Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • What Is Quantitative Research? | Definition & Methods

What Is Quantitative Research? | Definition & Methods

Published on 4 April 2022 by Pritha Bhandari . Revised on 10 October 2022.

Quantitative research is the process of collecting and analysing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalise results to wider populations.

Quantitative research is the opposite of qualitative research , which involves collecting and analysing non-numerical data (e.g. text, video, or audio).

Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc.

  • What is the demographic makeup of Singapore in 2020?
  • How has the average temperature changed globally over the last century?
  • Does environmental pollution affect the prevalence of honey bees?
  • Does working from home increase productivity for people with long commutes?

Table of contents

Quantitative research methods, quantitative data analysis, advantages of quantitative research, disadvantages of quantitative research, frequently asked questions about quantitative research.

You can use quantitative research methods for descriptive, correlational or experimental research.

  • In descriptive research , you simply seek an overall summary of your study variables.
  • In correlational research , you investigate relationships between your study variables.
  • In experimental research , you systematically examine whether there is a cause-and-effect relationship between variables.

Correlational and experimental research can both be used to formally test hypotheses , or predictions, using statistics. The results may be generalised to broader populations based on the sampling method used.

To collect quantitative data, you will often need to use operational definitions that translate abstract concepts (e.g., mood) into observable and quantifiable measures (e.g., self-ratings of feelings and energy levels).

Prevent plagiarism, run a free check.

Once data is collected, you may need to process it before it can be analysed. For example, survey and test data may need to be transformed from words to numbers. Then, you can use statistical analysis to answer your research questions .

Descriptive statistics will give you a summary of your data and include measures of averages and variability. You can also use graphs, scatter plots and frequency tables to visualise your data and check for any trends or outliers.

Using inferential statistics , you can make predictions or generalisations based on your data. You can test your hypothesis or use your sample data to estimate the population parameter .

You can also assess the reliability and validity of your data collection methods to indicate how consistently and accurately your methods actually measured what you wanted them to.

Quantitative research is often used to standardise data collection and generalise findings . Strengths of this approach include:

  • Replication

Repeating the study is possible because of standardised data collection protocols and tangible definitions of abstract concepts.

  • Direct comparisons of results

The study can be reproduced in other cultural settings, times or with different groups of participants. Results can be compared statistically.

  • Large samples

Data from large samples can be processed and analysed using reliable and consistent procedures through quantitative data analysis.

  • Hypothesis testing

Using formalised and established hypothesis testing procedures means that you have to carefully consider and report your research variables, predictions, data collection and testing methods before coming to a conclusion.

Despite the benefits of quantitative research, it is sometimes inadequate in explaining complex research topics. Its limitations include:

  • Superficiality

Using precise and restrictive operational definitions may inadequately represent complex concepts. For example, the concept of mood may be represented with just a number in quantitative research, but explained with elaboration in qualitative research.

  • Narrow focus

Predetermined variables and measurement procedures can mean that you ignore other relevant observations.

  • Structural bias

Despite standardised procedures, structural biases can still affect quantitative research. Missing data , imprecise measurements or inappropriate sampling methods are biases that can lead to the wrong conclusions.

  • Lack of context

Quantitative research often uses unnatural settings like laboratories or fails to consider historical and cultural contexts that may affect data collection and results.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research , you also have to consider the internal and external validity of your experiment.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, October 10). What Is Quantitative Research? | Definition & Methods. Scribbr. Retrieved 14 May 2024, from https://www.scribbr.co.uk/research-methods/introduction-to-quantitative-research/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

  • Privacy Policy

Research Method

Home » Quantitative Research – Methods, Types and Analysis

Quantitative Research – Methods, Types and Analysis

Table of Contents

What is Quantitative Research

Quantitative Research

Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions . This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected. It often involves the use of surveys, experiments, or other structured data collection methods to gather quantitative data.

Quantitative Research Methods

Quantitative Research Methods

Quantitative Research Methods are as follows:

Descriptive Research Design

Descriptive research design is used to describe the characteristics of a population or phenomenon being studied. This research method is used to answer the questions of what, where, when, and how. Descriptive research designs use a variety of methods such as observation, case studies, and surveys to collect data. The data is then analyzed using statistical tools to identify patterns and relationships.

Correlational Research Design

Correlational research design is used to investigate the relationship between two or more variables. Researchers use correlational research to determine whether a relationship exists between variables and to what extent they are related. This research method involves collecting data from a sample and analyzing it using statistical tools such as correlation coefficients.

Quasi-experimental Research Design

Quasi-experimental research design is used to investigate cause-and-effect relationships between variables. This research method is similar to experimental research design, but it lacks full control over the independent variable. Researchers use quasi-experimental research designs when it is not feasible or ethical to manipulate the independent variable.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This research method involves manipulating the independent variable and observing the effects on the dependent variable. Researchers use experimental research designs to test hypotheses and establish cause-and-effect relationships.

Survey Research

Survey research involves collecting data from a sample of individuals using a standardized questionnaire. This research method is used to gather information on attitudes, beliefs, and behaviors of individuals. Researchers use survey research to collect data quickly and efficiently from a large sample size. Survey research can be conducted through various methods such as online, phone, mail, or in-person interviews.

Quantitative Research Analysis Methods

Here are some commonly used quantitative research analysis methods:

Statistical Analysis

Statistical analysis is the most common quantitative research analysis method. It involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis can be used to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.

Regression Analysis

Regression analysis is a statistical technique used to analyze the relationship between one dependent variable and one or more independent variables. Researchers use regression analysis to identify and quantify the impact of independent variables on the dependent variable.

Factor Analysis

Factor analysis is a statistical technique used to identify underlying factors that explain the correlations among a set of variables. Researchers use factor analysis to reduce a large number of variables to a smaller set of factors that capture the most important information.

Structural Equation Modeling

Structural equation modeling is a statistical technique used to test complex relationships between variables. It involves specifying a model that includes both observed and unobserved variables, and then using statistical methods to test the fit of the model to the data.

Time Series Analysis

Time series analysis is a statistical technique used to analyze data that is collected over time. It involves identifying patterns and trends in the data, as well as any seasonal or cyclical variations.

Multilevel Modeling

Multilevel modeling is a statistical technique used to analyze data that is nested within multiple levels. For example, researchers might use multilevel modeling to analyze data that is collected from individuals who are nested within groups, such as students nested within schools.

Applications of Quantitative Research

Quantitative research has many applications across a wide range of fields. Here are some common examples:

  • Market Research : Quantitative research is used extensively in market research to understand consumer behavior, preferences, and trends. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform marketing strategies, product development, and pricing decisions.
  • Health Research: Quantitative research is used in health research to study the effectiveness of medical treatments, identify risk factors for diseases, and track health outcomes over time. Researchers use statistical methods to analyze data from clinical trials, surveys, and other sources to inform medical practice and policy.
  • Social Science Research: Quantitative research is used in social science research to study human behavior, attitudes, and social structures. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform social policies, educational programs, and community interventions.
  • Education Research: Quantitative research is used in education research to study the effectiveness of teaching methods, assess student learning outcomes, and identify factors that influence student success. Researchers use experimental and quasi-experimental designs, as well as surveys and other quantitative methods, to collect and analyze data.
  • Environmental Research: Quantitative research is used in environmental research to study the impact of human activities on the environment, assess the effectiveness of conservation strategies, and identify ways to reduce environmental risks. Researchers use statistical methods to analyze data from field studies, experiments, and other sources.

Characteristics of Quantitative Research

Here are some key characteristics of quantitative research:

  • Numerical data : Quantitative research involves collecting numerical data through standardized methods such as surveys, experiments, and observational studies. This data is analyzed using statistical methods to identify patterns and relationships.
  • Large sample size: Quantitative research often involves collecting data from a large sample of individuals or groups in order to increase the reliability and generalizability of the findings.
  • Objective approach: Quantitative research aims to be objective and impartial in its approach, focusing on the collection and analysis of data rather than personal beliefs, opinions, or experiences.
  • Control over variables: Quantitative research often involves manipulating variables to test hypotheses and establish cause-and-effect relationships. Researchers aim to control for extraneous variables that may impact the results.
  • Replicable : Quantitative research aims to be replicable, meaning that other researchers should be able to conduct similar studies and obtain similar results using the same methods.
  • Statistical analysis: Quantitative research involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis allows researchers to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.
  • Generalizability: Quantitative research aims to produce findings that can be generalized to larger populations beyond the specific sample studied. This is achieved through the use of random sampling methods and statistical inference.

Examples of Quantitative Research

Here are some examples of quantitative research in different fields:

  • Market Research: A company conducts a survey of 1000 consumers to determine their brand awareness and preferences. The data is analyzed using statistical methods to identify trends and patterns that can inform marketing strategies.
  • Health Research : A researcher conducts a randomized controlled trial to test the effectiveness of a new drug for treating a particular medical condition. The study involves collecting data from a large sample of patients and analyzing the results using statistical methods.
  • Social Science Research : A sociologist conducts a survey of 500 people to study attitudes toward immigration in a particular country. The data is analyzed using statistical methods to identify factors that influence these attitudes.
  • Education Research: A researcher conducts an experiment to compare the effectiveness of two different teaching methods for improving student learning outcomes. The study involves randomly assigning students to different groups and collecting data on their performance on standardized tests.
  • Environmental Research : A team of researchers conduct a study to investigate the impact of climate change on the distribution and abundance of a particular species of plant or animal. The study involves collecting data on environmental factors and population sizes over time and analyzing the results using statistical methods.
  • Psychology : A researcher conducts a survey of 500 college students to investigate the relationship between social media use and mental health. The data is analyzed using statistical methods to identify correlations and potential causal relationships.
  • Political Science: A team of researchers conducts a study to investigate voter behavior during an election. They use survey methods to collect data on voting patterns, demographics, and political attitudes, and analyze the results using statistical methods.

How to Conduct Quantitative Research

Here is a general overview of how to conduct quantitative research:

  • Develop a research question: The first step in conducting quantitative research is to develop a clear and specific research question. This question should be based on a gap in existing knowledge, and should be answerable using quantitative methods.
  • Develop a research design: Once you have a research question, you will need to develop a research design. This involves deciding on the appropriate methods to collect data, such as surveys, experiments, or observational studies. You will also need to determine the appropriate sample size, data collection instruments, and data analysis techniques.
  • Collect data: The next step is to collect data. This may involve administering surveys or questionnaires, conducting experiments, or gathering data from existing sources. It is important to use standardized methods to ensure that the data is reliable and valid.
  • Analyze data : Once the data has been collected, it is time to analyze it. This involves using statistical methods to identify patterns, trends, and relationships between variables. Common statistical techniques include correlation analysis, regression analysis, and hypothesis testing.
  • Interpret results: After analyzing the data, you will need to interpret the results. This involves identifying the key findings, determining their significance, and drawing conclusions based on the data.
  • Communicate findings: Finally, you will need to communicate your findings. This may involve writing a research report, presenting at a conference, or publishing in a peer-reviewed journal. It is important to clearly communicate the research question, methods, results, and conclusions to ensure that others can understand and replicate your research.

When to use Quantitative Research

Here are some situations when quantitative research can be appropriate:

  • To test a hypothesis: Quantitative research is often used to test a hypothesis or a theory. It involves collecting numerical data and using statistical analysis to determine if the data supports or refutes the hypothesis.
  • To generalize findings: If you want to generalize the findings of your study to a larger population, quantitative research can be useful. This is because it allows you to collect numerical data from a representative sample of the population and use statistical analysis to make inferences about the population as a whole.
  • To measure relationships between variables: If you want to measure the relationship between two or more variables, such as the relationship between age and income, or between education level and job satisfaction, quantitative research can be useful. It allows you to collect numerical data on both variables and use statistical analysis to determine the strength and direction of the relationship.
  • To identify patterns or trends: Quantitative research can be useful for identifying patterns or trends in data. For example, you can use quantitative research to identify trends in consumer behavior or to identify patterns in stock market data.
  • To quantify attitudes or opinions : If you want to measure attitudes or opinions on a particular topic, quantitative research can be useful. It allows you to collect numerical data using surveys or questionnaires and analyze the data using statistical methods to determine the prevalence of certain attitudes or opinions.

Purpose of Quantitative Research

The purpose of quantitative research is to systematically investigate and measure the relationships between variables or phenomena using numerical data and statistical analysis. The main objectives of quantitative research include:

  • Description : To provide a detailed and accurate description of a particular phenomenon or population.
  • Explanation : To explain the reasons for the occurrence of a particular phenomenon, such as identifying the factors that influence a behavior or attitude.
  • Prediction : To predict future trends or behaviors based on past patterns and relationships between variables.
  • Control : To identify the best strategies for controlling or influencing a particular outcome or behavior.

Quantitative research is used in many different fields, including social sciences, business, engineering, and health sciences. It can be used to investigate a wide range of phenomena, from human behavior and attitudes to physical and biological processes. The purpose of quantitative research is to provide reliable and valid data that can be used to inform decision-making and improve understanding of the world around us.

Advantages of Quantitative Research

There are several advantages of quantitative research, including:

  • Objectivity : Quantitative research is based on objective data and statistical analysis, which reduces the potential for bias or subjectivity in the research process.
  • Reproducibility : Because quantitative research involves standardized methods and measurements, it is more likely to be reproducible and reliable.
  • Generalizability : Quantitative research allows for generalizations to be made about a population based on a representative sample, which can inform decision-making and policy development.
  • Precision : Quantitative research allows for precise measurement and analysis of data, which can provide a more accurate understanding of phenomena and relationships between variables.
  • Efficiency : Quantitative research can be conducted relatively quickly and efficiently, especially when compared to qualitative research, which may involve lengthy data collection and analysis.
  • Large sample sizes : Quantitative research can accommodate large sample sizes, which can increase the representativeness and generalizability of the results.

Limitations of Quantitative Research

There are several limitations of quantitative research, including:

  • Limited understanding of context: Quantitative research typically focuses on numerical data and statistical analysis, which may not provide a comprehensive understanding of the context or underlying factors that influence a phenomenon.
  • Simplification of complex phenomena: Quantitative research often involves simplifying complex phenomena into measurable variables, which may not capture the full complexity of the phenomenon being studied.
  • Potential for researcher bias: Although quantitative research aims to be objective, there is still the potential for researcher bias in areas such as sampling, data collection, and data analysis.
  • Limited ability to explore new ideas: Quantitative research is often based on pre-determined research questions and hypotheses, which may limit the ability to explore new ideas or unexpected findings.
  • Limited ability to capture subjective experiences : Quantitative research is typically focused on objective data and may not capture the subjective experiences of individuals or groups being studied.
  • Ethical concerns : Quantitative research may raise ethical concerns, such as invasion of privacy or the potential for harm to participants.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like


Questionnaire – Definition, Types, and Examples

Case Study Research

Case Study – Methods, Examples and Guide

Observational Research

Observational Research – Methods and Guide

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

Survey Research

Survey Research – Types, Methods, Examples

Designing a Research Question

  • First Online: 29 November 2023

Cite this chapter

research question quantitative definition

  • Ahmed Ibrahim 3 &
  • Camille L. Bryant 3  

460 Accesses

This chapter discusses (1) the important role of research questions for descriptive, predictive, and causal studies across the three research paradigms (i.e., quantitative, qualitative, and mixed methods); (2) characteristics of quality research questions, and (3) three frameworks to support the development of research questions and their dissemination within scholarly work. For the latter, a description of the P opulation/ P articipants, I ntervention/ I ndependent variable, C omparison, and O utcomes (PICO) framework for quantitative research as well as variations depending on the type of research is provided. Second, we discuss the P articipants, central Ph enomenon, T ime, and S pace (PPhTS) framework for qualitative research. The combination of these frameworks is discussed for mixed-methods research. Further, templates and examples are provided to support the novice health scholar in developing research questions for applied and theoretical studies. Finally, we discuss the Create a Research Space (CARS) model for introducing research questions as part of a research study, to demonstrate how scholars can apply their knowledge when disseminating research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Onwuegbuzie A, Leech N. Linking research questions to mixed methods data analysis procedures 1. Qual Rep. 2006;11(3):474–98. https://doi.org/10.46743/2160-3715/2006.1663 .

Article   Google Scholar  

Creswell JW, Poth CN. Qualitative inquiry and research design: choosing among five approaches. 4th ed. Thousand Oaks: Sage; 2018.

Google Scholar  

Johnson B, Christensen LB. Educational research: quantitative, qualitative, and mixed approaches. Thousand Oaks: Sage Publications, Inc.; 2020.

White P. Who’s afraid of research questions? The neglect of research questions in the methods literature and a call for question-led methods teaching. Int J Res Method Educ. 2013;36(3):213–27. https://doi.org/10.1080/1743727x.2013.809413 .

Lingard L. Joining a conversation: the problem/gap/hook heuristic. Perspect Med Educ. 2015;4(5):252–3. https://doi.org/10.1007/s40037-015-0211-y .

Article   PubMed   PubMed Central   Google Scholar  

Dillon JT. The classification of research questions. Rev Educ Res. 1984;54(3):327–61. https://doi.org/10.3102/00346543054003327 .

Dillon JT. Finding the question for evaluation research. Stud Educ Eval. 1987;13(2):139–51. https://doi.org/10.1016/S0191-491X(87)80027-5 .

Smith NL. Toward the justification of claims in evaluation research. Eval Program Plann. 1987;10(4):309–14. https://doi.org/10.1016/0149-7189(87)90002-4 .

Smith NL, Mukherjee P. Classifying research questions addressed in published evaluation studies. Educ Eval Policy Anal. 1994;16(2):223–30. https://doi.org/10.3102/01623737016002223 .

Shaughnessy JJ, Zechmeister EB, Zechmeister JS. Research methods in psychology. 9th ed. New York: McGraw Hill; 2011.

DeCuir-Gunby JT, Schutz PA. Developing a mixed methods proposal a practical guide for beginning researchers. Thousand Oaks: Sage; 2017.

Book   Google Scholar  

Creswell JW, Guetterman TC. Educational research: planning, conducting, and evaluating quantitative and qualitative research. 6th ed. New York: Pearson; 2019.

Ely M, Anzul M, Friedman T, Ganer D, Steinmetz AM. Doing qualitative research: circles within circles. London: Falmer Press; 1991.

Agee J. Developing qualitative research questions: a reflective process. Int J Qual Stud Educ. 2009;22(4):431–47. https://doi.org/10.1080/09518390902736512 .

Johnson RB, Onwuegbuzie AJ. Mixed methods research: a research paradigm whose time has come. Educ Res. 2004;33(7):14–26. https://doi.org/10.3102/0013189x033007014 .

Creamer EG. An introduction to fully integrated mixed methods research. Thousand Oaks: Sage; 2018.

Swales J. Genre analysis: English in academic and research settings. Cambridge: Cambridge University Press; 1990.

Swales J. Research genres: explorations and applications. Cambridge: Cambridge University Press; 2004.

Kendall PC, Norris LA, Rifkin LS, Silk JS. Introducing your research report: writing the introduction. In: Sternberg RJ, editor. Guide to publishing in psychology journals. 2nd ed. Cambridge: Cambridge University Press; 2018. p. 37–53. https://doi.org/10.1017/9781108304443.005 .

Thomson P, Kamler B. Writing for peer reviewed journals: strategies of getting published. Abingdon: Routledge; 2013.

Lingard L. Writing an effective literature review: Part I: Mapping the gap. Perspectives on Medical Education. 2018;7:47–49.

Download references

Author information

Authors and affiliations.

Johns Hopkins University School of Education, Baltimore, MD, USA

Ahmed Ibrahim & Camille L. Bryant

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Ahmed Ibrahim .

Editor information

Editors and affiliations.

Johns Hopkins University School of Medicine, Baltimore, MD, USA

April S. Fitzgerald

Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

Gundula Bosch

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Ibrahim, A., Bryant, C.L. (2023). Designing a Research Question. In: Fitzgerald, A.S., Bosch, G. (eds) Education Scholarship in Healthcare. Springer, Cham. https://doi.org/10.1007/978-3-031-38534-6_4

Download citation

DOI : https://doi.org/10.1007/978-3-031-38534-6_4

Published : 29 November 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-38533-9

Online ISBN : 978-3-031-38534-6

eBook Packages : Medicine Medicine (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Banner Image

Quantitative and Qualitative Research

  • I NEED TO . . .

What is Quantitative Research?

  • What is Qualitative Research?
  • Quantitative vs Qualitative
  • Step 1: Accessing CINAHL
  • Step 2: Create a Keyword Search
  • Step 3: Create a Subject Heading Search
  • Step 4: Repeat Steps 1-3 for Second Concept
  • Step 5: Repeat Steps 1-3 for Quantitative Terms
  • Step 6: Combining All Searches
  • Step 7: Adding Limiters
  • Step 8: Save Your Search!
  • What Kind of Article is This?
  • More Research Help This link opens in a new window

Quantitative methodology is the dominant research framework in the social sciences. It refers to a set of strategies, techniques and assumptions used to study psychological, social and economic processes through the exploration of numeric patterns . Quantitative research gathers a range of numeric data. Some of the numeric data is intrinsically quantitative (e.g. personal income), while in other cases the numeric structure is  imposed (e.g. ‘On a scale from 1 to 10, how depressed did you feel last week?’). The collection of quantitative information allows researchers to conduct simple to extremely sophisticated statistical analyses that aggregate the data (e.g. averages, percentages), show relationships among the data (e.g. ‘Students with lower grade point averages tend to score lower on a depression scale’) or compare across aggregated data (e.g. the USA has a higher gross domestic product than Spain). Quantitative research includes methodologies such as questionnaires, structured observations or experiments and stands in contrast to qualitative research. Qualitative research involves the collection and analysis of narratives and/or open-ended observations through methodologies such as interviews, focus groups or ethnographies.

Coghlan, D., Brydon-Miller, M. (2014).  The SAGE encyclopedia of action research  (Vols. 1-2). London, : SAGE Publications Ltd doi: 10.4135/9781446294406

What is the purpose of quantitative research?

The purpose of quantitative research is to generate knowledge and create understanding about the social world. Quantitative research is used by social scientists, including communication researchers, to observe phenomena or occurrences affecting individuals. Social scientists are concerned with the study of people. Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population.

Allen, M. (2017).  The SAGE encyclopedia of communication research methods  (Vols. 1-4). Thousand Oaks, CA: SAGE Publications, Inc doi: 10.4135/9781483381411

How do I know if the study is a quantitative design?  What type of quantitative study is it?

Quantitative Research Designs: Descriptive non-experimental, Quasi-experimental or Experimental?

Studies do not always explicitly state what kind of research design is being used.  You will need to know how to decipher which design type is used.  The following video will help you determine the quantitative design type.

  • << Previous: I NEED TO . . .
  • Next: What is Qualitative Research? >>
  • Last Updated: May 13, 2024 12:01 PM
  • URL: https://libguides.uta.edu/quantitative_and_qualitative_research

University of Texas Arlington Libraries 702 Planetarium Place · Arlington, TX 76019 · 817-272-3000

  • Internet Privacy
  • Accessibility
  • Problems with a guide? Contact Us.
  • Research Questions: Definitions, Types + [Examples]


Research questions lie at the core of systematic investigation and this is because recording accurate research outcomes is tied to asking the right questions. Asking the right questions when conducting research can help you collect relevant and insightful information that ultimately influences your work, positively. 

The right research questions are typically easy to understand, straight to the point, and engaging. In this article, we will share tips on how to create the right research questions and also show you how to create and administer an online questionnaire with Formplus . 

What is a Research Question? 

A research question is a specific inquiry which the research seeks to provide a response to. It resides at the core of systematic investigation and it helps you to clearly define a path for the research process. 

A research question is usually the first step in any research project. Basically, it is the primary interrogation point of your research and it sets the pace for your work.  

Typically, a research question focuses on the research, determines the methodology and hypothesis, and guides all stages of inquiry, analysis, and reporting. With the right research questions, you will be able to gather useful information for your investigation. 

Types of Research Questions 

Research questions are broadly categorized into 2; that is, qualitative research questions and quantitative research questions. Qualitative and quantitative research questions can be used independently and co-dependently in line with the overall focus and objectives of your research. 

If your research aims at collecting quantifiable data , you will need to make use of quantitative research questions. On the other hand, qualitative questions help you to gather qualitative data bothering on the perceptions and observations of your research subjects. 

Qualitative Research Questions  

A qualitative research question is a type of systematic inquiry that aims at collecting qualitative data from research subjects. The aim of qualitative research questions is to gather non-statistical information pertaining to the experiences, observations, and perceptions of the research subjects in line with the objectives of the investigation. 

Types of Qualitative Research Questions  

  • Ethnographic Research Questions

As the name clearly suggests, ethnographic research questions are inquiries presented in ethnographic research. Ethnographic research is a qualitative research approach that involves observing variables in their natural environments or habitats in order to arrive at objective research outcomes. 

These research questions help the researcher to gather insights into the habits, dispositions, perceptions, and behaviors of research subjects as they interact in specific environments. 

Ethnographic research questions can be used in education, business, medicine, and other fields of study, and they are very useful in contexts aimed at collecting in-depth and specific information that are peculiar to research variables. For instance, asking educational ethnographic research questions can help you understand how pedagogy affects classroom relations and behaviors. 

This type of research question can be administered physically through one-on-one interviews, naturalism (live and work), and participant observation methods. Alternatively, the researcher can ask ethnographic research questions via online surveys and questionnaires created with Formplus.  

Examples of Ethnographic Research Questions

  • Why do you use this product?
  • Have you noticed any side effects since you started using this drug?
  • Does this product meet your needs?


  • Case Studies

A case study is a qualitative research approach that involves carrying out a detailed investigation into a research subject(s) or variable(s). In the course of a case study, the researcher gathers a range of data from multiple sources of information via different data collection methods, and over a period of time. 

The aim of a case study is to analyze specific issues within definite contexts and arrive at detailed research subject analyses by asking the right questions. This research method can be explanatory, descriptive , or exploratory depending on the focus of your systematic investigation or research. 

An explanatory case study is one that seeks to gather information on the causes of real-life occurrences. This type of case study uses “how” and “why” questions in order to gather valid information about the causative factors of an event. 

Descriptive case studies are typically used in business researches, and they aim at analyzing the impact of changing market dynamics on businesses. On the other hand, exploratory case studies aim at providing answers to “who” and “what” questions using data collection tools like interviews and questionnaires. 

Some questions you can include in your case studies are: 

  • Why did you choose our services?
  • How has this policy affected your business output?
  • What benefits have you recorded since you started using our product?


An interview is a qualitative research method that involves asking respondents a series of questions in order to gather information about a research subject. Interview questions can be close-ended or open-ended , and they prompt participants to provide valid information that is useful to the research. 

An interview may also be structured, semi-structured , or unstructured , and this further influences the types of questions they include. Structured interviews are made up of more close-ended questions because they aim at gathering quantitative data while unstructured interviews consist, primarily, of open-ended questions that allow the researcher to collect qualitative information from respondents. 

You can conduct interview research by scheduling a physical meeting with respondents, through a telephone conversation, and via digital media and video conferencing platforms like Skype and Zoom. Alternatively, you can use Formplus surveys and questionnaires for your interview. 

Examples of interview questions include: 

  • What challenges did you face while using our product?
  • What specific needs did our product meet?
  • What would you like us to improve our service delivery?


Quantitative Research Questions

Quantitative research questions are questions that are used to gather quantifiable data from research subjects. These types of research questions are usually more specific and direct because they aim at collecting information that can be measured; that is, statistical information. 

Types of Quantitative Research Questions

  • Descriptive Research Questions

Descriptive research questions are inquiries that researchers use to gather quantifiable data about the attributes and characteristics of research subjects. These types of questions primarily seek responses that reveal existing patterns in the nature of the research subjects. 

It is important to note that descriptive research questions are not concerned with the causative factors of the discovered attributes and characteristics. Rather, they focus on the “what”; that is, describing the subject of the research without paying attention to the reasons for its occurrence. 

Descriptive research questions are typically closed-ended because they aim at gathering definite and specific responses from research participants. Also, they can be used in customer experience surveys and market research to collect information about target markets and consumer behaviors. 

Descriptive Research Question Examples

  • How often do you make use of our fitness application?
  • How much would you be willing to pay for this product?


  • Comparative Research Questions

A comparative research question is a type of quantitative research question that is used to gather information about the differences between two or more research subjects across different variables. These types of questions help the researcher to identify distinct features that mark one research subject from the other while highlighting existing similarities. 

Asking comparative research questions in market research surveys can provide insights on how your product or service matches its competitors. In addition, it can help you to identify the strengths and weaknesses of your product for a better competitive advantage.  

The 5 steps involved in the framing of comparative research questions are: 

  • Choose your starting phrase
  • Identify and name the dependent variable
  • Identify the groups you are interested in
  • Identify the appropriate adjoining text
  • Write out the comparative research question

Comparative Research Question Samples 

  • What are the differences between a landline telephone and a smartphone?
  • What are the differences between work-from-home and on-site operations?


  • Relationship-based Research Questions  

Just like the name suggests, a relationship-based research question is one that inquires into the nature of the association between two research subjects within the same demographic. These types of research questions help you to gather information pertaining to the nature of the association between two research variables. 

Relationship-based research questions are also known as correlational research questions because they seek to clearly identify the link between 2 variables. 

Read: Correlational Research Designs: Types, Examples & Methods

Examples of relationship-based research questions include: 

  • What is the relationship between purchasing power and the business site?
  • What is the relationship between the work environment and workforce turnover?


Examples of a Good Research Question

Since research questions lie at the core of any systematic investigations, it is important to know how to frame a good research question. The right research questions will help you to gather the most objective responses that are useful to your systematic investigation. 

A good research question is one that requires impartial responses and can be answered via existing sources of information. Also, a good research question seeks answers that actively contribute to a body of knowledge; hence, it is a question that is yet to be answered in your specific research context.

  • Open-Ended Questions

 An open-ended question is a type of research question that does not restrict respondents to a set of premeditated answer options. In other words, it is a question that allows the respondent to freely express his or her perceptions and feelings towards the research subject. 

Examples of Open-ended Questions

  • How do you deal with stress in the workplace?
  • What is a typical day at work like for you?
  • Close-ended Questions

A close-ended question is a type of survey question that restricts respondents to a set of predetermined answers such as multiple-choice questions . Close-ended questions typically require yes or no answers and are commonly used in quantitative research to gather numerical data from research participants. 

Examples of Close-ended Questions

  • Did you enjoy this event?
  • How likely are you to recommend our services?
  • Very Likely
  • Somewhat Likely
  • Likert Scale Questions

A Likert scale question is a type of close-ended question that is structured as a 3-point, 5-point, or 7-point psychometric scale . This type of question is used to measure the survey respondent’s disposition towards multiple variables and it can be unipolar or bipolar in nature. 

Example of Likert Scale Questions

  • How satisfied are you with our service delivery?
  • Very dissatisfied
  • Not satisfied
  • Very satisfied
  • Rating Scale Questions

A rating scale question is a type of close-ended question that seeks to associate a specific qualitative measure (rating) with the different variables in research. It is commonly used in customer experience surveys, market research surveys, employee reviews, and product evaluations. 

Example of Rating Questions

  • How would you rate our service delivery?

  Examples of a Bad Research Question

Knowing what bad research questions are would help you avoid them in the course of your systematic investigation. These types of questions are usually unfocused and often result in research biases that can negatively impact the outcomes of your systematic investigation. 

  • Loaded Questions

A loaded question is a question that subtly presupposes one or more unverified assumptions about the research subject or participant. This type of question typically boxes the respondent in a corner because it suggests implicit and explicit biases that prevent objective responses. 

Example of Loaded Questions

  • Have you stopped smoking?
  • Where did you hide the money?
  • Negative Questions

A negative question is a type of question that is structured with an implicit or explicit negator. Negative questions can be misleading because they upturn the typical yes/no response order by requiring a negative answer for affirmation and an affirmative answer for negation. 

Examples of Negative Questions

  • Would you mind dropping by my office later today?
  • Didn’t you visit last week?
  • Leading Questions  

A l eading question is a type of survey question that nudges the respondent towards an already-determined answer. It is highly suggestive in nature and typically consists of biases and unverified assumptions that point toward its premeditated responses. 

Examples of Leading Questions

  • If you enjoyed this service, would you be willing to try out our other packages?
  • Our product met your needs, didn’t it?
Read More: Leading Questions: Definition, Types, and Examples

How to Use Formplus as Online Research Questionnaire Tool  

With Formplus, you can create and administer your online research questionnaire easily. In the form builder, you can add different form fields to your questionnaire and edit these fields to reflect specific research questions for your systematic investigation. 

Here is a step-by-step guide on how to create an online research questionnaire with Formplus: 

  • Sign in to your Formplus accoun t, then click on the “create new form” button in your dashboard to access the Form builder.

research question quantitative definition

  • In the form builder, add preferred form fields to your online research questionnaire by dragging and dropping them into the form. Add a title to your form in the title block. You can edit form fields by clicking on the “pencil” icon on the right corner of each form field.


  • Save the form to access the customization section of the builder. Here, you can tweak the appearance of your online research questionnaire by adding background images, changing the form font, and adding your organization’s logo.


  • Finally, copy your form link and share it with respondents. You can also use any of the multiple sharing options available.

research question quantitative definition


The success of your research starts with framing the right questions to help you collect the most valid and objective responses. Be sure to avoid bad research questions like loaded and negative questions that can be misleading and adversely affect your research data and outcomes. 

Your research questions should clearly reflect the aims and objectives of your systematic investigation while laying emphasis on specific contexts. To help you seamlessly gather responses for your research questions, you can create an online research questionnaire on Formplus.  


Connect to Formplus, Get Started Now - It's Free!

  • abstract in research papers
  • bad research questions
  • examples of research questions
  • types of research questions
  • busayo.longe


You may also like:

How to Write An Abstract For Research Papers: Tips & Examples

In this article, we will share some tips for writing an effective abstract, plus samples you can learn from.

research question quantitative definition

How to Write a Problem Statement for your Research

Learn how to write problem statements before commencing any research effort. Learn about its structure and explore examples

How to do a Meta Analysis: Methodology, Pros & Cons

In this article, we’ll go through the concept of meta-analysis, what it can be used for, and how you can use it to improve how you...

Research Summary: What Is It & How To Write One

Introduction A research summary is a requirement during academic research and sometimes you might need to prepare a research summary...

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Indian Assoc Pediatr Surg
  • v.24(1); Jan-Mar 2019

Formulation of Research Question – Stepwise Approach

Simmi k. ratan.

Department of Pediatric Surgery, Maulana Azad Medical College, New Delhi, India

1 Department of Community Medicine, North Delhi Municipal Corporation Medical College, New Delhi, India

2 Department of Pediatric Surgery, Batra Hospital and Research Centre, New Delhi, India

Formulation of research question (RQ) is an essentiality before starting any research. It aims to explore an existing uncertainty in an area of concern and points to a need for deliberate investigation. It is, therefore, pertinent to formulate a good RQ. The present paper aims to discuss the process of formulation of RQ with stepwise approach. The characteristics of good RQ are expressed by acronym “FINERMAPS” expanded as feasible, interesting, novel, ethical, relevant, manageable, appropriate, potential value, publishability, and systematic. A RQ can address different formats depending on the aspect to be evaluated. Based on this, there can be different types of RQ such as based on the existence of the phenomenon, description and classification, composition, relationship, comparative, and causality. To develop a RQ, one needs to begin by identifying the subject of interest and then do preliminary research on that subject. The researcher then defines what still needs to be known in that particular subject and assesses the implied questions. After narrowing the focus and scope of the research subject, researcher frames a RQ and then evaluates it. Thus, conception to formulation of RQ is very systematic process and has to be performed meticulously as research guided by such question can have wider impact in the field of social and health research by leading to formulation of policies for the benefit of larger population.


A good research question (RQ) forms backbone of a good research, which in turn is vital in unraveling mysteries of nature and giving insight into a problem.[ 1 , 2 , 3 , 4 ] RQ identifies the problem to be studied and guides to the methodology. It leads to building up of an appropriate hypothesis (Hs). Hence, RQ aims to explore an existing uncertainty in an area of concern and points to a need for deliberate investigation. A good RQ helps support a focused arguable thesis and construction of a logical argument. Hence, formulation of a good RQ is undoubtedly one of the first critical steps in the research process, especially in the field of social and health research, where the systematic generation of knowledge that can be used to promote, restore, maintain, and/or protect health of individuals and populations.[ 1 , 3 , 4 ] Basically, the research can be classified as action, applied, basic, clinical, empirical, administrative, theoretical, or qualitative or quantitative research, depending on its purpose.[ 2 ]

Research plays an important role in developing clinical practices and instituting new health policies. Hence, there is a need for a logical scientific approach as research has an important goal of generating new claims.[ 1 ]


“The most successful research topics are narrowly focused and carefully defined but are important parts of a broad-ranging, complex problem.”

A good RQ is an asset as it:

  • Details the problem statement
  • Further describes and refines the issue under study
  • Adds focus to the problem statement
  • Guides data collection and analysis
  • Sets context of research.

Hence, while writing RQ, it is important to see if it is relevant to the existing time frame and conditions. For example, the impact of “odd-even” vehicle formula in decreasing the level of air particulate pollution in various districts of Delhi.

A good research is represented by acronym FINERMAPS[ 5 ]


  • Appropriate
  • Potential value and publishability
  • Systematic.

Feasibility means that it is within the ability of the investigator to carry out. It should be backed by an appropriate number of subjects and methodology as well as time and funds to reach the conclusions. One needs to be realistic about the scope and scale of the project. One has to have access to the people, gadgets, documents, statistics, etc. One should be able to relate the concepts of the RQ to the observations, phenomena, indicators, or variables that one can access. One should be clear that the collection of data and the proceedings of project can be completed within the limited time and resources available to the investigator. Sometimes, a RQ appears feasible, but when fieldwork or study gets started, it proves otherwise. In this situation, it is important to write up the problems honestly and to reflect on what has been learned. One should try to discuss with more experienced colleagues or the supervisor so as to develop a contingency plan to anticipate possible problems while working on a RQ and find possible solutions in such situations.

This is essential that one has a real grounded interest in one's RQ and one can explore this and back it up with academic and intellectual debate. This interest will motivate one to keep going with RQ.

The question should not simply copy questions investigated by other workers but should have scope to be investigated. It may aim at confirming or refuting the already established findings, establish new facts, or find new aspects of the established facts. It should show imagination of the researcher. Above all, the question has to be simple and clear. The complexity of a question can frequently hide unclear thoughts and lead to a confused research process. A very elaborate RQ, or a question which is not differentiated into different parts, may hide concepts that are contradictory or not relevant. This needs to be clear and thought-through. Having one key question with several subcomponents will guide your research.

This is the foremost requirement of any RQ and is mandatory to get clearance from appropriate authorities before stating research on the question. Further, the RQ should be such that it minimizes the risk of harm to the participants in the research, protect the privacy and maintain their confidentiality, and provide the participants right to withdraw from research. It should also guide in avoiding deceptive practices in research.

The question should of academic and intellectual interest to people in the field you have chosen to study. The question preferably should arise from issues raised in the current situation, literature, or in practice. It should establish a clear purpose for the research in relation to the chosen field. For example, filling a gap in knowledge, analyzing academic assumptions or professional practice, monitoring a development in practice, comparing different approaches, or testing theories within a specific population are some of the relevant RQs.

Manageable (M): It has the similar essence as of feasibility but mainly means that the following research can be managed by the researcher.

Appropriate (A): RQ should be appropriate logically and scientifically for the community and institution.

Potential value and publishability (P): The study can make significant health impact in clinical and community practices. Therefore, research should aim for significant economic impact to reduce unnecessary or excessive costs. Furthermore, the proposed study should exist within a clinical, consumer, or policy-making context that is amenable to evidence-based change. Above all, a good RQ must address a topic that has clear implications for resolving important dilemmas in health and health-care decisions made by one or more stakeholder groups.

Systematic (S): Research is structured with specified steps to be taken in a specified sequence in accordance with the well-defined set of rules though it does not rule out creative thinking.

Example of RQ: Would the topical skin application of oil as a skin barrier reduces hypothermia in preterm infants? This question fulfills the criteria of a good RQ, that is, feasible, interesting, novel, ethical, and relevant.

Types of research question

A RQ can address different formats depending on the aspect to be evaluated.[ 6 ] For example:

  • Existence: This is designed to uphold the existence of a particular phenomenon or to rule out rival explanation, for example, can neonates perceive pain?
  • Description and classification: This type of question encompasses statement of uniqueness, for example, what are characteristics and types of neuropathic bladders?
  • Composition: It calls for breakdown of whole into components, for example, what are stages of reflux nephropathy?
  • Relationship: Evaluate relation between variables, for example, association between tumor rupture and recurrence rates in Wilm's tumor
  • Descriptive—comparative: Expected that researcher will ensure that all is same between groups except issue in question, for example, Are germ cell tumors occurring in gonads more aggressive than those occurring in extragonadal sites?
  • Causality: Does deletion of p53 leads to worse outcome in patients with neuroblastoma?
  • Causality—comparative: Such questions frequently aim to see effect of two rival treatments, for example, does adding surgical resection improves survival rate outcome in children with neuroblastoma than with chemotherapy alone?
  • Causality–Comparative interactions: Does immunotherapy leads to better survival outcome in neuroblastoma Stage IV S than with chemotherapy in the setting of adverse genetic profile than without it? (Does X cause more changes in Y than those caused by Z under certain condition and not under other conditions).

How to develop a research question

  • Begin by identifying a broader subject of interest that lends itself to investigate, for example, hormone levels among hypospadias
  • Do preliminary research on the general topic to find out what research has already been done and what literature already exists.[ 7 ] Therefore, one should begin with “information gaps” (What do you already know about the problem? For example, studies with results on testosterone levels among hypospadias
  • What do you still need to know? (e.g., levels of other reproductive hormones among hypospadias)
  • What are the implied questions: The need to know about a problem will lead to few implied questions. Each general question should lead to more specific questions (e.g., how hormone levels differ among isolated hypospadias with respect to that in normal population)
  • Narrow the scope and focus of research (e.g., assessment of reproductive hormone levels among isolated hypospadias and hypospadias those with associated anomalies)
  • Is RQ clear? With so much research available on any given topic, RQs must be as clear as possible in order to be effective in helping the writer direct his or her research
  • Is the RQ focused? RQs must be specific enough to be well covered in the space available
  • Is the RQ complex? RQs should not be answerable with a simple “yes” or “no” or by easily found facts. They should, instead, require both research and analysis on the part of the writer
  • Is the RQ one that is of interest to the researcher and potentially useful to others? Is it a new issue or problem that needs to be solved or is it attempting to shed light on previously researched topic
  • Is the RQ researchable? Consider the available time frame and the required resources. Is the methodology to conduct the research feasible?
  • Is the RQ measurable and will the process produce data that can be supported or contradicted?
  • Is the RQ too broad or too narrow?
  • Create Hs: After formulating RQ, think where research is likely to be progressing? What kind of argument is likely to be made/supported? What would it mean if the research disputed the planned argument? At this step, one can well be on the way to have a focus for the research and construction of a thesis. Hs consists of more specific predictions about the nature and direction of the relationship between two variables. It is a predictive statement about the outcome of the research, dictate the method, and design of the research[ 1 ]
  • Understand implications of your research: This is important for application: whether one achieves to fill gap in knowledge and how the results of the research have practical implications, for example, to develop health policies or improve educational policies.[ 1 , 8 ]

Brainstorm/Concept map for formulating research question

  • First, identify what types of studies have been done in the past?
  • Is there a unique area that is yet to be investigated or is there a particular question that may be worth replicating?
  • Begin to narrow the topic by asking open-ended “how” and “why” questions
  • Evaluate the question
  • Develop a Hypothesis (Hs)
  • Write down the RQ.

Writing down the research question

  • State the question in your own words
  • Write down the RQ as completely as possible.

For example, Evaluation of reproductive hormonal profile in children presenting with isolated hypospadias)

  • Divide your question into concepts. Narrow to two or three concepts (reproductive hormonal profile, isolated hypospadias, compare with normal/not isolated hypospadias–implied)
  • Specify the population to be studied (children with isolated hypospadias)
  • Refer to the exposure or intervention to be investigated, if any
  • Reflect the outcome of interest (hormonal profile).

Another example of a research question

Would the topical skin application of oil as a skin barrier reduces hypothermia in preterm infants? Apart from fulfilling the criteria of a good RQ, that is, feasible, interesting, novel, ethical, and relevant, it also details about the intervention done (topical skin application of oil), rationale of intervention (as a skin barrier), population to be studied (preterm infants), and outcome (reduces hypothermia).

Other important points to be heeded to while framing research question

  • Make reference to a population when a relationship is expected among a certain type of subjects
  • RQs and Hs should be made as specific as possible
  • Avoid words or terms that do not add to the meaning of RQs and Hs
  • Stick to what will be studied, not implications
  • Name the variables in the order in which they occur/will be measured
  • Avoid the words significant/”prove”
  • Avoid using two different terms to refer to the same variable.

Some of the other problems and their possible solutions have been discussed in Table 1 .

Potential problems and solutions while making research question

An external file that holds a picture, illustration, etc.
Object name is JIAPS-24-15-g001.jpg


Once RQ is formulated, a Hs can be developed. Hs means transformation of a RQ into an operational analog.[ 1 ] It means a statement as to what prediction one makes about the phenomenon to be examined.[ 4 ] More often, for case–control trial, null Hs is generated which is later accepted or refuted.

A strong Hs should have following characteristics:

  • Give insight into a RQ
  • Are testable and measurable by the proposed experiments
  • Have logical basis
  • Follows the most likely outcome, not the exceptional outcome.


Research question-1.

  • Does reduced gap between the two segments of the esophagus in patients of esophageal atresia reduces the mortality and morbidity of such patients?


  • Reduced gap between the two segments of the esophagus in patients of esophageal atresia reduces the mortality and morbidity of such patients
  • In pediatric patients with esophageal atresia, gap of <2 cm between two segments of the esophagus and proper mobilization of proximal pouch reduces the morbidity and mortality among such patients.

Research question-2

  • Does application of mitomycin C improves the outcome in patient of corrosive esophageal strictures?


In patients aged 2–9 years with corrosive esophageal strictures, 34 applications of mitomycin C in dosage of 0.4 mg/ml for 5 min over a period of 6 months improve the outcome in terms of symptomatic and radiological relief. Some other examples of good and bad RQs have been shown in Table 2 .

Examples of few bad (left-hand side column) and few good (right-hand side) research questions

An external file that holds a picture, illustration, etc.
Object name is JIAPS-24-15-g002.jpg


RQ determines study design, for example, the question aimed to find the incidence of a disease in population will lead to conducting a survey; to find risk factors for a disease will need case–control study or a cohort study. RQ may also culminate into clinical trial.[ 9 , 10 ] For example, effect of administration of folic acid tablet in the perinatal period in decreasing incidence of neural tube defect. Accordingly, Hs is framed.

Appropriate statistical calculations are instituted to generate sample size. The subject inclusion, exclusion criteria and time frame of research are carefully defined. The detailed subject information sheet and pro forma are carefully defined. Moreover, research is set off few examples of research methodology guided by RQ:

  • Incidence of anorectal malformations among adolescent females (hospital-based survey)
  • Risk factors for the development of spontaneous pneumoperitoneum in pediatric patients (case–control design and cohort study)
  • Effect of technique of extramucosal ureteric reimplantation without the creation of submucosal tunnel for the preservation of upper tract in bladder exstrophy (clinical trial).

The results of the research are then be available for wider applications for health and social life


A good RQ needs thorough literature search and deep insight into the specific area/problem to be investigated. A RQ has to be focused yet simple. Research guided by such question can have wider impact in the field of social and health research by leading to formulation of policies for the benefit of larger population.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.


  • A/B Monadic Test
  • A/B Pre-Roll Test
  • Key Driver Analysis
  • Multiple Implicit
  • Penalty Reward
  • Price Sensitivity
  • Segmentation
  • Single Implicit
  • Category Exploration
  • Competitive Landscape
  • Consumer Segmentation
  • Innovation & Renovation
  • Product Portfolio
  • Marketing Creatives
  • Advertising
  • Shelf Optimization
  • Performance Monitoring
  • Better Brand Health Tracking
  • Ad Tracking
  • Trend Tracking
  • Satisfaction Tracking
  • AI Insights
  • Case Studies

quantilope is the Consumer Intelligence Platform for all end-to-end research needs

What Are Quantitative Survey Questions? Types and Examples

diagonal green and purple lines with black background

Table of contents: 

  • Types of quantitative survey questions - with examples 
  • Quantitative question formats
  • How to write quantitative survey questions 
  • Examples of quantitative survey questions 

Leveraging quantilope for your quantitative survey 

In a quantitative research study brands will gather numeric data for most of their questions through formats like numerical scale questions or ranking questions. However, brands can also include some non-quantitative questions throughout their quantitative study - like open-ended questions, where respondents will type in their own feedback to a question prompt. Even so, open-ended answers can be numerically coded to sift through feedback easily (e.g. anyone who writes in 'Pepsi' in a soda study would be assigned the number '1', to look at Pepsi feedback as a whole).  One of the biggest benefits of using a quantitative research approach is that insights around a research topic can undergo statistical analysis; the same can’t be said for qualitative data like focus group feedback or interviews. Another major difference between quantitative and qualitative research methods is that quantitative surveys require respondents to choose from a limited number of choices in a close-ended question - generating clear, actionable takeaways. However, these distinct quantitative takeaways often pair well with freeform qualitative responses - making quant and qual a great team to use together.  The rest of this article focuses on quantitative research, taking a closer look at quantitative survey question types and question formats/layouts. 

Back to table of contents 

Types of dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139745">quantitative survey questions - with examples 

Quantitative questions come in many forms, each with different benefits depending on dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139784">your dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139740">market research objectives. Below we’ll explore some of these dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139745">quantitative dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139785">survey question dropdown#toggle" data-dropdown-menu-id-param="menu_term_281139785" data-dropdown-placement-param="top" data-term-id="281139785"> types, which are commonly used together in a single survey to keep things interesting for dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents . The style of questioning used during dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139739">quantitative dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139750">data dropdown#toggle" data-dropdown-menu-id-param="menu_term_281139750" data-dropdown-placement-param="top" data-term-id="281139750"> collection is important, as a good mix of the right types of questions will deliver rich data, limit dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondent fatigue, and optimize the dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139757">response rate . dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139742">Questionnaires should be enjoyable - and varying the dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139755">types of dropdown#toggle" data-dropdown-menu-id-param="menu_term_281139755" data-dropdown-placement-param="top" data-term-id="281139755">quantitative research dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139755"> questions used throughout your survey will help achieve that. 

Descriptive survey questions

dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139763">Descriptive research questions (also known as usage and attitude, or, U&A questions) seek a general indication or prediction about how a dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139773">group of people behaves or will behave, how that group is characterized, or how a group thinks.

For example, a business might want to know what portion of adult men shave, and how often they do so. To find this out, they will survey men (the dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139743">target audience ) and ask descriptive questions about their frequency of shaving (e.g. daily, a few times a week, once per week, and so on.) Each of these frequencies get assigned a numerical ‘code’ so that it’s simple to chart and analyze the data later on; daily might be assigned ‘5’, a few times a week might be assigned ‘4’, and so on. That way, brands can create charts using the ‘top two’ and ‘bottom two’ values in a descriptive question to view these metrics side by side.

Another business might want to know how important local transit issues are to residents, so dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139745">quantitative survey questions will allow dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents to indicate the degrees of opinion attached to various transit issues. Perhaps the transit business running this survey would use a sliding numeric scale to see how important a particular issue is.

Comparative survey questions

dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139782">Comparative research questions are concerned with comparing individuals or groups of people based on one or more variables. These questions might be posed when a business wants to find out which segment of its dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139743">target audience might be more profitable, or which types of products might appeal to different sets of consumers.

For example, a business might want to know how the popularity of its chocolate bars is spread out across its entire customer base (i.e. do women prefer a certain flavor? Are children drawn to candy bars by certain packaging attributes? etc.). Questions in this case will be designed to profile and ‘compare’ segments of the market.

Other businesses might be looking to compare coffee consumption among older and younger consumers (i.e. dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139741">demographic segments), the difference in smartphone usage between younger men and women, or how women from different regions differ in their approach to skincare.

Relationship-based survey questions

As the name suggests, relationship-based survey questions are concerned with the relationship between two or more variables within one or more dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139741">demographic groups. This might be a dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139759">causal link between one thing and the other - for example, the consumption of caffeine and dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents ’ reported energy levels throughout the day. In this case, a coffee or energy drink brand might be interested in how energy levels differ between those who drink their caffeinated line of beverages and those who drink decaf/non-caffeinated beverages.

Alternatively, it might be a case of two or more factors co-existing, without there necessarily being a dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139759">causal link - for example, a particular type of air freshener being more popular amongst a certain dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139741">demographic (maybe one that is controlled wirelessly via Bluetooth is more popular among younger homeowners than one that’s plugged into the wall with no controls). Knowing that millennials favor air fresheners which have options for swapping out scents and setting up schedules would be valuable information for new product development.

Advanced method survey questions

Aside from descriptive, comparative, and relationship-based survey questions, brands can opt to include advanced methodologies in their quantitative dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139742">questionnaire for richer depth. Though advanced methods are more complex in terms of the insights output, quantilope’s Consumer Intelligence Platform automates the setup and analysis of these methods so that researchers of any background or skillset can leverage them with ease.

With quantilope’s pre-programmed suite of 12 advanced methodologies , including MaxDiff , TURF , Implicit , and more, users can drag and drop any of these into a dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139742">questionnaire and customize for their own dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139740">market research objectives.

For example, consider a beverage company that’s looking to expand its flavor profiles. This brand would benefit from a MaxDiff which forces dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents to make tradeoff decisions between a set of flavors. A dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondent might say that coconut is their most-preferred flavor, and lime their least (when in a consideration set with strawberry), yet later on in the MaxDiff that same dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondent may say Strawberry is their most-preferred flavor (over black cherry and kiwi). While this is just one example of an advanced method, instantly you can see how much richer and more actionable these quantitative metrics become compared to a standard usage and attitude question .

Advanced methods can be used alongside descriptive, comparison, or relationship questions to add a new layer of context wherever a business sees fit. Back to table of contents 

Quantitative question formats  

So we’ve covered the kinds of dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139736">quantitative research questions you might want to answer using dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139740">market research , but how do these translate into the actual format of questions that you might include on your dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139742">questionnaire ?

Thinking ahead to your reporting process during your dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139742">questionnaire setup is actually quite important, as the available chart types differ among the types of questions asked; some question data is compatible with bar chart displays, others pie charts, others in trended line graphs, etc. Also consider how well the questions you’re asking will translate onto different devices that your dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents might be using to complete the survey (mobile, PC, or tablet).

Single Select questions

Single select questions are the simplest form of quantitative questioning, as dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents are asked to choose just one answer from a list of items, which tend to be ‘either/or’, ‘yes/no’, or ‘true/false’ questions. These questions are useful when you need to get a clear answer without any qualifying nuances.


Multi-select questions

Multi-select questions (aka, dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139767">multiple choice ) offer more flexibility for responses, allowing for a number of responses on a single question. dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">Respondents can be asked to ‘check all that apply’ or a cap can be applied (e.g. ‘select up to 3 choices’).

For example:


Aside from asking text-based questions like the above examples, a brand could also use a single or multi-select question to ask respondents to select the image they prefer more (like different iterations of a logo design, packaging options, branding colors, etc.). 

dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139749">Likert dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139766">scale dropdown#toggle" data-dropdown-menu-id-param="menu_term_281139766" data-dropdown-placement-param="top" data-term-id="281139766"> questions

A dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139749">Likert scale   is widely used as a convenient and easy-to-interpret rating method. dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">Respondents find it easy to indicate their degree of feelings by selecting the response they most identify with.


Slider scales

Slider scales are another good interactive way of formatting questions. They allow dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents to customize their level of feeling about a question, with a bit more variance and nuance allowed than a numeric scale:

logo slider scale example

One particularly common use of a slider scale in a dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139740">market dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139770">research dropdown#toggle" data-dropdown-menu-id-param="menu_term_281139770" data-dropdown-placement-param="top" data-term-id="281139770"> study is known as a NPS (Net Promoter Score) - a way to measure dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139775">customer experience and loyalty . A 0-10 scale is used to ask customers how likely they are to recommend a brand’s product or services to others. The NPS score is calculated by subtracting the percentage of ‘detractors’ (those who respond with a 0-6) from the percentage of promoters (those who respond with a 9-10). dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">Respondents who select 7-8 are known as ‘passives’.

For example: 


Drag and drop questions

Drag-and-drop question formats are a more ‘gamified’ approach to survey capture as they ask dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents to do more than simply check boxes or slide a scale. Drag-and-drop question formats are great for ranking exercises - asking dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents to place answer options in a certain order by dragging with their mouse. For example, you could ask survey takers to put pizza toppings in order of preference by dragging options from a list of possible answers to a box displaying their personal preferences:

ranking poster

Matrix questions

Matrix   questions are a great way to consolidate a number of questions that ask for the same type of response (e.g. single select yes/no, true/false, or multi-select lists). They are mutually beneficial - making a survey look less daunting for the dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondent , and easier for a brand to set up than asking multiple separate questions.

Items in a matrix question are presented one by one, as respondents cycle through the pages selecting one answer for each coffee flavor shown. 

Untitled design (5)-1

While the above example shows a single-matrix question - meaning a respondent can only select one answer per element (in this case, coffee flavors), a matrix setup can also be used for multiple-choice questions - allowing respondents to choose multiple answers per element shown, or for rating questions - allowing respondents to assign a rating (e.g. 1-5) for a list of elements at once.  Back to table of contents 

How to write dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139745">quantitative survey questions  

We’ve reviewed the types of questions you might ask in a quantitative survey, and how you might format those questions, but now for the actual crafting of the content.

When considering which questions to include in your survey, you’ll first want to establish what your research goals are and how these relate to your business goals. For example, thinking about the three types of dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139745">quantitative survey questions explained above - descriptive, comparative, and relationship-based - which type (or which combination) will best meet your research needs? The questions you ask dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents may be phrased in similar ways no matter what kind of layout you leverage, but you should have a good idea of how you’ll want to analyze the results as that will make it much easier to correctly set up your survey.

Quantitative questions tend to start with words like ‘how much,’ ‘how often,’ ‘to what degree,’ ‘what do you think of,’ ‘which of the following’ - anything that establishes what consumers do or think and that can be assigned a numerical code or value. Be sure to also include ‘other’ or ‘none of the above’ options in your quant questions, accommodating those who don’t feel the pre-set answers reflect their true opinion. As mentioned earlier, you can always include a small number of dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139748">open-ended questions in your quant survey to account for any ideas or expanded feedback that the pre-coded questions don’t (or can’t) cover. Back to table of contents 

Examples of dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139745">quantitative survey questions  

dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139745">Quantitative survey questions impose limits on the answers that dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents can choose from, and this is a good thing when it comes to measuring consumer opinions on a large scale and comparing across dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents . A large volume of freeform, open-ended answers is interesting when looking for themes from qualitative studies, but impractical to wade through when dealing with a large dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139756">sample size , and impossible to subject to dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139774">statistical analysis .

For example, a quantitative survey might aim to establish consumers' smartphone habits. This could include their frequency of buying a new smartphone, the considerations that drive purchase, which features they use their phone for, and how much they like their smartphone.

Some examples of quantitative survey questions relating to these habits would be:

Q. How often do you buy a new smartphone?

[single select question]

More than once per year

Every 1-2 years

Every 3-5 years

Every 6+ years

Q. Thinking about when you buy a smartphone, please rank the following factors in order of importance:

[drag and drop ranking question]

screen size

storage capacity

Q. How often do you use the following features on your smartphone?

[matrix question]

Q. How do you feel about your current smartphone?

[sliding scale]

I love it <-------> I hate it

Answers from these above questions, and others within the survey, would be analyzed to paint a picture of smartphone usage and attitude trends across a population and its sub-groups. dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139738">Qualitative research might then be carried out to explore those findings further - for example, people’s detailed attitudes towards their smartphones, how they feel about the amount of time they spend on it, and how features could be improved. Back to table of contents 

quantilope’s Consumer Intelligence Platform specializes in automated, advanced survey insights so that researchers of any skill level can benefit from quick, high-quality consumer insights. With 12 advanced methods to choose from and a wide variety of quantitative question formats, quantilope is your one-stop-shop for all things dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139740">market research (including its dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139776">in-depth dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139738">qualitative research solution - inColor ).

When it comes to building your survey, you decide how you want to go about it. You can start with a blank slate and drop questions into your survey from a pre-programmed list, or you can get a head start with a survey dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139765">template for a particular business use case (like concept testing ) and customize from there. Once your survey is ready to launch, simply specify your dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139743">target audience , connect any panel (quantilope is panel agnostic), and watch as dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139737">respondents dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139783">answer questions in your survey in real-time by monitoring the fieldwork section of your project. AI-driven dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139764">data analysis takes the raw data and converts it into actionable findings so you never have to worry about manual calculations or statistical testing.

Whether you want to run your quantitative study entirely on your own or with the help of a classically trained research team member, the choice is yours on quantilope’s platform. For more information on how quantilope can help with your next dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139736">quantitative dropdown#toggle" data-dropdown-placement-param="top" data-term-id="281139768">research dropdown#toggle" data-dropdown-menu-id-param="menu_term_281139768" data-dropdown-placement-param="top" data-term-id="281139768"> project , get in touch below!

Get in touch to learn more about quantitative research with quantilope!

Related posts, quantilope & organic valley: understanding consumer values behind behaviors, quantilope & wire webinar: solving the research dilemma with ai, a full year of better brand health tracking in the soda category, non-probability sampling: when and how to use it effectively.

research question quantitative definition

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Quantitative Methods
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Quantitative methods emphasize objective measurements and the statistical, mathematical, or numerical analysis of data collected through polls, questionnaires, and surveys, or by manipulating pre-existing statistical data using computational techniques . Quantitative research focuses on gathering numerical data and generalizing it across groups of people or to explain a particular phenomenon.

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Muijs, Daniel. Doing Quantitative Research in Education with SPSS . 2nd edition. London: SAGE Publications, 2010.

Need Help Locating Statistics?

Resources for locating data and statistics can be found here:

Statistics & Data Research Guide

Characteristics of Quantitative Research

Your goal in conducting quantitative research study is to determine the relationship between one thing [an independent variable] and another [a dependent or outcome variable] within a population. Quantitative research designs are either descriptive [subjects usually measured once] or experimental [subjects measured before and after a treatment]. A descriptive study establishes only associations between variables; an experimental study establishes causality.

Quantitative research deals in numbers, logic, and an objective stance. Quantitative research focuses on numeric and unchanging data and detailed, convergent reasoning rather than divergent reasoning [i.e., the generation of a variety of ideas about a research problem in a spontaneous, free-flowing manner].

Its main characteristics are :

  • The data is usually gathered using structured research instruments.
  • The results are based on larger sample sizes that are representative of the population.
  • The research study can usually be replicated or repeated, given its high reliability.
  • Researcher has a clearly defined research question to which objective answers are sought.
  • All aspects of the study are carefully designed before data is collected.
  • Data are in the form of numbers and statistics, often arranged in tables, charts, figures, or other non-textual forms.
  • Project can be used to generalize concepts more widely, predict future results, or investigate causal relationships.
  • Researcher uses tools, such as questionnaires or computer software, to collect numerical data.

The overarching aim of a quantitative research study is to classify features, count them, and construct statistical models in an attempt to explain what is observed.

  Things to keep in mind when reporting the results of a study using quantitative methods :

  • Explain the data collected and their statistical treatment as well as all relevant results in relation to the research problem you are investigating. Interpretation of results is not appropriate in this section.
  • Report unanticipated events that occurred during your data collection. Explain how the actual analysis differs from the planned analysis. Explain your handling of missing data and why any missing data does not undermine the validity of your analysis.
  • Explain the techniques you used to "clean" your data set.
  • Choose a minimally sufficient statistical procedure ; provide a rationale for its use and a reference for it. Specify any computer programs used.
  • Describe the assumptions for each procedure and the steps you took to ensure that they were not violated.
  • When using inferential statistics , provide the descriptive statistics, confidence intervals, and sample sizes for each variable as well as the value of the test statistic, its direction, the degrees of freedom, and the significance level [report the actual p value].
  • Avoid inferring causality , particularly in nonrandomized designs or without further experimentation.
  • Use tables to provide exact values ; use figures to convey global effects. Keep figures small in size; include graphic representations of confidence intervals whenever possible.
  • Always tell the reader what to look for in tables and figures .

NOTE:   When using pre-existing statistical data gathered and made available by anyone other than yourself [e.g., government agency], you still must report on the methods that were used to gather the data and describe any missing data that exists and, if there is any, provide a clear explanation why the missing data does not undermine the validity of your final analysis.

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Brians, Craig Leonard et al. Empirical Political Analysis: Quantitative and Qualitative Research Methods . 8th ed. Boston, MA: Longman, 2011; McNabb, David E. Research Methods in Public Administration and Nonprofit Management: Quantitative and Qualitative Approaches . 2nd ed. Armonk, NY: M.E. Sharpe, 2008; Quantitative Research Methods. Writing@CSU. Colorado State University; Singh, Kultar. Quantitative Social Research Methods . Los Angeles, CA: Sage, 2007.

Basic Research Design for Quantitative Studies

Before designing a quantitative research study, you must decide whether it will be descriptive or experimental because this will dictate how you gather, analyze, and interpret the results. A descriptive study is governed by the following rules: subjects are generally measured once; the intention is to only establish associations between variables; and, the study may include a sample population of hundreds or thousands of subjects to ensure that a valid estimate of a generalized relationship between variables has been obtained. An experimental design includes subjects measured before and after a particular treatment, the sample population may be very small and purposefully chosen, and it is intended to establish causality between variables. Introduction The introduction to a quantitative study is usually written in the present tense and from the third person point of view. It covers the following information:

  • Identifies the research problem -- as with any academic study, you must state clearly and concisely the research problem being investigated.
  • Reviews the literature -- review scholarship on the topic, synthesizing key themes and, if necessary, noting studies that have used similar methods of inquiry and analysis. Note where key gaps exist and how your study helps to fill these gaps or clarifies existing knowledge.
  • Describes the theoretical framework -- provide an outline of the theory or hypothesis underpinning your study. If necessary, define unfamiliar or complex terms, concepts, or ideas and provide the appropriate background information to place the research problem in proper context [e.g., historical, cultural, economic, etc.].

Methodology The methods section of a quantitative study should describe how each objective of your study will be achieved. Be sure to provide enough detail to enable the reader can make an informed assessment of the methods being used to obtain results associated with the research problem. The methods section should be presented in the past tense.

  • Study population and sampling -- where did the data come from; how robust is it; note where gaps exist or what was excluded. Note the procedures used for their selection;
  • Data collection – describe the tools and methods used to collect information and identify the variables being measured; describe the methods used to obtain the data; and, note if the data was pre-existing [i.e., government data] or you gathered it yourself. If you gathered it yourself, describe what type of instrument you used and why. Note that no data set is perfect--describe any limitations in methods of gathering data.
  • Data analysis -- describe the procedures for processing and analyzing the data. If appropriate, describe the specific instruments of analysis used to study each research objective, including mathematical techniques and the type of computer software used to manipulate the data.

Results The finding of your study should be written objectively and in a succinct and precise format. In quantitative studies, it is common to use graphs, tables, charts, and other non-textual elements to help the reader understand the data. Make sure that non-textual elements do not stand in isolation from the text but are being used to supplement the overall description of the results and to help clarify key points being made. Further information about how to effectively present data using charts and graphs can be found here .

  • Statistical analysis -- how did you analyze the data? What were the key findings from the data? The findings should be present in a logical, sequential order. Describe but do not interpret these trends or negative results; save that for the discussion section. The results should be presented in the past tense.

Discussion Discussions should be analytic, logical, and comprehensive. The discussion should meld together your findings in relation to those identified in the literature review, and placed within the context of the theoretical framework underpinning the study. The discussion should be presented in the present tense.

  • Interpretation of results -- reiterate the research problem being investigated and compare and contrast the findings with the research questions underlying the study. Did they affirm predicted outcomes or did the data refute it?
  • Description of trends, comparison of groups, or relationships among variables -- describe any trends that emerged from your analysis and explain all unanticipated and statistical insignificant findings.
  • Discussion of implications – what is the meaning of your results? Highlight key findings based on the overall results and note findings that you believe are important. How have the results helped fill gaps in understanding the research problem?
  • Limitations -- describe any limitations or unavoidable bias in your study and, if necessary, note why these limitations did not inhibit effective interpretation of the results.

Conclusion End your study by to summarizing the topic and provide a final comment and assessment of the study.

  • Summary of findings – synthesize the answers to your research questions. Do not report any statistical data here; just provide a narrative summary of the key findings and describe what was learned that you did not know before conducting the study.
  • Recommendations – if appropriate to the aim of the assignment, tie key findings with policy recommendations or actions to be taken in practice.
  • Future research – note the need for future research linked to your study’s limitations or to any remaining gaps in the literature that were not addressed in your study.

Black, Thomas R. Doing Quantitative Research in the Social Sciences: An Integrated Approach to Research Design, Measurement and Statistics . London: Sage, 1999; Gay,L. R. and Peter Airasain. Educational Research: Competencies for Analysis and Applications . 7th edition. Upper Saddle River, NJ: Merril Prentice Hall, 2003; Hector, Anestine. An Overview of Quantitative Research in Composition and TESOL . Department of English, Indiana University of Pennsylvania; Hopkins, Will G. “Quantitative Research Design.” Sportscience 4, 1 (2000); "A Strategy for Writing Up Research Results. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper." Department of Biology. Bates College; Nenty, H. Johnson. "Writing a Quantitative Research Thesis." International Journal of Educational Science 1 (2009): 19-32; Ouyang, Ronghua (John). Basic Inquiry of Quantitative Research . Kennesaw State University.

Strengths of Using Quantitative Methods

Quantitative researchers try to recognize and isolate specific variables contained within the study framework, seek correlation, relationships and causality, and attempt to control the environment in which the data is collected to avoid the risk of variables, other than the one being studied, accounting for the relationships identified.

Among the specific strengths of using quantitative methods to study social science research problems:

  • Allows for a broader study, involving a greater number of subjects, and enhancing the generalization of the results;
  • Allows for greater objectivity and accuracy of results. Generally, quantitative methods are designed to provide summaries of data that support generalizations about the phenomenon under study. In order to accomplish this, quantitative research usually involves few variables and many cases, and employs prescribed procedures to ensure validity and reliability;
  • Applying well established standards means that the research can be replicated, and then analyzed and compared with similar studies;
  • You can summarize vast sources of information and make comparisons across categories and over time; and,
  • Personal bias can be avoided by keeping a 'distance' from participating subjects and using accepted computational techniques .

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Brians, Craig Leonard et al. Empirical Political Analysis: Quantitative and Qualitative Research Methods . 8th ed. Boston, MA: Longman, 2011; McNabb, David E. Research Methods in Public Administration and Nonprofit Management: Quantitative and Qualitative Approaches . 2nd ed. Armonk, NY: M.E. Sharpe, 2008; Singh, Kultar. Quantitative Social Research Methods . Los Angeles, CA: Sage, 2007.

Limitations of Using Quantitative Methods

Quantitative methods presume to have an objective approach to studying research problems, where data is controlled and measured, to address the accumulation of facts, and to determine the causes of behavior. As a consequence, the results of quantitative research may be statistically significant but are often humanly insignificant.

Some specific limitations associated with using quantitative methods to study research problems in the social sciences include:

  • Quantitative data is more efficient and able to test hypotheses, but may miss contextual detail;
  • Uses a static and rigid approach and so employs an inflexible process of discovery;
  • The development of standard questions by researchers can lead to "structural bias" and false representation, where the data actually reflects the view of the researcher instead of the participating subject;
  • Results provide less detail on behavior, attitudes, and motivation;
  • Researcher may collect a much narrower and sometimes superficial dataset;
  • Results are limited as they provide numerical descriptions rather than detailed narrative and generally provide less elaborate accounts of human perception;
  • The research is often carried out in an unnatural, artificial environment so that a level of control can be applied to the exercise. This level of control might not normally be in place in the real world thus yielding "laboratory results" as opposed to "real world results"; and,
  • Preset answers will not necessarily reflect how people really feel about a subject and, in some cases, might just be the closest match to the preconceived hypothesis.

Research Tip

Finding Examples of How to Apply Different Types of Research Methods

SAGE publications is a major publisher of studies about how to design and conduct research in the social and behavioral sciences. Their SAGE Research Methods Online and Cases database includes contents from books, articles, encyclopedias, handbooks, and videos covering social science research design and methods including the complete Little Green Book Series of Quantitative Applications in the Social Sciences and the Little Blue Book Series of Qualitative Research techniques. The database also includes case studies outlining the research methods used in real research projects. This is an excellent source for finding definitions of key terms and descriptions of research design and practice, techniques of data gathering, analysis, and reporting, and information about theories of research [e.g., grounded theory]. The database covers both qualitative and quantitative research methods as well as mixed methods approaches to conducting research.

SAGE Research Methods Online and Cases

  • << Previous: Qualitative Methods
  • Next: Insiderness >>
  • Last Updated: May 9, 2024 11:05 AM
  • URL: https://libguides.usc.edu/writingguide
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research question quantitative definition

Home Market Research

Quantitative Survey Questions: Definition, Types and Examples

Quantitative survey questions

Content Index

Quantitative Survey Questions: Definition

Types of quantitative survey questions with examples, how to design quantitative survey questions.

Quantitative survey questions are defined as objective questions used to gain detailed insights from respondents about a survey research topic. The answers received for these quantitative survey questions are analyzed and a research report is generated on the basis of this

 data . These questions form the core of a survey and are used to gather numerical data to determine statistical results.

The primary stage before conducting an online survey will be to decide the objective of the survey. Every research should have an answer to this integral question: “What are the expected results of your survey?”. Once the answer to this question is figured out, the secondary stage will be deciding the type of required data: quantitative or qualitative data .

LEARN ABOUT: Survey Mistakes And How to Avoid

Deciding the data type indicates the type of information required from the research process. While qualitative data provides detailed information about the subject, quantitative data will provide effective and precise information.

Quantitative survey questions are thus, channels for collecting quantitative data . Feedback received to quantitative survey questions is related to, measured by or measuring a “quantity” or a statistic and not the “quality” of the parameter.   

Learn more: Survey Questions

Quantitative survey questions should be such that they offer respondents a medium to answer accurately. On the basis of this factor, quantitative survey questions are divided into three types:

1. Descriptive Survey Questions: Descriptive survey questions are used to gain information about a variable or multiple variables to associate a quantity to the variable.

It is the simplest type of quantitative survey questions and helps researchers in quantifying the variables by surveying a large sample of their target market.

LEARN ABOUT: Survey Sample Sizes

Most widely implemented descriptive analysis questions start with “What is this..”, “How much..”, “What is the percentage of..” and such similar questions. A popular example of a descriptive survey is an exit poll as it contains a question: “What is the percentage of candidate X winning this election?” or in a demographic segmentation survey: “How many people between the age of 18-25 exercise daily?”

Learn more: Demographic Survey Questions

Other examples of descriptive survey questions are:

  • Variable: Cuisine
  • Target Group: Mexicans
  • Variable: Facets that transform career decisions
  • Target Group: Indian students
  • Variable: Number of citizens looking for better opportunities
  • Target Group: Chinese citizens

In every example mentioned above, researchers should focus on quantifying the variable. The only factor that changes is the parameter of measurement. Every example mentions a different quantitative sample question which needs to be measured by different parameters.

LEARN ABOUT: Testimonial Questions

The answers for descriptive survey questions are definitional for the research topic and they quantify the topics of analysis. Usually, a descriptive research will require a long list of descriptive questions but experimental research or relationship-based research will be effective with a couple of descriptive survey questions.

Learn more: Quantitative Market Research & Descriptive Research vs Correlational Research

2. Comparative Survey Questions: Comparative survey questions are used to establish a comparison between two or more groups on the basis of one or more dependable variables. These quantitative survey questions begin with “What is the difference in” [dependable variable] between [two or more groups]?. This question will be enough to realize that the main objective of comparative questions is to form a comparative relationship between the groups under consideration.

LEARN ABOUT:   Structured Question & Structured Questionnaire

Comparative survey question examples:

  • Dependable Variable: Cuisine preferences
  • Comparison Groups: Mexican adults and children
  • Dependable Variable: Factors that transform career decisions
  • Comparison Groups: Indian and Australian students
  • Dependable Variable: Political notions
  • Comparison Groups: Asian and American citizens

The various groups mentioned in the above-mentioned options indicate independent variables (Mexican people or country of students). These independent variables could be based on gender questions , ethnicity or education. It is the dependable variable that determines the complexity of comparative survey questions.

LEARN ABOUT: Average Order Value

3. Relationship Survey Questions: Relationship survey questions are used to understand the association, trends and causal comparative research  relationship between two or more variables. When discussing research topics, the term relationship/causal survey questions should be carefully used since it is a widely used type of research design , i.e., experimental research – where the cause and effect between two or more variables. These questions start with “What is the relationship” [between or amongst] followed by a string of independent [gender or ethnicity] and dependent variables [career, political beliefs etc.]?

  • Dependent Variable: Food preferences
  • Independent Variable: Age
  • Relationship groups: Mexico
  • Dependent Variable: University admission
  • Independent Variable: Family income
  • Relationship groups: American students
  • Dependent Variable: Lifestyle
  • Independent Variable: Socio-economic class, ethnicity, education
  • Relationship groups: China

Learn more: What is Research?

There are four critical steps to follow while designing quantitative survey questions:

1. Select the type of quantitative survey question: The objective of the research is reflected in the chosen type of quantitative survey question. For the respondents to have a clear understanding of the survey, researchers should select the desired type of quantitative survey question.  

2. Recognize the filtered dependent and independent variables along with the target group/s: Irrespective of the type of selected quantitative survey question (descriptive, comparative or relationship based), researchers should decide on the dependent and independent variables and also the target audiences .

LEARN ABOUT: Product Survey Questions

There are four levels of measurement variables – one of which can be chosen for creating quantitative survey questions. Nominal variables indicate the names of variables, Ordinal variables indicate names and order of variables, Interval variables indicate name, order and an established interval between ordered variables and Ratio variables indicate the name, order, an established interval and also an absolute zero value.

A variable can not only be calculated but also can be manipulated and controlled. For descriptive survey questions, there can be multiple variables for which questions can be formed. In the other two types of quantitative survey questions (comparative and relationship-based), dependent and independent variables are to be decided. Independent variables are those which are manipulated in order to observe the change in the dependent variables.

Learn more: Quantitative Observation

3. Choose the right structure according to the decided type of quantitative survey question: As discussed in the previous section, appropriate structures have to be chosen to create quantitative survey questions. The intention of creating these survey questions should align with the structure of the question.

LEARN ABOUT: Level of Analysis

This structure indicates – 1) Variables 2) Groups and 3) Order in which the variables and groups should appear in the question.

4. Note the roadblocks you are trying to solve in order to create a thorough survey question: Analyze the ease of reading these questions once the right structure is in place. Will the respondents be able to easily understand the questions? – Ensure this factor before finalizing the quantitative survey questions.

Learn more:

  • Nominal Scale
  • Ordinal Scale
  • Interval Scale
  • Ratio Scale
  • Nominal Data

You can use QuestionPro for survey questions like income survey questions , Quantitative survey questions, Ethnicity survey questions, and life survey questions.


data information vs insight

Data Information vs Insight: Essential differences

May 14, 2024

pricing analytics software

Pricing Analytics Software: Optimize Your Pricing Strategy

May 13, 2024

relationship marketing

Relationship Marketing: What It Is, Examples & Top 7 Benefits

May 8, 2024

email survey tool

The Best Email Survey Tool to Boost Your Feedback Game

May 7, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence


  1. What Is Quantitative Research?

    Quantitative research is the opposite of qualitative research, which involves collecting and analyzing non-numerical data (e.g., text, video, or audio). Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc. Quantitative research question examples

  2. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  3. What is Quantitative Research? Definition, Methods, Types, and Examples

    Quantitative research is the process of collecting and analyzing numerical data to describe, predict, or control variables of interest. This type of research helps in testing the causal relationships between variables, making predictions, and generalizing results to wider populations. The purpose of quantitative research is to test a predefined ...

  4. Qualitative vs. Quantitative Research

    When collecting and analyzing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings. Both are important for gaining different kinds of knowledge. Quantitative research. Quantitative research is expressed in numbers and graphs. It is used to test or confirm theories and assumptions.

  5. What Is Quantitative Research?

    Quantitative research is the opposite of qualitative research, which involves collecting and analysing non-numerical data (e.g. text, video, or audio). Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc. Quantitative research question examples

  6. Writing Strong Research Questions

    A good research question is essential to guide your research paper, dissertation, or thesis. All research questions should be: Focused on a single problem or issue. Researchable using primary and/or secondary sources. Feasible to answer within the timeframe and practical constraints. Specific enough to answer thoroughly.

  7. Quantitative Research

    Quantitative Research. Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions.This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected.

  8. Quantitative research

    Quantitative research is a research strategy that focuses on quantifying the collection and analysis of data. It is formed from a deductive approach where emphasis is placed on the testing of theory, shaped by empiricist and positivist philosophies.. Associated with the natural, applied, formal, and social sciences this research strategy promotes the objective empirical investigation of ...

  9. Designing a Research Question

    Research questions are vital to qualitative, quantitative, and mixed-methods research. They "narrow the research objective and research purpose" ([]: p 475; [2, 3]) and determine the study methods (e.g., research paradigm, design, sampling method, instruments, and analysis).Despite the essential role the question holds in guiding and focusing research, White [] noted that academic ...

  10. PDF Introduction to quantitative research

    Quantitative research is 'Explaining phenomena by collecting numerical data that are analysed using mathematically based methods (in particu-lar statistics)'. Let's go through this definition step by step. The first element is explaining phenomena. This is a key element of all research, be it quantitative or quali-tative.

  11. PDF Research Questions and Hypotheses

    Most quantitative research falls into one or more of these three categories. The most rigorous form of quantitative research follows from a test of a theory (see Chapter 3) and the specification of research questions or hypotheses that are included in the theory. The independent and dependent variables must be measured sepa-rately.

  12. Quantitative and Qualitative Research

    Social scientists are concerned with the study of people. Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population. Allen, M. (2017). The SAGE encyclopedia ...

  13. What is Quantitative Research? Definition, Examples, Key Advantages

    Quantitative research is a type of research that focuses on collecting and analyzing numerical data to answer research questions. There are two main methods used to conduct quantitative research: 1. Primary Method. There are several methods of primary quantitative research, each with its own strengths and limitations.

  14. Research Questions: Definitions, Types + [Examples]

    A qualitative research question is a type of systematic inquiry that aims at collecting qualitative data from research subjects. The aim of qualitative research questions is to gather non-statistical information pertaining to the experiences, observations, and perceptions of the research subjects in line with the objectives of the investigation.

  15. Quantitative Research: What It Is, Practices & Methods

    Quantitative research involves analyzing and gathering numerical data to uncover trends, calculate averages, evaluate relationships, and derive overarching insights. It's used in various fields, including the natural and social sciences. Quantitative data analysis employs statistical techniques for processing and interpreting numeric data.

  16. Formulation of Research Question

    Formulation of research question (RQ) is an essentiality before starting any research. It aims to explore an existing uncertainty in an area of concern and points to a need for deliberate investigation. It is, therefore, pertinent to formulate a good RQ. The present paper aims to discuss the process of formulation of RQ with stepwise approach.

  17. Qualitative vs Quantitative Research: What's the Difference?

    Qualitative research aims to produce rich and detailed descriptions of the phenomenon being studied, and to uncover new insights and meanings. Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language.

  18. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  19. What Are Quantitative Survey Questions? Types and Examples

    The rest of this article focuses on quantitative research, taking a closer look at quantitative survey question types and question formats/layouts. Back to table of contents . Types of quantitative survey questions - with examples . Quantitative questions come in many forms, each with different benefits depending on your market research objectives.

  20. How to Write a Research Question in 2024: Types, Steps, and Examples

    Quantitative research questions usually seek to understand particular social, familial, or educational experiences or processes that occur in a particular context and/or location (Marshall & Rossman, 2011). ... Based on the research question definition provided, formulate your query. If you are looking for criteria for a good research question ...

  21. Quantitative Methods

    Quantitative methods emphasize objective measurements and the statistical, mathematical, or numerical analysis of data collected through polls, questionnaires, and surveys, or by manipulating pre-existing statistical data using computational techniques.Quantitative research focuses on gathering numerical data and generalizing it across groups of people or to explain a particular phenomenon.

  22. Quantitative Survey Questions: Definition, Types and Examples

    Quantitative survey questions are defined as objective questions used to gain detailed insights from respondents about a survey research topic. The answers received for these quantitative survey questions are analyzed and a research report is generated on the basis of this. data. These questions form the core of a survey and are used to gather ...

  23. A Quantitative Assessment of Visual Function for Young and Medically

    Background Cerebral Visual Impairment (CVI) is the most common cause of low vision in children. Standardized, quantifiable measures of visual function are needed. Objective This study developed and evaluated a new method for quantifying visual function in young and medically complex children with CVI using remote videoconferencing. Methods Children diagnosed with CVI who had been unable to ...

  24. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  25. Qu'est-ce que la recherche quantitative ? Définition, exemples

    Les avantages de la recherche quantitative en font une méthode de recherche précieuse dans de nombreux domaines, en particulier dans ceux qui nécessitent des mesures précises et la vérification d'hypothèses. Précision : La recherche quantitative vise à être précise dans la mesure et l'analyse des données. Cela peut accroître la ...