advanced testing strategies.

Unlike a tool like faker that generates realistic-looking test data for fixtures or demos, Hypothesis is a property-based tester . It uses heuristics and clever algorithms to find inputs that break your code.

Testing a function that does not have an inverse to compare the result against – like our Roman numeral converter that works both ways – you often have to approach your code as though it were a black box where you relinquish control of the inputs and outputs. That is harder, but makes for less brittle code.

It’s perfectly fine to mix and match tests. Hypothesis is useful for flushing out invariants you would never think of. Combine it with known inputs and outputs to jump start your testing for the first 80%, and augment it with Hypothesis to catch the remaining 20%.

Be Inspired Sign up and we’ll tell you about new articles and courses

Absolutely no spam. We promise!

Liked the Article?

Why not follow us …, be inspired get python tips sent to your inbox.

We'll tell you about the latest courses and articles.

IMAGES

  1. Hypothesis Testing Solved Problems

    hypothesis testing geeksforgeeks

  2. Hypothesis Testing Solved Examples(Questions and Solutions)

    hypothesis testing geeksforgeeks

  3. Hypothesis Testing

    hypothesis testing geeksforgeeks

  4. PPT

    hypothesis testing geeksforgeeks

  5. Understanding various hypothesis testing steps

    hypothesis testing geeksforgeeks

  6. What is Hypothesis Testing? Types and Methods

    hypothesis testing geeksforgeeks

VIDEO

  1. hypothesis testing of comparing means of two independent samples

  2. L-4

  3. Testing of Hypothesis

  4. Software Testing

  5. Selenium With Java Interview Questions and Answers| Java Interview Questions| 2+ YOE

  6. Hypothesis Testing Made Easy: These are the Steps

COMMENTS

  1. Understanding Hypothesis Testing

    Step 3: Compute the test statistic. The test statistic is calculated by using the z formula Z= and we get accordingly , Z=2.039999999999992. Step 4: Result. Since the absolute value of the test statistic (2.04) is greater than the critical value (1.96), we reject the null hypothesis.

  2. Hypothesis Testing

    Discussion. This video delves into the fundamentals of hypothesis testing, how hypothesis testing works, its importance in drawing meaningful conclusions from data, and its applications in various fields. A Computer Science portal for geeks.

  3. What is Hypothesis

    A hypothesis is a suggested idea or plan that has little proof, meant to lead to more study. It's mainly a smart guess or suggested answer to a problem that can be checked through study and trial. In science work, we make guesses called hypotheses to try and figure out what will happen in tests or watching.

  4. Hypothesis Testing Formula

    Hypothesis testing is a statistical procedure in which an analyst verifies a hypothesis about a population parameter. The analyst's approach is determined by the type of the data and the purpose of the study. The use of sample data to assess the validity of a hypothesis is known as hypothesis testing. Such information might originate from a ...

  5. Hypothesis in Machine Learning

    A hypothesis is a function that best describes the target in supervised machine learning. The hypothesis that an algorithm would come up depends upon the data and also depends upon the restrictions and bias that we have imposed on the data. The Hypothesis can be calculated as: Where, y = range. m = slope of the lines. x = domain.

  6. T-test

    A t-test is a statistical method used to compare the means of two groups to determine if there is a significant difference between them. The t-test is a parametric test, meaning it makes certain assumptions about the data. Here are the key prerequisites for conducting a t-test. Hypothesis Testing:

  7. Hypothesis Testing in R Programming

    Four Step Process of Hypothesis Testing. There are 4 major steps in hypothesis testing: State the hypothesis- This step is started by stating null and alternative hypothesis which is presumed as true. Formulate an analysis plan and set the criteria for decision- In this step, a significance level of test is set.

  8. How to Use the linearHypothesis() Function in R

    In R Programming Language a tool called linear hypothesis in the "car" package for this purpose. Also, this article gives a simple guide on using linear hypothesis in R for such analyses. What is a linear hypothesis? The linear hypothesis function is a tool in R's "car" package used to test linear hypotheses in regression models. It ...

  9. What Is Hypothesis Testing? Types and Python Code Example

    What is Hypothesis Testing? Hypothesis testing is the act of testing whether a hypothesis or inference is true. When an alternate hypothesis is introduced, we test it against the null hypothesis to know which is correct. Let's use a plant experiment by a 12-year-old student to see how this works.

  10. Everything you need to know about Hypothesis Testing in Machine Learning

    The null hypothesis represented as H₀ is the initial claim that is based on the prevailing belief about the population. The alternate hypothesis represented as H₁ is the challenge to the null hypothesis. It is the claim which we would like to prove as True. One of the main points which we should consider while formulating the null and alternative hypothesis is that the null hypothesis ...

  11. 17 Statistical Hypothesis Tests in Python (Cheat Sheet)

    In this post, you will discover a cheat sheet for the most popular statistical hypothesis tests for a machine learning project with examples using the Python API. Each statistical test is presented in a consistent way, including: The name of the test. What the test is checking. The key assumptions of the test. How the test result is interpreted.

  12. Everything You Need To Know about Hypothesis Testing

    6. Test Statistic: The test statistic measures how close the sample has come to the null hypothesis. Its observed value changes randomly from one random sample to a different sample. A test statistic contains information about the data that is relevant for deciding whether to reject the null hypothesis or not.

  13. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  14. Hypothesis Testing

    Step 3: Select a level of significance (α) This is the parameter we use to decide the statistical significance of our hypothesis test. To do so, let's first look at the probability distribution of Z (0,1) as shown in Figure 1. Figure 1: A plot of standard normal distribution, Z (0,1) From Figure 1, it is evident that 68% of the data lies ...

  15. Hypothesis testing basics with t-tests

    One-Sample T-Tests In Python. A one-sample t-test can be implemented in Python using the ttest_1samp() function from scipy.stats. The function requires a sample distribution and expected population mean. As shown, the t-statistic and the p-value are returned. tstat, pval = ttest_1samp(sample_distribution, expected_mean)

  16. GeeksforGeeks

    A Computer Science portal for geeks. It contains well written, well thought and well explained computer science and programming articles, quizzes and practice/competitive programming/company interview Questions.

  17. 1.2

    Step 7: Based on Steps 5 and 6, draw a conclusion about H 0. If F calculated is larger than F α, then you are in the rejection region and you can reject the null hypothesis with ( 1 − α) level of confidence. Note that modern statistical software condenses Steps 6 and 7 by providing a p -value. The p -value here is the probability of getting ...

  18. The Hypothesis Testing Library for Python: An Introduction

    June 24, 2016. Python. Anne Mulhern. Hypothesis is a Python library for creating tests which are simple to write and powerful when run, finding. cases in your code you wouldn't have thought to look for. It is stable, powerful and easy to add to an existing test suite. It works by letting you write tests that assert that something should be true ...

  19. Statistics

    Hypothesis testing is based on making two different claims about a population parameter. The null hypothesis ( H 0) and the alternative hypothesis ( H 1) are the claims. The two claims needs to be mutually exclusive, meaning only one of them can be true. The alternative hypothesis is typically what we are trying to prove.

  20. Testing your Python Code with Hypothesis • Inspired Python

    Hypothesis is a capable test generator. Unlike a tool like faker that generates realistic-looking test data for fixtures or demos, Hypothesis is a property-based tester. It uses heuristics and clever algorithms to find inputs that break your code. Hypothesis assumes you understand the problem domain you want to model.

  21. 10.29: Hypothesis Test for a Difference in Two Population Means (1 of 2)

    Step 1: Determine the hypotheses. The hypotheses for a difference in two population means are similar to those for a difference in two population proportions. The null hypothesis, H 0, is again a statement of "no effect" or "no difference.". H 0: μ 1 - μ 2 = 0, which is the same as H 0: μ 1 = μ 2. The alternative hypothesis, H a ...

  22. Welcome to Hypothesis!

    Welcome to Hypothesis! Hypothesis is a Python library for creating unit tests which are simpler to write and more powerful when run, finding edge cases in your code you wouldn't have thought to look for. It is stable, powerful and easy to add to any existing test suite. It works by letting you write tests that assert that something should be ...