• Search Menu
  • Advance articles
  • Author Guidelines
  • Submission Site
  • Open Access
  • Why Publish?
  • About Research Evaluation
  • Editorial Board
  • Advertising and Corporate Services
  • Journals Career Network
  • Self-Archiving Policy
  • Dispatch Dates
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Article Contents

1. introduction, 2. analytical framework, 3. literature search, 5. discussion, 6. conclusion, acknowledgement.

  • < Previous

Research impact assessment in agriculture—A review of approaches and impact areas

  • Article contents
  • Figures & tables
  • Supplementary Data

Peter Weißhuhn, Katharina Helming, Johanna Ferretti, Research impact assessment in agriculture—A review of approaches and impact areas, Research Evaluation , Volume 27, Issue 1, January 2018, Pages 36–42, https://doi.org/10.1093/reseval/rvx034

  • Permissions Icon Permissions

Research has a role to play in society’s endeavour for sustainable development. This is particularly true for agricultural research, since agriculture is at the nexus between numerous sustainable development goals. Yet, generally accepted methods for linking research outcomes to sustainability impacts are missing. We conducted a review of scientific literature to analyse how impacts of agricultural research were assessed and what types of impacts were covered. A total of 171 papers published between 2008 and 2016 were reviewed. Our analytical framework covered three categories: (1) the assessment level of research (policy, programme, organization, project, technology, or other); (2) the type of assessment method (conceptual, qualitative, or quantitative); and (3) the impact areas (economic, social, environmental, or sustainability). The analysis revealed that most papers (56%) addressed economic impacts, such as cost-effectiveness of research funding or macroeconomic effects. In total, 42% analysed social impacts, like food security or aspects of equity. Very few papers (2%) examined environmental impacts, such as climate effects or ecosystem change. Only one paper considered all three sustainability dimensions. We found a majority of papers assessing research impacts at the level of technologies, particularly for economic impacts. There was a tendency of preferring quantitative methods for economic impacts, and qualitative methods for social impacts. The most striking finding was the ‘blind eye’ towards environmental and sustainability implications in research impact assessments. Efforts have to be made to close this gap and to develop integrated research assessment approaches, such as those available for policy impact assessments.

Research has multiple impacts on society. In the light of the international discourse on grand societal challenges and sustainable development, the debate is reinforced about the role of research on economic growth, societal well-being, and environmental integrity ( 1 ). Research impact assessment (RIA) is a key instrument to exploring this role ( 2 ).

A number of countries have begun using RIA to base decisions for allocation of funding on it, and to justify the value of investments in research to taxpayers ( 3 ). The so-called scientometric assessments with a focus on bibliometric and exploitable results such as patents are the main basis for current RIA practices ( 4–6 ). However, neither academic values of science, based on the assumption of ‘knowledge as progress’, nor market values frameworks (‘profit as progress’) seem adequate for achieving and assessing broader public values ( 7 ). Those approaches do not explicitly acknowledge the contribution of research to solving societal challenges, although they are sufficient to measure scientific excellence ( 8 ) or academic impact.

RIA may however represent a vital element for designing socially responsible research processes with orientation towards responsibility for a sustainable development ( 9 , 10 ). In the past, RIAs occurred to focus on output indicators and on links between science and productivity while hardly exploring the wider societal impacts of science ( 11 ). RIA should entail the consideration of intended and non-intended, positive and negative, and long- and short-term impacts of research ( 12 ). Indeed, there has been a broadening of impact assessments to include, for example, cultural and social returns to society ( 13 ). RIA is conceptually and methodologically not yet sufficiently equipped to capture wider societal implications, though ( 14 ). This is due to the specific challenges associated with RIA, including inter alia unknown time lags between research processes and their impacts ( 15–17 ). Independent from their orientation, RIAs are likely to influence research policies for years to come ( 18 ).

Research on RIA and its potential to cover wider societal impacts has examined assessment methods and approaches in specific fields of research, and in specific research organizations. The European Science Foundation ( 19 ) and Guthrie et al. ( 20 ) provided overviews of a range of methods usable in assessment exercises. They discuss generic methods (e.g. economic analyses, surveys, and case studies) with view to their selection for RIAs. Methods need to fit the objectives of the assessment and the characteristics of the disciplines examined. Econometric methods consider the rate of return over investment ( 21 ), indicators for ‘productive interactions’ between the stakeholders try to capture the social impact of research ( 22 ), and case study-based approaches map the ‘public values’ of research programmes ( 8 , 23 ). No approach is generally favourable over another, while challenges exist in understanding which impact areas are relevant in what contexts. Penfield et al. ( 6 ) looked at the different methods and frameworks employed in assessment approaches worldwide, with a focus on the UK Research Excellence Framework. They argue that there is a need for RIA approaches based on types of impact rather than research discipline. They point to the need for tools and systems to assist in RIAs and highlight different types of information needed along the output-outcome-impact-chain to provide for a comprehensive assessment. In the field of public health research, a minority of RIAs exhibit a wider scope on impacts, and these studies highlight the relevance of case studies ( 24 ). However, case studies often rely on principal investigator interviews and/or peer review, not taking into account the views of end users. Evaluation practices in environment-related research organizations tend to focus on research uptake and management processes, but partially show a broader scope and longer-term outcomes. Establishing attribution of environmental research to different types of impacts was identified to be a key challenge ( 25 ). Other authors tested impact frameworks or impact patterns in disciplinary public research organizations. For example, Gaunand et al. ( 26 ) analysed an internal database of the French Agricultural research organization INRA with 1,048 entries to identify seven impact areas, with five going beyond traditional types of impacts (e.g. conservation of natural resources or scientific advice). Besides, for the case of agricultural research, no systematic review of RIA methods exists in the academic literature that would allow for an overview of available approaches covering different impact areas of research.

Against this background, the objective of this study was to review in how far RIAs of agricultural research capture wider societal implications. We understand agricultural research as being a prime example for the consideration of wider research impacts. This is because agriculture is a sector which has direct and severe implications for a range of the UN Sustainable Development Goals. It has a strong practice orientation and is just beginning to develop a common understanding of innovation processes ( 27 ).

The analysis of the identified literature on agricultural RIA (for details, see next section ‘Literature search’) built on a framework from a preliminary study presented at the ImpAR Conference 2015 ( 28 ). It was based on three categories to explore the impact areas that were addressed and the design of RIA. In particular, the analytical framework consisted of: ( 1 ) the assessment level of research; ( 2 ) the type of assessment method; and ( 3 ) the impact areas covered. On the side, we additionally explored the time dimension of RIA, i.e. whether the assessment was done ex ante or ex post (see Fig. 1 ).

Analytical framework for the review of non-scientometric impact assessment literature of agricultural research.

Analytical framework for the review of non-scientometric impact assessment literature of agricultural research.

Agricultural research and the ramifications following from that refer to different levels of assessment (or levels of evaluation, ( 29 )). We defined six assessment levels that can be the subject of a RIA: policy, programme, organization, project, technology, and other. The assessment level of the RIA is a relevant category, since it shapes the approach to the RIA (e.g. the impact chain of a research project differs to that at policy level). The assessment level was clearly stated in all of the analysed papers and in no case more than one assessment level was addressed. Articles were assigned to the policy level, if a certain public technology policy ( 30 ) or science policy, implemented by governments to directly or indirectly affect the conduct of science, was considered. Exemplary topics are research funding, transfer of research results to application, or contribution to economic development. Research programmes were understood as instruments that are adopted by government departments, or other organizational entities to implement research policies and fund research activities in a specific research field (e.g. programmes to promote research on a certain crop or cultivation technique). Articles dealing with the organizational level assess the impact of research activities of a specific research organization. The term research organization comprises public or private research institutes, associations, networks, or partnerships (e.g. the Consultative Group on International Agricultural Research (CGIAR) and its research centres). A research project is the level at which research is actually carried out, e.g. as part of a research programme. The assessment of a research project would consider the impacts of the whole project, from planning through implementation to evaluation instead of focusing on a specific project output, like a certain agricultural innovation. The technology level was considered to be complementary to the other assessment levels of research and comprises studies with a strong focus on specific agricultural machinery or other agricultural innovation such as new crops or crop rotations, fertilizer applications, pest control, or tillage practices, irrespective of the agricultural system (e.g. smallholder or high-technology farming, or organic, integrated, or conventional farming). The category ‘other’ included one article addressing RIA at the level of individual researchers (see ( 31 )).

We categorized the impact areas along the three dimensions of sustainable development by drawing upon the European Commission’s impact assessment guidelines (cf. ( 32 )). The guidelines entail a list of 7 environmental impacts, such as natural resource use, climate change, or aspects of nature conservation; 12 social impacts, such as employment and working conditions, security, education, or aspects of equity; and 10 economic impacts, including business competitiveness, increased trade, and several macroeconomic aspects. The European Commission’s impact assessment guidelines were used as a classification framework because it is one of the most advanced impact assessment frameworks established until to date ( 33 ). In addition, we opened a separate category for those articles exploring joint impacts on the three sustainability dimensions. Few articles addressed impacts in two sustainability dimensions which we assigned to the dominating impact area.

To categorize the type of RIA method, we distinguished between conceptual, qualitative, and quantitative. Conceptual analyses include the development of frameworks or concepts for measuring impacts of agricultural research (e.g. tracking of innovation pathways or the identification of barriers and supporting factors for impact generation). Qualitative and quantitative methods were identified by the use of qualitative data or quantitative data, respectively (cf. ( 34–36 )). Qualitative data can be scaled nominally or ordinally. It is generated by interviews, questionnaires, surveys or choice experiments to gauge stakeholder attitudes to new technologies, their willingness to pay, and their preference for adoption measures. The generation of quantitative data involves a numeric measurement in a standardized way. Such data are on a metric scale and are often used for modelling. The used categorization is rather simple. We assigned approaches which employed mixed-method approaches according to their dominant method. We preferred this over more sophisticated typologies to achieve a high level of abstraction and because the focus of our analysis was on impact areas rather than methods. However, to show consistencies with existing typologies of impact assessment methods ( 19 , 37 ), we provide an overview of the categorization chosen and give examples of the most relevant types of methods.

To additionally explore the approach of the assessment ( 38 ), the dimensions ex ante and ex post were identified. The two approaches are complementary: whereas ex ante impact assessments are usually conducted for strategic and planning purposes to set priorities, ex post impact assessments serve as accountability validation and control against a baseline. The studies in our sample that employed an ex ante approach to RIA usually made this explicit, while in the majority of ex post impact assessments, this was indicated rather implicitly.

This study was performed as a literature review based on Thomson Reuters Web of Science TM Core Collection, indexed in the Science Citation Index Expanded (SCI-Exp) and the Social Sciences Citation Index (SSCI). The motivation for restricting the analysis to articles from ISI-listed journals was to stay within the boundaries of internationally accepted scientific quality management and worldwide access. The advantages of a search based on Elsevier’s Scopus ® (more journals and alternative publications, and more articles from social and health science covered) would not apply for this literature review, with regard to the drawbacks of an index system based on abstracts instead of citation indexes, which is not as transparent as the Core Collection regarding the database definable by the user. We selected the years of 2008 to mid-2016 for the analysis (numbers last updated on 2 June 2016) . First, because most performance-based funding systems have been introduced since 2000, allowing sufficient time for the RIA approaches to evolve and literature to be published. Secondly, in 2008 two key publications on RIA of agricultural research triggered the topic: Kelley, et al. ( 38 ) published the lessons learned from the Standing Panel on Impact Assessment of CGIAR; Watts, et al. ( 39 ) summarized several central pitfalls of impact assessment concerning agricultural research. We took these publications as a starting point for the literature search. We searched in TOPIC and therefore, the terms had to appear in the title, abstract, author keywords, or keywords plus ® . The search query 1 filtered for agricultural research in relation to research impact. To cover similar expressions, we used science, ‘R&D’, and innovation interchangeably with research, and we searched for assessment, evaluation, criteria, benefit, adoption, or adaptation of research.

We combined the TOPIC search with a less strict search query 2 in TITLE using the same groups of terms, as these searches contained approximately two-thirds non-overlapping papers. Together they consisted of 315 papers. Of these, we reviewed 282 after excluding all document types other than articles and reviews (19 papers were not peer-reviewed journal articles) and all papers not written in English language (14 papers). After going through them, 171 proved to be topic-relevant and were included in the analysis.

Analysis matrix showing the number of reviewed articles, each categorized to an assessment level and an impact area (social, economic, environmental, or all three (sustainability)). Additionally, the type of analytical method (conceptual, quantitative, and qualitative) is itemized

In the agricultural RIA, the core assessment level of the reviewed articles was technology (39%), while the other levels were almost equally represented (with the exception of ‘other’). Generally, most papers (56%) addressed economic research impacts, closely followed by social research impacts (42%); however, only three papers (2%) addressed environmental research impacts and only 1 of 171 papers addressed all three dimensions of sustainable development. Assessments at the level of research policy slightly emphasized social impacts over economic impacts (18 papers, or 58%), whereas assessments at the level of technology clearly focused primarily on economic impacts (46 papers, or 68%).

The methods used for agricultural RIA showed no preference for one method type (see Table 1 ). Approximately 31% of the papers assessed research impacts quantitatively, whereas 37% used qualitative methods. Conceptual considerations on research impact were applied by 32% of the studies. A noticeable high number of qualitative studies were conducted to assess social impacts. At the evaluation level of research policy and research programmes, we found a focus on quantitative methods, if economic impacts were assessed.

Overview on type of methods used for agricultural RIA

a Mix of conceptual and qualitative methods.

b Mix of conceptual, qualitative, and quantitative methods.

Additionally, 37 ex ante studies, compared to 134 ex post studies, revealed that the latter clearly dominated, but no robust relation to any other investigated characteristic was found. Of the three environmental impact studies, none assessed ex ante , while the one study exploring sustainability impacts did. The share of ex ante assessments regarding social impacts was very similar to those regarding economic impacts. Within the assessment levels of research (excluding ‘others’ with only one paper), no notable difference between the shares of ex ante assessments occurred as they ranged between 13 and 28%.

The most relevant outcome of the review analysis was that only 3 of the 171 papers focus on the environmental impacts of agricultural research. This seems surprising because agriculture is dependent on an intact environment. However, this finding is supported by two recent reviews: one from Bennett, et al. ( 40 ) and one from Maredia and Raitzer ( 41 ). Both note that not only international agricultural research in general but also research on natural resource management shows a lack regarding large-scale assessments of environmental impacts. The CGIAR also recognized the necessity to deepen the understanding of the environmental impacts of its work because RIAs had largely ignored environmental benefits ( 42 ).

A few papers explicitly include environmental impacts of research in addition to their main focus. Raitzer and Maredia ( 43 ) address water depletion, greenhouse gas emissions, and landscape effects; however, their overall focus is on poverty reduction. Ajayi et al. ( 44 ) report the improvement of soil physical properties and soil biodiversity from introducing fertilizer trees but predominantly measure economic and social effects. Cavallo, et al. ( 45 ) investigate users’ attitudes towards the environmental impact of agricultural tractors (considered as technological innovation) but do not measure the environmental impact. Briones, et al. ( 46 ) configure an environmental ‘modification’ of economic surplus analysis, but they do not prioritize environmental impacts.

Of course, the environmental impacts of agricultural practices were the topic of many studies in recent decades, such as Kyllmar, et al. ( 47 ), Skinner, et al. ( 48 ), Van der Werf and Petit ( 49 ), among many others. However, we found very little evidence for the impact of agricultural research on the environment. A study on environmental management systems that examined technology adoption rates though not the environmental impacts is exemplarily for this ( 50 ). One possible explanation is based on the observation made by Morris, et al. ( 51 ) and Watts, et al. ( 39 ). They see impact assessments tending to accentuate the success stories because studies are often commissioned strategically as to demonstrate a certain outcome. This would mean to avoid carving out negative environmental impacts that conflict with, when indicated, the positive economic or societal impacts of the assessed research activity. In analogy to policy impact assessments, this points to the need of incentives to equally explore intended and unintended, expected and non-expected impacts from scratch ( 52 ). From those tasked with an RIA, this again requires an open attitude in ‘doing RIA’ and towards the findings of their RIA.

Another possible explanation was given by Bennett, et al. ( 40 ): a lack of skills in ecology or environmental economics to cope with the technically complex and data-intensive integration of environmental impacts. Although such a lack of skills or data could also apply to social and economic impacts, continuous monitoring of environmental data related to agricultural practices is particularly scarce. A third possible explanation is a conceptual oversight, as environmental impacts may be thought to be covered by the plenty of environmental impact assessments of agricultural activities itself.

The impression of a ‘blind eye’ on the environment in agricultural RIA may change when publications beyond Web of Science TM Core Collection are considered ( 53 ) or sources other than peer-reviewed journal articles are analysed (e.g. reports; conference proceedings). See, for example, Kelley, et al. ( 38 ), Maredia and Pingali ( 54 ), or FAO ( 55 ). Additionally, scientific publications of the highest quality standard (indicated by reviews and articles being listed in the Web of Science TM Core Collection) seem to not yet reflect experiences and advancements from assessment applications on research and innovation policy that usually include the environmental impact ( 56 ).

Since their beginnings, RIAs have begun to move away from narrow exercises concerned with economic impacts ( 11 ) and expanded their scope to social impacts. However, we only found one sustainability approach in our review that would cover all three impact areas of agricultural research (see ( 57 )). In contrast, progressive approaches to policy impact assessment largely attempt to cover the full range of environmental, social, and economic impacts of policy ( 33 , 58 ). RIAs may learn from them.

Additionally, the focus of agricultural research on technological innovation seems evident. Although the word innovation is sometimes still used for new technology (as in ‘diffusion of innovations’), it is increasingly used for the process of technical and institutional change at the farm level and higher levels of impact. Technology production increasingly is embedded in innovation systems ( 59 ).

The review revealed a diversity of methods (see Table 2 ) applied in impact assessments of agricultural research. In the early phases of RIA, the methods drawn from agricultural economics were considered as good standard for an impact assessment of international agricultural research ( 39 ). However, quantitative methods most often address economic impacts. In addition, the reliability of assessments based on econometric models is often disputed because of strong relationships between modelling assumptions and respective results.

Regarding environmental (or sustainability) impacts of agricultural research, the portfolio of assessment methods could be extended by learning from RIAs in other impact areas. In our literature sample, only review, framework development (e.g. key barrier typologies, environmental costing, or payments for ecosystem services), life-cycle assessment, and semi-structured interviews were used for environmental impacts of agricultural research.

In total, 42 of the 171 analysed papers assessed the impact of participatory research. A co-management of public research acknowledges the influence of the surrounding ecological, social, and political system and allows different types of stakeholder knowledge to shape innovation ( 60 ). Schut, et al. ( 36 ) conceptualize an agricultural innovation support system, which considers multi-stakeholder dynamics next to multilevel interactions within the agricultural system and multiple dimensions of the agricultural problem. Another type of participation in RIAs is the involvement of stakeholders to the evaluation process. A comparatively low number of six papers considered participatory evaluation of research impact, of them three in combination with impact assessment of participatory research.

Approximately 22% of the articles in our sample on agricultural research reported that they conducted their assessments ex ante , but most studies were ex post assessments. Watts, et al. ( 39 ) considered ex ante impact assessment to be more instructive than ex post assessment because it can directly guide the design of research towards maximizing beneficial impacts. This is particularly true when an ex ante assessment is conducted as a comparative assessment comprising a set of alternative options ( 61 ).

Many authors of the studies analysed were not explicit about the time frames considered in their ex post studies. The potential latency of impacts from research points to the need for ex post (and ex ante) studies to account for and analyse longer time periods, either considering ‘decades’ ( 62 , 63 ) or a lag distribution covering up to 50 years, with a peak approximately in the middle of the impact period ( 64 ). This finding is in line with the perspective of impact assessments as an ongoing process throughout a project’s life cycle and not as a one-off process at the end ( 51 ). Nevertheless, ex post assessments are an important component of a comprehensive evaluation package, which includes ex ante impact assessment, impact pathway analysis, programme peer reviews, performance monitoring and evaluation, and process evaluations, among others ( 38 ).

RIA is conceptually and methodologically not yet sufficiently equipped to capture wider societal implications, though ( 14 ). This is due to the specific challenges associated with RIA, including inter alia unknown time lags between research processes and their impacts ( 15–17 ). Independent from their orientation, RIAs are likely to influence research policies for years to come ( 18 ).

However, in the cases in which a RIA is carried out, an increase in the positive impacts (or avoidance of negative impacts) of agricultural research does not follow automatically. Lilja and Dixon ( 65 ) state the following methodological reasons for the missing impact of impact studies: no accountability with internal learning, no developed scaling out, the overlap of monitoring and evaluation and impact assessment, the intrinsic nature of functional and empowering farmer participation, the persistent lack of widespread attention to gender, and the operational and political complexity of multi-stakeholder impact assessment. In contrast, a desired impact of research could be reached or boosted by specific measures without making an impact assessment at all. Kristjanson, et al. ( 66 ), for example, proposed seven framework conditions for agricultural research to bridge the gap between scientific knowledge and action towards sustainable development. RIA should develop into process-oriented evaluations, in contrast to outcome-oriented evaluation ( 67 ), for addressing the intended kind of impacts, the scope of assessment, and for choosing the appropriate assessment method ( 19 ).

This review aimed at providing an overview of impact assessment activities reported in academic agricultural literature with regard to their coverage of impact areas and type of assessment method used. We found a remarkable body of non-scientometric RIA at all evaluation levels of agricultural research but a major interest in economic impacts of new agricultural technologies. These are closely followed by an interest in social impacts at multiple assessments levels that usually focus on food security and poverty reduction and rely slightly more on qualitative assessment methods. In contrast, the assessment of the environmental impacts of agricultural research or comprehensive sustainability assessments was exceptionally limited. They may have been systematically overlooked in the past, for the reason of expected negative results, thought to be covered by other impact studies or methodological challenges. RIA could learn from user-oriented policy impact assessments that usually include environmental impacts. Frameworks for RIA should avoid narrowing the assessment focus and instead considering intended and unintended impacts in several impact areas equally. It seems fruitful to invest in assessment teams’ environmental analytic skills and to expand several of the already developed methods for economic or social impact to the environmental impacts. Only then, the complex and comprehensive contribution of agricultural research to sustainable development can be revealed.

The authors would like to thank Jana Rumler and Claus Dalchow for their support in the Web of Science analysis and Melanie Gutschker for her support in the quantitative literature analysis.

This work was supported by the project LIAISE (Linking Impact Assessment to Sustainability Expertise, www.liaisenoe.eu ), which was funded by Framework Programme 7 of the European Commission and co-funded by the Leibniz-Centre for Agricultural Landscape Research. The research was further inspired and supported by funding from the ‘Guidelines for Sustainability Management’ project for non-university research institutes in Germany (‘Leitfaden Nachhaltigkeitsmanagement’, BMBF grant 311 number 13NKE003A).

Seidl R. et al.  ( 2013 ) ‘ Science with Society in the Anthropocene ’, Ambio , 42 / 1 : 5 – 12 .

Google Scholar

OECD . ( 2010 ) ‘Performance-Based Funding for Public Research in Tertiary Education Institutions’, Workshop Proceedings ' 2010. Paris : Organisation for Economic Co-operation and Development .

Hicks D. ( 2012 ) ‘ Performance-based University Research Funding Systems ’, Research Policy , 41 / 2 : 251 – 61 .

Martin B. R. ( 1996 ) ‘ The Use of Multiple Indicators in the Assessment of Basic Research ’, Scientometrics , 36 / 3 : 343 – 62 .

Moed H. F. , Halevi G. ( 2015 ) ‘ Multidimensional Assessment of Scholarly Research Impact ’, Journal of the Association for Information Science and Technology , 66 : 1988 – 2002 .

Penfield T. et al.  ( 2014 ) ‘ Assessment, Evaluations, and Definitions of Research Impact: A Review ’, Research Evaluation , 23 / 1 : 21 – 32 .

Meyer R. ( 2011 ) ‘ The Public Values Failures of Climate Science in the US ’, Minerva , 49 / 1 : 47 – 70 .

Bozeman B. , Sarewitz D. ( 2011 ) ‘ Public Value Mapping and Science Policy Evaluation ’, Minerva , 49 / 1 : 1 – 23 .

Helming K. et al.  ( 2016 ) ‘ Forschen für nachhaltige Entwicklung. Kriterien für gesellschaftlich verantwortliche Forschungsprozesse (Research for Sustainable Development. Criteria for Socially Responsible Research Processes) ’, GAIA , 25 / 3 : 161 – 5 .

Cagnin C. , Amanatidou E. , Keenan M. ( 2012 ) ‘ Orienting European Innovation Systems Towards Grand Challenges and the Roles that FTA Can Play ’, Science and Public Policy , 39 / 2 : 140 – 52 .

Godin B. , Doré C. ( 2004 ) Measuring the Impacts of Science: Beyond the Economic Dimension . Montréal (Québec) : Centre Urbanisation Culture Société (INRS) .

Ferretti J. et al.  ( 2016 ) Reflexionsrahmen für Forschen in gesellschaftlicher Verantwortung. (Framework for Reflecting Research in Societal Responsibility) . Berlin : Federal Ministry of Education and Research (BMBF) .

Jacobsson S. , Vico E. P. , Hellsmark H. ( 2014 ) ‘ The Many Ways of Academic Researchers: How is Science Made Useful? ’, Science and Public Policy , 41 : 641 – 57 .

Levitt R. et al.  ( 2010 ) Assessing the Impact of Arts and Humanities Research at the University of Cambridge . Cambridge : University of Cambridge .

Donovan C. ( 2011 ) ‘ State of the Art in Assessing Research Impact: Introduction to a Special Issue ’, Research Evaluation , 20 / 3 : 175 – 9 .

Ekboir J. ( 2003 ) ‘ Why Impact Analysis Should not be Used for Research Evaluation and what the Alternatives Are ’, Agricultural Systems , 78 / 2 : 166 – 84 .

Morton S. ( 2015 ) ‘ Progressing Research Impact Assessment: A ‘Contributions’ Approach ’, Research Evaluation , 24 : 405 – 19 .

Reinhardt A. ( 2013 ) ‘Different Pathways to Impact? “Impact” and Research Fund Allocation in Selected European Countries’, in Dean A. , Wykes M. , Stevens H. (eds) 7 Essays on Impact. DESCRIBE Project Report for Jisc , pp. 88 – 101 . Exeter : University of Exeter .

Google Preview

European Science Foundation . ( 2012 ) The Challenges of Impact Assessment. Working Group 2: Impact Assessment . Strasbourg : European Science Foundation .

Guthrie S. et al.  ( 2013 ) Measuring Research. A Guide to Research Evaluation Frameworks and Tools . Cambridge : RAND Corporation .

Alston J. M. et al.  ( 2011 ) ‘ The Economic Returns to US Public Agricultural Research ’, American Journal of Agricultural Economics , 93 / 5 : 1257 – 77 .

Spaapen J. , Drooge L. ( 2011 ) ‘ Introducing' Productive Interactions' in Social Impact Assessment ’, Research Evaluation , 20 / 3 : 211 – 18 .

Bozeman B. ( 2003 ) Public Value Mapping of Science Outcomes: Theory and Method . Washington : Center for Science, Policy and Outcomes .

Milat A. J. , Bauman A. E. , Redman S. ( 2015 ) ‘ A Narrative Review of Research Impact Assessment Models and Methods ’, Health Research Policy and Systems , 13 / 1 : 18.

Bell S. , Shaw B. , Boaz A. ( 2011 ) ‘ Real-world Approaches to Assessing the Impact of Environmental Research on Policy ’, Research Evaluation , 20 / 3 : 227 – 37 .

Gaunand A. et al.  ( 2015 ) ‘ How Does Public Agricultural Research Impact Society? A Characterization of Various Patterns ’, Research Policy , 44 / 4 : 849 – 61 .

Bokelmann W. et al.  ( 2012 ) Sector Study on the Analysis of the Innovation of German Agriculture (Sektorstudie zur Untersuchung des Innovationssystems der deutschen Landwirtschaft) . Berlin : Federal Office for Agriculture and Food (BLE) .

Weißhuhn P. , Helming K. ( 2015 ) ‘Methods for Assessing the Non-Scientometric Impacts of Agricultural Research: A Review’. In ImpAR Conference 2015: Impacts of Agricultural Research-Towards an Approach of Societal V alues. Paris: INRA.

European Science Foundation . ( 2009 ) Evaluation in National Research Funding Agencies: Approaches, Experiences and Case Studies . Strasbourg : European Science Foundation .

Bozeman B. ( 2000 ) ‘ Technology Transfer and Public Policy: A Review of Research and Theory ’, Research Policy , 29 / 4 : 627 – 55 .

Hummer K. E. , Hancock J. F. ( 2015 ) ‘ Vavilovian Centers of Plant Diversity: Implications and Impacts ’, Hortscience , 50 / 6 : 780 – 3 .

EC . ( 2015 ) Better Regulation “Toolbox” . Brussels : European Commission .

Helming K. et al.  ( 2013 ) ‘ Mainstreaming Ecosystem Services in European Policy Impact Assessment ’, Ecosystem Services in EIA and SEA , 40 : 82 – 7 .

Thapa D. B. et al.  ( 2009 ) ‘ Identifying Superior Wheat Cultivars in Participatory Research on Resource Poor Farms ’, Field Crops Research , 112 / 2–3 : 124 – 30 .

Holdsworth M. et al.  ( 2015 ) ‘ African Stakeholders' Views of Research Options to Improve Nutritional Status in Sub-Saharan Africa ’, Health Policy and Planning , 30 / 7 : 863 – 74 .

Schut M. et al.  ( 2015 ) ‘ RAAIS: Rapid Appraisal of Agricultural Innovation Systems (Part I). A Diagnostic Tool for Integrated Analysis of Complex Problems and Innovation Capacity ’, Agricultural Systems , 132 : 1 – 11 .

Jones M. M. , Grant J. ( 2013 ) ’Making the Grade: Methodologies for assessing and evidencing research impact’. In Dean A. , Wykes M. , Stevens H. (eds) 7 Essays on Impact. DESCRIBE Project Report for Jisc , pp. 25 – 43 . Exeter : University of Exeter .

Kelley T. , Ryan J. , Gregersen H. ( 2008 ) ‘ Enhancing Ex Post Impact Assessment of Agricultural Research: The CGIAR Experience ’, Research Evaluation , 17 / 3 : 201 – 12 .

Watts J. et al.  ( 2008 ) ‘ Transforming Impact Assessment: Beginning the Quiet Revolution of Institutional Learning and Change ’, Experimental Agriculture , 44 / 1 : 21 – 35 .

Bennett J. W. , Kelley T. G. , Maredia M. K. ( 2012 ) ‘ Integration of Environmental Impacts Into Ex-post Assessments of International Agricultural Research: Conceptual Issues, Applications, and the Way Forward ’, Research Evaluation , 21 / 3 : 216 – 28 .

Maredia M. K. , Raitzer D. A. ( 2012 ) ‘ Review and Analysis of Documented Patterns of Agricultural Research Impacts in Southeast Asia ’, Agricultural Systems , 106 / 1 : 46 – 58 .

Renkow M. , Byerlee D. ( 2010 ) ‘ The Impacts of CGIAR Research: A Review of Recent Evidence ’, Food Policy , 35 / 5 : 391 – 402 .

Raitzer D. A. , Maredia M. K. ( 2012 ) ‘ Analysis of Agricultural Research Investment Priorities for Sustainable Poverty Reduction in Southeast Asia ’, Food Policy , 37 / 4 : 412 – 26 .

Ajayi O. C. et al.  ( 2011 ) ‘ Agricultural Success from Africa: The Case of Fertilizer Tree Systems in Southern Africa (Malawi, Tanzania, Mozambique, Zambia and Zimbabwe) ’, International Journal of Agricultural Sustainability , 9 / 1 : 129 – 36 .

Cavallo E. et al.  ( 2014 ) ‘ Strategic Management Implications for the Adoption of Technological Innovations in Agricultural Tractor: The Role of Scale Factors and Environmental Attitude ’, Technology Analysis and Strategic Management , 26 / 7 : 765 – 79 .

Briones R. M. et al.  ( 2008 ) ‘ Priority Setting for Research on Aquatic Resources: An Application of Modified Economic Surplus Analysis to Natural Resource Systems ’, Agricultural Economics , 39 / 2 : 231 – 43 .

Kyllmar K. et al.  ( 2014 ) ‘ Small Agricultural Monitoring Catchments in Sweden Representing Environmental Impact ’, Agriculture, Ecosystems and Environment , 198 : 25 – 35 .

Skinner J. et al.  ( 1997 ) ‘ An Overview of the Environmental Impact of Agriculture in the UK ’, Journal of Environmental Management , 50 / 2 : 111 – 28 .

Van der Werf H. M. , Petit J. ( 2002 ) ‘ Evaluation of the Environmental Impact of Agriculture at the Farm Level: A Comparison and Analysis of 12 Indicator-based Methods ’, Agriculture, Ecosystems and Environment , 93 / 1 : 131 – 45 .

Carruthers G. , Vanclay F. ( 2012 ) ‘ The Intrinsic Features of Environmental Management Systems that Facilitate Adoption and Encourage Innovation in Primary Industries ’, Journal of Environmental Management , 110 : 125 – 34 .

Morris M. et al.  ( 2003 ) ‘ Assessing the Impact of Agricultural Research: An Overview ’, Quarterly Journal of International Agriculture , 42 / 2 : 127 – 48 .

Podhora A. et al.  ( 2013 ) ‘ The Policy-Relevancy of Impact Assessment Tools: Evaluating Nine Years of European Research Funding ’, Environmental Science and Policy , 31 : 85 – 95 .

Rodrigues G. S. , de Almeida Buschinelli C. C. , Dias Avila A. F. ( 2010 ) ‘ An Environmental Impact Assessment System for Agricultural Research and Development II: Institutional Learning Experience at Embrapa ’, Journal of Technology Management and Innovation , 5 / 4 : 38 – 56 .

Maredia M. , Pingali P. ( 2001 ) Environmental Impacts of Productivity-Enhancing Crop Research: A Critical Review . Durban : CGIAR .

FAO . ( 2011 ) ‘ Environmental Impact Assessment', Guideline for FAO field projects . Rome : Food and Agriculture Organization of the United Nations .

Miedzinski M. et al.  ( 2013 ) Assessing Environmental Impacts of Research and Innovation Policy .

Ervin D. E. , Glenna L. L. , Jussaume R. A. ( 2011 ) ‘ The Theory and Practice of Genetically Engineered Crops and Agricultural Sustainability ’, Sustainability , 3 / 6 : 847 – 74 .

Jacob K. et al.  ( 2012 ) ‘Sustainability in Impact Assessments - A Review of Impact Assessment Systems in selected OECD countries and the European Commission’ . Paris : Organisation for Economic Co-operation and Development .

Röling N. ( 2009 ) ‘ Pathways for Impact: Scientists' Different Perspectives on Agricultural Innovation ’, International Journal of Agricultural Sustainability , 7 / 2 : 83 – 94 .

Dentoni D. , Klerkx L. ( 2015 ) ‘ Co-managing Public Research in Australian Fisheries Through Convergence-Divergence Processes ’, Marine Policy , 60 : 259 – 71 .

Helming K. et al.  ( 2011 ) ‘ Ex Ante Impact Assessment of Policies Affecting Land Use, Part A: Analytical Framework ’, Ecology and Society , 16 / 1 : 27 .

Stads G. J. , Beintema N. ( 2015 ) ‘ Agricultural R&D Expenditure in Africa: An Analysis of Growth and Volatility ’, European Journal of Development Research , 27 / 3 : 391 – 406 .

Raitzer D. A. , Kelley T. G. ( 2008 ) ‘ Benefit-cost Meta-analysis of Investment in the International Agricultural Research Centers of the CGIAR ’, Agricultural Systems , 96 / 1-3 : 108 – 23 .

Andersen M. A. ( 2015 ) ‘ Public Investment in US Agricultural R&D and the Economic Benefits ’, Food Policy , 51 : 38 – 43 .

Lilja N. , Dixon J. ( 2008 ) ‘ Responding to the Challenges of Impact Assessment of Participatory Research and Gender Analysis ’, Experimental Agriculture , 44 / 1 : 3 – 19 .

Kristjanson P. et al.  ( 2009 ) ‘ Linking International Agricultural Research Knowledge with Action for Sustainable Development ’, Proceedings of the National Academy of Sciences United States of America , 106 / 13 : 5047 – 52 .

Upton S. , Vallance P. , Goddard J. ( 2014 ) ‘ From Outcomes to Process: Evidence for a New Approach to Research Impact Assessment ’, Research Evaluation , 23 : 352 – 65 .

The exact TOPIC query was: agricult* NEAR/1 (research* OR *scien* OR "R&D" OR innovati*) AND (research* OR *scien* OR "R&D" OR innovati*) NEAR/2 (impact* OR assess* OR evaluat* OR criteria* OR benefit* OR adoption* OR adaptation*)

The exact TITLE query was: agricult* AND (research* OR *scien* OR "R&D" OR innovati*) AND (impact* OR assess* OR evaluat* OR criteria* OR benefit* OR adoption* OR adaptation*)

Email alerts

Citing articles via.

  • Recommend to your Library

Affiliations

  • Online ISSN 1471-5449
  • Print ISSN 0958-2029
  • Copyright © 2024 Oxford University Press
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

National Academies Press: OpenBook

Sustainable Agriculture Research and Education in the Field: A Proceedings (1991)

Chapter: introduction, introduction.

Charles M. Benbrook

These proceedings are based on a workshop that brought together scientists, farmer-innovators, policymakers, and interested members of the public for a progress report on sustainable agriculture research and education efforts across the United States. The workshop, which was held on April 3 and 4, 1990, in Washington, D.C., was sponsored by the Office of Science and Education of the U.S. Department of Agriculture and the Board on Agriculture of the National Research Council. The encouraging new science discussed there should convince nearly everyone of two facts.

First, the natural resource, economic, and food safety problems facing U.S. agriculture are diverse, dynamic, and often complex. Second, a common set of biological and ecological principles—when systematically embodied in cropping and livestock management systems—can bring improved economic and environmental performance within the reach of innovative farmers. Some people contend that this result is not a realistic expectation for U.S. agriculture. The evidence presented here does not support such a pessimistic assessment.

The report of the Board on Agriculture entitled Alternative Agriculture (National Research Council, 1989a) challenged everyone to rethink key components of conventional wisdom and contemporary scientific dogma. That report has provided encouragement and direction to those individuals and organizations striving toward more sustainable production systems, and it has provoked skeptics to articulate why they feel U.S. agriculture cannot—some even say should not—seriously contemplate the need for such change. The debate has been spirited and generally constructive.

Scholars, activists, professional critics, and analysts have participated in

this debate by writing papers and books, conducting research, and offering opinions about alternative and sustainable agriculture for over 10 years. Over the past decade, many terms and concepts have come and gone. Most people—and unfortunately, many farmers—have not gone very far beyond the confusion, frustration, and occasional demagoguery that swirls around the different definitions of alternative, low-input, organic, and sustainable agriculture.

Fortunately, though, beginning in late 1989, a broad cross-section of people has grown comfortable with the term sustainable agriculture. The May 21, 1990, issue of Time magazine, in an article on sustainable agriculture entitled “It's Ugly, But It Works” includes the following passage:

[A] growing corps of experts [are] urging farmers to adopt a new approach called sustainable agriculture. Once the term was synonymous with the dreaded O word—a farm-belt euphemism for trendy organic farming that uses no synthetic chemicals. But sustainable agriculture has blossomed into an effort to curb erosion by modifying plowing techniques and to protect water supplies by minimizing, if not eliminating, artificial fertilizers and pest controls.

Concern and ridicule in farm publications and during agribusiness meetings over the philosophical roots of low-input, sustainable, or organic farming have given way to more thoughtful appraisals of the ecological and biological foundations of practical, profitable, and sustainable farming systems. While consensus clearly does not yet exist on how to “fix” agriculture's contemporary problems, a constructive dialogue is now under way among a broad cross-section of individuals, both practitioners and technicians involved in a wide variety of specialties.

This new dialogue is powerful because of the people and ideas it is connecting. Change will come slowly, however. Critical comments in some farm magazines will persist, and research and on-farm experimentation will not always lead to the hoped for insights or breakthroughs. Some systems that now appear to be sustainable will encounter unexpected production problems. Nonetheless, progress will be made.

The Board on Agriculture believes that over the next several decades significant progress can and will be made toward more profitable, resource-conserving, and environmentally prudent farming systems. Rural areas of the United States could become safer, more diverse, and aesthetically pleasing places to live. Farming could, as a result, become a more rewarding profession, both economically and through stewardship of the nation's soil and water resources. Change will be made possible; and it will be driven by new scientific knowledge, novel on-farm management tools and approaches, and economic necessity. The policy reforms adopted in the 1990 farm bill, and ongoing efforts to incorporate environmental objectives

into farm policy, may also in time make a significant difference in reshaping the economic environment in which on-farm management decisions are made.

This volume presents an array of new knowledge and insight about the functioning of agricultural systems that will provide the managerial and technological foundations for improved farming practices and systems. Examples of the research projects under way around the country are described. Through exploration of the practical experiences, recent findings, and insights of these researchers, the papers and discussions presented in this volume should demonstrate the value of field- and farm-level systems-based research that is designed and conducted with ongoing input from farmer-innovators.

Some discussion of the basic concepts that guide sustainable agriculture research and education activities may be useful. Definitions of key terms, such as sustainable agriculture, alternative agriculture, and low-input sustainable agriculture, are drawn from Alternative Agriculture and a recent paper (Benbrook and Cook, 1990).

BASIC CONCEPTS AND OPERATIONAL DEFINITIONS

Basic concepts.

Sustainable agriculture, which is a goal rather than a distinct set of practices, is a system of food and fiber production that

improves the underlying productivity of natural resources and cropping systems so that farmers can meet increasing levels of demand in concert with population and economic growth;

produces food that is safe, wholesome, and nutritious and that promotes human well-being;

ensures an adequate net farm income to support an acceptable standard of living for farmers while also underwriting the annual investments needed to improve progressively the productivity of soil, water, and other resources; and

complies with community norms and meets social expectations.

Other similar definitions could be cited, but there is now a general consensus regarding the essential elements of sustainable agriculture. Various definitions place differing degrees of emphasis on certain aspects, but a common set of core features is now found in nearly all definitions.

While sustainable agriculture is an inherently dynamic concept, alternative agriculture is the process of on-farm innovation that strives toward the goal of sustainable agriculture. Alternative agriculture encompasses efforts by farmers to develop more efficient production systems, as well as

efforts by researchers to explore the biological and ecological foundations of agricultural productivity.

The challenges inherent in striving toward sustainability are clearly dynamic. The production of adequate food on a sustainable basis will become more difficult if demographers are correct in their estimates that the global population will not stabilize before it reaches 11 billion or 12 billion in the middle of the twenty-first century. The sustainability challenge and what must be done to meet it range in nature from a single farm field, to the scale of an individual farm as an enterprise, to the food and fiber needs of a region or country, and finally to the world as a whole.

A comprehensive definition of sustainability must include physical, biological, and socioeconomic components. The continued viability of a farming system can be threatened by problems that arise within any one of these components. Farmers are often confronted with choices and sacrifices because of seemingly unavoidable trade-offs—an investment in a conservation system may improve soil and water quality but may sacrifice near-term economic performance. Diversification may increase the efficiency of resource use and bring within reach certain biological benefits, yet it may require additional machinery and a more stable and versatile labor supply. Indeed, agricultural researchers and those who design and administer farm policy must seek ways to alleviate seemingly unwelcome trade-offs by developing new knowledge and technology and, when warranted, new policies.

Operational Definitions

Sustainable agriculture is the production of food and fiber using a system that increases the inherent productive capacity of natural and biological resources in step with demand. At the same time, it must allow farmers to earn adequate profits, provide consumers with wholesome, safe food, and minimize adverse impacts on the environment.

As defined in our report, alternative agriculture is any system of food or fiber production that systematically pursues the following goals (National Research Council, 1989a):

more thorough incorporation of natural processes such as nutrient cycling, nitrogen fixation, and beneficial pest-predator relationships into the agricultural production process;

reduction in the use of off-farm inputs with the greatest potential to harm the environment or the health of farmers and consumers;

productive use of the biological and genetic potential of plant and animal species;

improvement in the match between cropping patterns and the productive potential and physical limitations of agricultural lands; and

profitable and efficient production with emphasis on improved farm management, prevention of animal disease, optimal integration of livestock and cropping enterprises, and conservation of soil, water, energy, and biological resources.

Conventional agriculture is the predominant farming practices, methods, and systems used in a region. Conventional agriculture varies over time and according to soil, climatic, and other environmental factors. Moreover, many conventional practices and methods are fully sustainable when pursued or applied properly and will continue to play integral roles in future farming systems.

Low-input sustainable agriculture (LISA) systems strive to achieve sustainability by incorporating biologically based practices that indirectly result in lessened reliance on purchased agrichemical inputs. The goal of LISA systems is improved profitability and environmental performance through systems that reduce pest pressure, efficiently manage nutrients, and comprehensively conserve resources.

Successful LISA systems are founded on practices that enhance the efficiency of resource use and limit pest pressures in a sustainable way. The operational goal of LISA should not, as a matter of first principles, be viewed as a reduction in the use of pesticides and fertilizers. Higher yields, lower per unit production costs, and lessened reliance on agrichemicals in intensive agricultural systems are, however, often among the positive outcomes of the successful adoption of LISA systems. But in much of the Third World an increased level of certain agrichemical and fertilizer inputs will be very helpful if not essential to achieve sustainability. For example, the phosphorous-starved pastures in the humid tropics will continue to suffer severe erosion and degradation in soil physical properties until soil fertility levels are restored and more vigorous plant growth provides protection from rain and sun.

Farmers are continuously modifying farming systems whenever opportunities arise for increasing productivity or profits. Management decisions are not made just in the context of one goal or concern but in the context of the overall performance of the farm and take into account many variables: prices, policy, available resources, climatic conditions, and implications for risk and uncertainty.

A necessary step in carrying out comparative assessments of conventional and alternative farming systems is to understand the differences between farming practices, farming methods, and farming systems. It is somewhat easier, then, to determine what a conventional practice, method, or system is and how an alternative or sustainable practice, method, or system might or should differ from a conventional one. The following definitions are drawn from the Glossary of Alternative Agriculture (National Research Council, 1989a).

A farming practice is a way of carrying out a discrete farming task such as a tillage operation, particular pesticide application technology, or single conservation practice. Most important farming operations—preparing a seedbed, controlling weeds and erosion, or maintaining soil fertility, for example—require a combination of practices, or a method. Most farming operations can be carried out by different methods, each of which can be accomplished by several unique combinations of different practices. The manner in which a practice is carried out—the speed and depth of a tillage operation, for example—can markedly alter its consequences.

A farming method is a systematic way to accomplish a specific farming objective by integrating a number of practices. A discrete method is needed for each essential farming task, such as preparing a seedbed and planting a crop, sustaining soil fertility, managing irrigation, collecting and disposing of manure, controlling pests, and preventing animal diseases.

A farming system is the overall approach used in crop or livestock production, often derived from a farmer's goals, values, knowledge, available technologies, and economic opportunities. A farming system influences, and is in turn defined by, the choice of methods and practices used to produce a crop or care for animals.

In practice, farmers are constantly adjusting cropping systems in an effort to improve a farm's performance. Changes in management practices generally lead to a complex set of results—some positive, others negative—all of which occur over different time scales.

The transition to more sustainable agriculture systems may, for many farmers, require some short-term sacrifices in economic performance in order to prepare the physical resource and biological ecosystem base needed for long-term improvement in both economic and environmental performance. As a result, some say that practices essential to progress toward sustainable agriculture are not economically viable and are unlikely to take hold on the farm (Marten, 1989). Their contention may prove correct, given current farm policies and the contemporary inclination to accept contemporary, short-term economic challenges as inviolate. Nonetheless, one question lingers: What is the alternative to sustainable agriculture?

PUBLIC POLICY AND RESEARCH IN SUSTAINABLE AGRICULTURE

Farmers, conservationists, consumers, and political leaders share an intense interest in the sustainability of agricultural production systems. This interest is heightened by growing recognition of the successes achieved by innovative farmers across the country who are discovering alternative agriculture practices and methods that improve a farm's economic and environmental performance. Ongoing experimental efforts on the farm, by no

means universally successful, are being subjected to rigorous scientific investigation. New insights should help farmers become even more effective stewards of natural resources and produce food that is consistently free of man-made or natural contaminants that may pose health risks.

The major challenge for U.S. agriculture in the 1990s will be to strike a balance between near-term economic performance and long-term ecological and food safety imperatives. As recommended in Alternative Agriculture (National Research Council, 1989a), public policies in the 1990s should, at a minimum, no longer penalize farmers who are committed to resource protection or those who are trying to make progress toward sustainability. Sustainability will always remain a goal to strive toward, and alternative agriculture systems will continuously evolve as a means to this end. Policy can and must play an integral role in this process.

If sustainability emerges as a principal farm and environmental policy goal, the design and assessment of agricultural policies will become more complex. Trade-offs, and hence choices, will become more explicit between near-term economic performance and enhancement of the long-term biological and physical factors that can contribute to soil and water resource productivity.

Drawing on expertise in several disciplines, policy analysts will be compelled to assess more insightfully the complex interactions that link a farm's economic, ecological, and environmental performance. It is hoped that political leaders will, as a result, recognize the importance of unraveling conflicts among policy goals and more aggressively seizing opportunities to advance the productivity and sustainability of U.S. agriculture.

A few examples may help clarify how adopting the concept of sustainability as a policy goal complicates the identification of cause-and-effect relationships and, hence, the design of remedial policies.

When a farmer is pushed toward bankruptcy by falling crop prices, a farm operation can become financially unsustainable. When crop losses mount because of pest pressure or a lack of soil nutrients, however, the farming system still becomes unsustainable financially, but for a different reason. In the former example, economic forces beyond any individual farmer's control are the clear cause; in the latter case the underlying cause is rooted in the biological management and performance of the farming system.

The biological and economic performance of a farming system can, in turn, unravel for several different reasons. Consider an example involving a particular farm that is enrolled each year in the U.S. Department of Agriculture's commodity price support programs. To maintain eligibility for government subsidies on a continuing basis, the farmer understands the importance of growing a certain minimum (base) acreage of the same crop each year. Hence, the cropping pattern on this farm is likely to lead to a

buildup in soilborne pathogens that attack plant roots and reduce yields. As a result, the farmer might resort to the use of a fumigant to control the pathogens, but the pesticide might become ineffective because of steadily worsening microbial degradation of the fumigant, or a pesticide-resistant pathogen may emerge.

A solution to these new problems might be to speed up the registration of another pesticide that could be used, or relax regulatory standards so more new products can get registered, or both. Consider another possibility. A regulatory agency may cancel use of a fumigant a farmer has been relying upon because of food safety, water quality, or concerns about it effect on wildlife. The farmer might then seek a change in grading standards or an increase in commodity prices or program benefits if alternative pesticides are more costly.

Each of these problems is distinctive when viewed in isolation and could be attacked through a number of changes in policy. The most cost-effective solution, however, will prove elusive unless the biology of the whole system is perceptively evaluated. For this reason, in the policy arena, just as on the farm, it is critical to know what the problem is that warrants intervention and what the root causes of the problem really are.

Research Challenges

In thinking through agricultural research priorities, it should be acknowledged that the crossroads where the sciences of agriculture and ecology meet remain largely undefined, yet clearly promising. There is too little information to specify in detail the features of a truly sustainable agriculture system, yet there is enough information to recognize the merit in striving toward sustainability in a more systematic way.

The capacity of current research programs and institutions to carry out such work is suspect (see Investing in Research [National Research Council, 1989b]). It also remains uncertain whether current policies and programs that were designed in the 1930s or earlier to serve a different set of farmer needs can effectively bring about the types of changes needed to improve ecological management on the modern farm.

In the 1980s, the research community reached consensus on the diagnosis of many of agriculture's contemporary ills; it may take most of the 1990s to agree on cures, and it will take at least another decade to get them into place. Those who are eager for a quick fix or who are just impatient are bound to be chronically frustrated by the slow rate of change.

Another important caution deserves emphasis. The “silver bullet” approach to solving agricultural production problems offers little promise for providing an understanding of the ecological and biological bases of sustainable agriculture. The one-on-one syndrome seeks to discover a new

pesticide for each pest, a new plant variety when a new strain of rust evolves, or a new nitrogen management method when nitrate contamination of drinking water becomes a pressing social concern. This reductionist approach reflects the inclination in the past to focus scientific and technological attention on products and outcomes rather than processes and on overcoming symptoms rather than eliminating causes. This must be changed if research aimed at making agriculture more sustainable is to move ahead at the rate possible given the new tools available to agricultural scientists.

One area of research in particular—biotechnology—will benefit from a shift in focus toward understanding the biology and ecology underlying agricultural systems. Biotechnology research tools make possible powerful new approaches in unraveling biological interactions and other natural processes at the molecular and cellular levels, thus shedding vital new light on ecological interactions with a degree of precision previously unimagined in the biological sciences. However, rather than using these new tools to advance knowledge about the functioning of systems as a first order of priority, emphasis is increasingly placed on discovering products to solve specific production problems or elucidating the mode of action of specific products.

This is regrettable for several reasons. A chance to decipher the physiological basis of sustainable agriculture systems is being put off. The payoff from focusing on products is also likely to be disappointing. The current widespread pattern of failure and consolidation within the agricultural biotechnology industry suggests that biotechnology is not yet mature enough as a science to reliably discover, refine, and commercialize product-based technologies. Products from biotechnology are inevitable, but a necessary first step must be to generate more in-depth understanding of biological processes, cycles, and interactions.

Perhaps the greatest potential of biotechnology lies in the design and on-farm application of more efficient, stable, and profitable cropping and livestock management systems. For farmers to use such systems successfully, they will need access to a range of new information and diagnostic and analytical techniques that can be used on a real-time basis to make agronomic and animal husbandry judgments about how to optimize the efficiencies of the processes and interactions that underlie plant and animal growth.

Knowledge, in combination with both conventional and novel inputs, will be deployed much more systematically to avoid soil nutrient or animal nutrition-related limits on growth; to ensure that diseases and pests do not become serious enough to warrant the excessive use of costly or hazardous pesticides; to increase the realistically attainable annual level of energy flows independent of purchased inputs within agroecosystems; and to maximize a range of functional symbiotic relationships between soil micro-

and macrofauna, plants, and animals. Discrete goals will include pathogen-suppressive soils, enhanced rotation effects, pest suppression by populations of plant-associated microorganisms, nutrient cycling and renewal, the optimization of general resistance mechanisms in plants by cultural practices, and much more effective soil and water conservation systems that benefit from changes in the stability of soil aggregates and the capacity of soils to absorb and hold moisture.

Because of the profound changes needed to create and instill this new knowledge and skills on the farm, the recommendations in Alternative Agriculture (National Research Council, 1989a) emphasize the need to expand systems-based applied research, on-farm experimentation utilizing farmers as research collaborators, and novel extension education strategies—the very goals of the U.S. Department of Agriculture's LISA program.

Future research efforts—and not just those funded through LISA—should place a premium on the application of ecological principles in the multidisciplinary study of farming system performance. A diversity of approaches in researching and designing innovative farming systems will ensure broad-based progress, particularly if farmers are actively engaged in the research enterprise.

Benbrook, C., and J. Cook. 1990. Striving toward sustainability: A framework to guide on-farm innovation, research, and policy analysis. Speech presented at the 1990 Pacific Northwest Symposium on Sustainable Agriculture, March 2.

Marten, J. 1989. Commentary: Will low-input rotations sustain your income? Farm Journal, Dec. 6.

National Research Council. 1989a. Alternative Agriculture. Washington, D.C.: National Academy Press.

National Research Council. 1989b. Investing in Research: A Proposal to Strengthen the Agricultural, Food, and Environmental System. Washington, D.C.: National Academy Press.

Interest is growing in sustainable agriculture, which involves the use of productive and profitable farming practices that take advantage of natural biological processes to conserve resources, reduce inputs, protect the environment, and enhance public health. Continuing research is helping to demonstrate the ways that many factors—economics, biology, policy, and tradition—interact in sustainable agriculture systems.

This book contains the proceedings of a workshop on the findings of a broad range of research projects funded by the U.S. Department of Agriculture. The areas of study, such as integrated pest management, alternative cropping and tillage systems, and comparisons with more conventional approaches, are essential to developing and adopting profitable and sustainable farming systems.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

What opportunities does a degree in Agricultural Economics afford me?

Agricultural Economics

Purdue’s Agricultural Economics Department covers a wide array of issues from development, trade, macroeconomics policy implications, agribusiness, production and consumption all the way to environmental and resource issues. Here in Ag Econ, we pride ourselves in our top-notch research, quality teaching and committed Extension. We also house some outstanding centers: the Global Trade Analysis Project (GTAP), the Center for Food and Agricultural Business (CAB), the Center for Commercial Agriculture (CCA) and many more.

APPLY   VISIT

Agricultural Economics [email protected] 403 Mitch Daniels Blvd. West Lafayette, IN 47907 (765) 494-4191

Department Directory

graduation cap

Students in Purdue's Department of Agricultural Economics have a 99% placement rate after graduation.

globe

Purdue is home to the #4  Agricultural Economics program in the World.

money

Students in Purdue's Agricultural Economics undergraduate program have an average starting salary of $ 52,447 .

Center for World University Rankings 2022

WHAT CAN I STUDY IN AGRICULTURAL ECONOMICS ?

View our majors and degree options, student success is our goal.

Jo Thomas and Andy Oppy

Andy Oppy and Jo Thomas, Department of Agricultural Economics Advisors, were selected by the National Academic Advising Association (NACADA), the Global Community for Academic Advising to receive prestigious annual awards. Andy received...

Featured Stories

Lucas Juengel

Lucas Juengel, an Agribusiness Management student from Decatur, IN, decided to put his classroom...

Stewart Douglas

Stewart Douglas (Commodity Marketing; Flat Rock, IN) completed a field specialist summer...

Miriam Cook

Miriam Cook (Applied Ag Econ, Pewamo, MI) provides a first-hand account of her time studying...

Alex Robinson

Coming from a non-traditional ag background, Alex Robinson (Indianapolis, IN) is increasing his...

Kayla Zalensky

Kayla Zalesny (Agrimarketing; Santa Maria, CA.) completed an internship at Duncan Family Farms in...

Sydney Hefty

AgEcon students share their experiences studying abroad in Italy

Emily Forsythe

Emily Forsythe found her love for economics during a class trip to the Federal Reserve Bank in...

Fei Qin

Fei began her academic journey studying finance at Xi'an Jiaotong University. However, after...

What's Trending

title research about agriculture pdf

The Influence of Temperature on Pollen Germination and Pollen Tube Growth in Eight Date Palm Cultivars

  • Mohammed Mesnoua
  • Farid Mezerdi
  • Abdelmoneim Tarek Ouamane

title research about agriculture pdf

Response of Cassava Root Manihot esculenta to Potassium-Rich Biostimulants Manufactured from Red Seaweed Gracilaria salicornia Under Semi-Arid Condition

  • Shanmugam Munisamy
  • Gopi Krishna Ramamoorthy

title research about agriculture pdf

Factors Influencing Ranging Behavior of Different Strains of Hens

  • Brian Tainika
  • Ahmet Şekeroğlu
  • Samet Hasan Abacı

Response of Wheat and Faba Bean to Intercropping and Tillage System on a Mediterranean Rainfed Vertisol

  • Rafael J. Lopez-Bellido
  • Veronica Muñoz-Romero
  • Luis Lopez-Bellido

title research about agriculture pdf

Potentially Toxic Elements: Distribution, Ecological Risk Assessment and Sources Identification in a Himalayan Lake in India

  • T. Banerjee

title research about agriculture pdf

Arbuscular Mycorrhizal Fungi Improve Tolerance to Water Deficit in Indian Pennywort ( Centella asiatica ) by Promoting Physio-morphological and Biochemical Adaptations

  • Patchara Praseartkul
  • Rujira Tisarum
  • Suriyan Cha-um

title research about agriculture pdf

Response of Carrots ( Daucus carota ) on the Growth, Yield, and Nutritional Composition to Varying Poultry Manure Rates

  • Festus Onyebuchi Eze
  • Chisenga Emmanuel Mukosha
  • Kayode Paul Baiyeri

title research about agriculture pdf

Genetic Diversity and Population Structure in Chestnut ( Castanea spp.) Varieties Revealed by RAPD and SRAP Markers

  • Un-Hyang Ho
  • Chang-Hyok Kim
  • Song-Hyok Pak

title research about agriculture pdf

Effect of Spermidine and Salicylic Acid Application on the Morphological and Physiological Characteristics of Quinoa ( Chenopodium quinoa ) Under Salt Stress Conditions

  • Alireza Reisizadeh
  • Mohammadreza Amerian
  • Ahmad Gholami

title research about agriculture pdf

Effect of Fermentation Methods and Turning Interval on the Quality of Cocoa Beans ( Theobroma cacao )

  • R. Arulmari
  • R. Visvanathan

title research about agriculture pdf

GGE Biplot Analysis of Exotic Sugarcane Genotypes in Major Sugarcane Producing Agro-ecologies of Ethiopia

  • Esayas Tena
  • Feyissa Tadesse
  • Feven Million

title research about agriculture pdf

An IoT-Enabled Smart pH Monitoring and Dispensing System for Precision Agriculture Application

  • Lachit Dutta
  • Swapna Bharali
  • Amarprit Singh

title research about agriculture pdf

Comparing the Efficiency of Sunflower, Marigold and Spinach Plants for Their Phytoextraction Ability of Zinc and Copper in Contaminated Soil

  • Saubhagya Kumar Samal
  • Siba Prasad Datta
  • Punyavrat S. Pandey

title research about agriculture pdf

Dynamics, Requirements, and Use Efficiency of Magnesium Throughout the Life Cycle of Acai Palm Plants

  • Milton Garcia Costa
  • Ismael de Jesus Matos Viégas
  • Ricardo Augusto Martins Cordeiro

title research about agriculture pdf

From Laboratory to Production: Innovating the Small-scale Mass Production of Spirulina ( Arthrospira platensis ) with an Alternative Culture Medium and Refined Culture Conditions

  • Kaent Immanuel N. Uba
  • Gaireen D. Gaid
  • Ruth D. Gaid

title research about agriculture pdf

Physico-Chemical Properties of Termitaria and their Surrounding Soils in Some Nigerian Ecozones

  • Simon Idoko Okweche
  • Hilili Patrick Matthew
  • Chukwudi Nwaogu

title research about agriculture pdf

Exploring Impact of Climate Change on Poultry Production in Nigeria

  • Emeka Emmanuel Osuji
  • Robert Ugochukwu Onyeneke
  • Michael Olatunji Olaolu

Assessment of Variability and Genetic Factors among High Heritable Traits of Juglans regia (Walnut) from North Western Himalayan Regions

  • Munish Sharma
  • Munit Sharma

title research about agriculture pdf

Tracking Varietal Authentication of Rice Brands in Bangladesh: Analyzing the Path from Farm to Market

  • Mohammad Chhiddikur Rahman
  • Md Shajedur Rahaman
  • Md Shahjahan Kabir

title research about agriculture pdf

Morphological, Pedological and Chemical Characterization and Classification of Soils in Morogoro District, Tanzania

  • Emmanuely Z. Nungula
  • Jayne Mugwe
  • Harun I. Gitari

Enabling Smart Agriculture: An IoT-Based Framework for Real-Time Monitoring and Analysis of Agricultural Data

  • Faruk Enes Oguz
  • Mahmut Nedim Ekersular
  • Ahmet Alkan

title research about agriculture pdf

Physio-Morphological Characterization of Interspecific Hybridization-Derived Hull-Less Seeded Lines for Fruit and Seed Traits in Pumpkin

  • Karmvir Singh Garcha
  • Ajmer Singh Dhatt

title research about agriculture pdf

Sorghum Yield Using Rectangular Versus Spherical zaï Pits and Integrated Soil Fertility Management in the Sahelian and Sudano-Sahelian Zones of Burkina Faso

  • Abdoulaye Dabre
  • Patrice Savadogo
  • Hassan Bismarck Nacro

title research about agriculture pdf

Prediction of Distribution of Dry Matter and Leaf Area of Faba Bean ( Vicia faba ) Using Nonlinear Regression Models

  • Najibullah Ebrahimi
  • Ahmad Reza Salihy
  • Ibrahim Darwish

title research about agriculture pdf

Nitrogen and Sulfur Fertilizer Application on Subsequent Storage Potential and Quality of Onion ( Allium cepa ) Bulb in the Central Rift Valley of Ethiopia

  • Wegayehu Assefa Yebalework
  • Nigussie Dechassa Robi
  • Yibekal Alemayehu Abebe

title research about agriculture pdf

The Influence of Plant Growth Modulators on Physiological Yield and Quality Traits of Sesame ( Sesamum indicum ) Cultivars Under Rainfed Conditions

  • P. Ratnakumar

title research about agriculture pdf

Soil Properties Shape the Arbuscular Mycorrhizal Status of Common Bean ( Phaseolus Vulgaris ) and Soil Mycorrhizal Potential in Kabare and Walungu Territories, Eastern DR Congo

  • Adrien Byamungu Ndeko
  • Géant Basimine Chuma
  • Gustave Nachigera Mushagalusa

title research about agriculture pdf

Effect of Different Maize ( Zea mays )/Cowpea ( Vigna unguiculata ) Intercropping Patterns and N Supply on Light Interception, Physiology and Productivity of Cowpea

  • Jacques Fils Pierre
  • Upendra Singh
  • Esaú Ruiz–Sánchez

Meteorological Factor-Based Tomato Early Blight Prediction Using Hyperparameter Tuning of Intelligent Classifiers

  • Ayushi Gupta
  • Anuradha Chug
  • Amit Prakash Singh

title research about agriculture pdf

Local Agroecological Practices and Chemical Inputs used in Mint Farming Systems, Regions of Fez-Meknes and Casablanca-Settat, Morocco

  • Wijdane Rhioui
  • Jamila Al Figuigui
  • Saadia Belmalha

title research about agriculture pdf

The Role of Social Fairness Perceptions in Farmers’ Continued Participation in Environmental Governance: A China Scenario

title research about agriculture pdf

Did Covid-19 Impacted Market Arrivals and Prices of Major Food Commodities in India: Evidence from Extended Time Series Analysis

  • Dinesh Chand Meena
  • Purushottam Sharma
  • Md. Ejaz Anwer

title research about agriculture pdf

Economic Assessment of Rhizobium tropici and Azospirillum brasilense Co-Inoculation in Common Bean

  • Matheus Messias
  • Enderson Petrônio de Brito Ferreira
  • Alcido Elenor Wander

title research about agriculture pdf

Methyl Jasmonate Treatment Relieves Chilling Injury and Improves the Postharvest Quality of Snap Bean by Regulating Antioxidant Metabolism

  • Hao-yan Zhang

title research about agriculture pdf

TAR: A Highly Accurate Machine-Learning Model to Predict the Cocoon Shell Weight of Tasar Silkworm Antheraea Mylitta

  • Khasru Alam
  • Jiaul H. Paik
  • Raviraj V. Suresh

Potential of Wheat dwarf virus (Geminiviridae: Mastrevirus) Truncated Promoter for Improvement of Transgene Expression in Rice

  • Marzieh Taghi-Malekshahi
  • Khalil Alami-Saeid
  • Mohamad Hamed Ghodoum Parizipour

title research about agriculture pdf

Economic Analysis of Poultry Farming Using ANN Approach in the Rainfed Areas of Jammu Region of South Asia

  • Vipal Bhagat
  • Sudhakar Dwivedi

title research about agriculture pdf

Image-based Appraisal of Woody Starch Reserves in Grapevine

  • Daniel Grigorie Dinu
  • Vitale Nuzzo
  • Laura Rustioni

title research about agriculture pdf

How Multiple Agricultural Production Systems Alter the Growth and Development of the Forage Cactus in a Semi-arid Environment

  • Hygor Kristoph Muniz Nunes Alves
  • Alexandre Maniçoba da Rosa Ferraz Jardim
  • Thieres George Freire da Silva

Efficient and Sustainable Crop Intensification: An Assessment of Phenofit Algorithm and Envelope Crop Classification Method for its Monitoring

  • Miguel Nolasco
  • Gustavo Ovando
  • Mónica Bocco

title research about agriculture pdf

Zoning Suitable Land for the Cultivation of Rice, Wheat, and Barley by Integration of Artificial Intelligent Methods and Spatial Data

  • Nikrooz Bagheri
  • Ali Rajabipour
  • Alireza Sabzevari

title research about agriculture pdf

Effect of Pollen Quantity on Fruit Set, Seed Germination and Plantlet Vigor of Date Palm cv. Deglet Nour

  • Messaoud Roumani
  • Aditya Parmar

title research about agriculture pdf

Development and Application of a Tractor-Operated Side Dispensing Type Farmyard Manure Applicator for Organic Fertilizer Application in Vineyards

  • Abhijit Khadatkar
  • C. P. Sawant

title research about agriculture pdf

Plant Phosphorous Requirements Determined by the Sorption Isotherm Models in the Calcareous Soils

  • Khatereh Sarmasti
  • Amir Bostani

title research about agriculture pdf

Drought Tolerance Evaluation of ‘Zorzal,’ the Most Cultivated Common Bean in Chile, a Country Facing Desertification

  • Vera Martínez-Barradas
  • Claudio Inostroza-Blancheteau
  • Patricio Arce-Johnson

title research about agriculture pdf

Toward Drought Tolerance in Tomato: Selection of F 2 BC 1 Plants Obtained from Crosses Between Wild and Commercial Genotypes

  • André Ricardo Zeist
  • Juliane Macel Henschel
  • Juliano Tadeu Vilela de Resende

title research about agriculture pdf

A Useful Pathway for Gnetum Planting Material Production: Effect of Exogenous Application of Auxin on Root and Shoot Expression of Gnetum Cuttings

  • Medueghue Fofou Apollin
  • Minyaka Emile
  • Lehman Leopold Gustave

title research about agriculture pdf

Application of Si and Ag Green Nanoparticles, Epibrassinolide, and Methyl Jasmonate Causes Delay in Decay of Malus Domestica Fruits via Improving Postharvest Physiology at Ambient Conditions

  • Sara Jelodarian
  • Vahid Abdossi
  • Kambiz Larijani

title research about agriculture pdf

Comparison of the Antifungal Activity of Chlorine Dioxide, Peracetic Acid and Some Chemical Fungicides in Post-harvest Management of Penicillium digitatum and Botrytis cinerea Infecting Sweet Orange and Strawberry Fruits

  • Sareh Hatamzadeh
  • Nima Akbari Oghaz
  • Fatemeh Noori

title research about agriculture pdf

Characterising Productivity Factors Affecting Maize ( Zea mays ) Production in a Smallholder Crop-Livestock System

  • Temnotfo L. Mncube
  • Ethel E. Phiri
  • Henry R. Mloza-Banda

title research about agriculture pdf

  • Find a journal
  • Publish with us
  • Track your research

Eurekaselect logo

Research Topics in Agricultural and Applied Economics

Editor(s) : anthony n. rezitis.

DOI: 10.2174/97816080526391120301 eISBN: 978-1-60805-263-9, 2012 ISBN: 978-1-60805-699-6 ISSN: 2589-1472 (Print) ISSN: 1879-7415 (Online)

Back Recommend this Book to your Library Cite as

Book Web Price: US $

After 11% discount 121, restricted access panel, about this book.

Cite this Book as:

For Books Anthony N. Rezitis , " Research Topics in Agricultural and Applied Economics ", Bentham Science Publishers (2012). https://doi.org/10.2174/97816080526391120301

Book Volume 3

Page: i-i (1) Author: Trevor Young DOI: 10.2174/97816080526391120301000i

Page: ii-iii (2) Author: Anthony N. Rezitis DOI: 10.2174/9781608052639112030100ii

List of Contributors

Page: iv-vi (3) Author: Anthony N. Rezitis DOI: 10.2174/9781608052639112030100iv

Full text available.

Milk Production Forecasting by a Neuro-Fuzzy Model

Page: 3-11 (9) Author: Atsalakis S. George, Parasyri G. Maria and Zopounidis D. Constantinos DOI: 10.2174/978160805263911203010003 PDF Price: $15

Many fields are increasingly applying Neuro-fuzzy techniques such as in model identification and forecasting of linear and non-linear systems. This chapter presents a neuro-fuzzy model for forecasting milk production of two producers. The model utilizes a time series of daily data. The milk forecasting model is based on Adaptive Neural Fuzzy Inference System (ANFIS). ANFIS uses a hybrid learning technique that combines the least-squares method and the back propagation gradient descent method to estimate the optimal milk forecast parameters. The results indicate the superiority of ANFIS model when compared with two conventional models: an Autoregressive (AR) and an Autoregressive Moving Average model (ARMA).

The Role of Production Contracts in the Coordination of Agri-Food Chain: Evidence and Future Issues for the Durum Wheat Chain in Italy

Page: 12-22 (11) Author: Davide Viaggi and Giacomo Zanni DOI: 10.2174/978160805263911203010012 PDF Price: $15

The economics of contracts has undergone major developments in the recent decades. At the same time, the issue of co-ordination among actors in the same product chain through contractual instruments has attracted significant attention. In addition, the recent volatility of agricultural prices has made the role of contracts in risk allocation more important across different stages of the production chain. The paper explores the role of production contracts in the co-ordination of agri-food chain, considering evidence from the particular case of the durum wheat chain in Italy. After a review of the literature and brief examination of the sector and institutional context of Italian wheat production, the paper considers the present and potential role of production contracts, through a Delphi exercise. Based on this, proposals for action priorities (policy) are discussed along with an agenda for future research. The outcome of the Delphi exercise confirms the perceived need of improving the use of contracts in the Italian wheat sector. It also confirms the difficulties in addressing this issue. Solutions and needs for further research are identified at two main levels: a) detailed contract design; and b) wider chain governance.

Effects of the European Union Farm Credit Programs on Efficiency and Productivity of the Greek Agricultural Sector: A Stochastic DEA Application

Page: 23-46 (24) Author: Anthony N. Rezitis, Kostas Tsiboukas and Stavros Tsoukalas DOI: 10.2174/978160805263911203010023 PDF Price: $15

This study examines technical efficiency and productivity growth of Greek farms participating in the 1994 European Union Farm Credit Programs (1994-EU-FCP), i.e. regulation 2328/91. In this paper, two farm-level economic data sets are used, i.e. the crop and the livestock data set, where each one consists of two different groups of farms: one group contains farms participating in the 1994-EU-FCP while the other one contains non-participating farms. The data sets are observed over the 1993 and 1997 years. The paper uses the approach developed by Simar and Wilson (1998a, b) to bootstrapping both DEA efficiency measures and Malmquist productivity indices. Furthermore, the present paper uses the Malmquist index decomposition proposed by Simar and Wilson (1998b) and Zofio and Lovell (1997) to investigate the sources of productivity change. The technical efficiency score results indicate that, in terms of the crop oriented farms, the program failed to increase the efficiency of the participated farms even though the most efficient farms entered the 1994-EU-FCP. In contrast, in terms of the livestock oriented farms, the program managed to increase the efficiency of the participated farms though less efficient farms entered the program. The total factor productivity growth results, in terms of crop-oriented farms, show statistically significant decline of productivity for the group of program farms but a statistically significant increase for the group of non-program farms. The total factor productivity growth results, in terms of livestock oriented farms, show a statistically significant increase of productivity for the group of program farms but no change for the group of non-program farms.

Institutional Innovations in the Common Agricultural Policy: A Theoretical Approach based on Legitimacy

Page: 47-56 (10) Author: Melania Salazar-Ordóñez and Gabriel Pérez-Alcalá DOI: 10.2174/978160805263911203010047 PDF Price: $15

The Common Agricultural Policy (CAP) of the European Union (EU) has been highly political and social controversy, within the EU as well as at international level. However, the reforms on the institutional structure have not been frequently analysed. This paper, based on the Institutional Innovation Theory, examines the role of different exogenous and endogenous factors which have been boosted or slowed down, the five CAP reforms. According to these factors we analyse three key issues in the EU general political system, two topics in the EU domestic-economic system and the external pressures. Later, these factors are considered on a theoretical approach applying investment theory and expected utility maximization by means of the net present value model and dependency relations. The main results show that role played by the EU institutional structure is fundamental as a limited factor, and the external pressures and citizen’s acceptance of this policy are an important boost factor.

Agricultural Externalities and Environmental Regulation: The Case of Manure Management and Spreading Land Allocation

Page: 57-69 (13) Author: Isabelle Piot-Lepetit DOI: 10.2174/978160805263911203010057 PDF Price: $15

The aim of this paper is firstly to show how the measures introduced by the European regulation on manure management are incorporated into the theoretical analysis framework for studying the issue of nonpoint externality and especially, agricultural runoff. The model is extended because only some of the polluting emissions at the origin of diffuse pollution are regulated by the Nitrates Directive. More specifically, the model represents the standard that limits the spreading of organic manure to 170 kg/ha as a production right assigned to each farm. Secondly, this paper proposes an empirical model in which the theoretical assumption that productive abilities are fully exploited is relaxed. In order to describe the disparity that exists between individual situations, an empirical model represents the production technology by means of a directional distance function. Finally, the aggregation properties of the directional distance function are used to simulate the practice of looking for off-farm lands as a means of complying with the standard. We look at how land can be allocated among producers in such a way as to combine the disposal of manure in accordance with the limit of the Nitrates Directive with an improvement in the productive and environmental efficiency of all farms. Using a sample of French pig farms, results indicate only a low potential for a reduction in nitrogen pollution based on the reduction in productive inefficiencies and the allocation of spreading lands among farmers in a same area.

Energy Crops Situation in Castile and Leon: Incentives and Barriers to Success

Page: 70-93 (24) Author: Rita Robles and Luigi Vannini DOI: 10.2174/978160805263911203010070 PDF Price: $15

Over the last few years, a number of events have produced deep change in Spanish agriculture. The agreements ensuring from the negotiations within the World Trade Organization (WTO), the new exigencies of the demand for reducing the surpluses of certain food and feed crops (cereals, oil-seeds, sugar beet…) and the Common Agricultural Policy (CAP) expenses, the reform of CAP and the different Common Markets Organizations (CMO’s), along with the vocation to produce (greatly influenced by geo-climatic factors), have led to a deep and long-lasting crisis of the sector in many important agricultural regions in Spain, as is the case in Castile and Leon. This crisis implies depopulation and alteration of the population structure and the rural environment, with subsequent environmental, socio-cultural and territorial consequences. Within this framework, energy crops are one of the scarce local productive orientations which could allow Castile and Leon farmers to produce an output demanded by the markets. This paper examines the current situation and the possibilities of development for this sector, using the Rural Rapid Appraisal (RRA) and Strengths, Weaknesses, Opportunities, Threats (SWOT) methods, in order to identify and assess the profitability of the main energy crops as well as the technical, socio-cultural, political and economic barriers for introducing these crops in the local productive farming sector. The study also provides an evaluation of the last energy and CAP measures and an outlook for future market developments and policy recommendations.

Governing of Agro-Ecosystem Services in Bulgaria

Page: 94-129 (36) Author: Hrabrin Bachev DOI: 10.2174/978160805263911203010094 PDF Price: $15

This paper incorporates interdisciplinary New Institutional and Transaction Costs Economics and analyzes the governance of agro-ecosystem services in Bulgaria. Firstly, it presents a comprehensive framework of analyses of environmental governance including: definition of agroecosystem services and governance; specification of governance needs and spectrum of governing modes (formal and informal institutions, market, private, public and hybrid forms); assessment of efficiency of different modes of governance in terms of their potential to protect diverse eco-rights and investments, assure a socially desirable level of agro-ecosystem services, minimize overall costs, coordinate and stimulate eco-activities, meet individual and social preferences and reconcile conflicts of related agents etc. Secondly, it identifies and assesses the governance of agro-ecosystem services in Bulgaria. It proves that post-communist transition and EU integration brought about significant changes in the state and the governance of agro-ecosystems services. Newly evolved market, private and public governance has led to a significant improvement of the part of agro-ecosystems services introducing modern eco-standards and public support, enhancing environmental stewardship, disintensifying production, recovering landscape and traditional productions, diversifying quality, products and services. At the same time, the novel governance is associated with new challenges such as unsustainable exploitation, lost biodiversity, land degradation, water and air contamination etc. Moreover, it demonstrates that implementation of the EU common policies would have no desired impact on agro-ecosystem services unless special measures are taken to improve management of public programs, extend public support to dominating small-scale and subsistence farms.

Ex Post Liability for Loss vs. Ex Ante Liability Insurance as Solutions to Reversal Risk in Carbon Offset Projects

Page: 130-144 (15) Author: Joshua Anyangah DOI: 10.2174/978160805263911203010130 PDF Price: $15

When included as part of a larger emissions rights trading system, carbon offset projects can automatically achieve a given reduction of emissions in a cost-effective manner. One major concern with this system, however, is the risk of emissions reversal-the deliberate or accidental release of carbon back to the atmosphere long after carbon credits have changed hands. This downside risk may adversely affect the market value of offset credits and undermine the integrity of the carbon trading system. To address this weakness, at least two financial responsibility rules have been proposed. One calls for the imposition of liability, ex post, upon project developers. The other alternative, an ex ante measure, requires that project developers have adequate liability insurance coverage prior to undertaking any offset projects. Taking the view that project developers can control the severity of financial losses arising from reversal and assuming a negligence rule of liability for harm, this paper employs the methods of mechanism design to examine the impact of ex-post liability rules and ex ante liability insurance requirements on incentives to reduce risk. We find that the relative ranking of these two rules crucially depends on the extent of uncertainty regarding the legal standard under liability rules: if uncertainty regarding the legal standard is sufficiently large, then incentives are more pronounced under insurance rules than under liability rules; if the uncertainty regarding the legal standard is sufficiently small, however, then the converse is true.

A Choice Experiments Application in Transport Infrastructure: A Case Study on Travel Time Savings, Accidents and Pollution Reduction

Page: 145-155 (11) Author: Phoebe Koundouri, Yiannis Kountouris and Mavra Stithou DOI: 10.2174/978160805263911203010145 PDF Price: $15

This paper presents the results of a Choice Experiment (CE) conducted to estimate the values derived from a highway construction project in Greece. To account for preference heterogeneity conditional logit with interactions and random parameter logit models are estimated. The results indicate that individuals have significant values for travel time savings, percentage decrease in traffic accidents, percentage decrease in traffic related emissions and landscape modifications. Models where the attributes are interacted with socioeconomic variables perform better and produce lower welfare estimates compared to models without interactions with important implications for cost benefit analysis.

Page: 156-157 (2) Author: Anthony N. Rezitis DOI: 10.2174/978160805263911203010156

Introduction

The aim of this e-book series is to publish high quality economic research in agricultural and applied economics. It particularly fosters quantitative studies which make original contribution on important economic issues, the results of which help to understand and solve real economic problems. This volume contains research papers focusing on the areas of agricultural policy, agricultural price volatility, agricultural finance and cooperatives, consumption economics, firm production and organization, human capital convergence, international economics and multinational business, investment decisions in organic agriculture, market structure and industry studies. The research papers of this volume make use of recent methodological approaches and provide conclusions which are useful to both private sector participants and policy-makers.

Related Journals

Current Pharmacogenomics

title research about agriculture pdf

Current Cell Science

Current Surgical Endoscopy

title research about agriculture pdf

Current Molecular Medicine

title research about agriculture pdf

Current Genomics

title research about agriculture pdf

Current Enzyme Inhibition

Current Gene Therapy

title research about agriculture pdf

Current Protein & Peptide Science

Current Signal Transduction Therapy

title research about agriculture pdf

Protein & Peptide Letters

Related Books

title research about agriculture pdf

Industrial Applications of Soil Microbes

title research about agriculture pdf

Biomarkers in Medicine

title research about agriculture pdf

Biopolymers Towards Green and Sustainable Development

title research about agriculture pdf

Algal Biotechnology for Fuel Applications

title research about agriculture pdf

The Wax Moth: A Problem or a Solution?

title research about agriculture pdf

Taurine and the Mitochondrion: Applications in the Pharmacotherapy of Human Diseases

title research about agriculture pdf

An Introduction to Mycosporine-Like Amino Acids

title research about agriculture pdf

Bioremediation for Environmental Pollutants

title research about agriculture pdf

Recommended Chapters

ScholarWorks@UMass Amherst

Home > CNS > Agriculture > AGRONOMY_THESES

Stockbridge School of Agriculture

Agronomy Masters Theses Collection

Theses from 1963 1963.

Effects of nitrogen supply on the cation exchange capacity of cereal roots and its relation to Ca adsorption from Ca-H bentonite clay systems by excised roots. , Ronald Paul White, Agronomy

Theses from 1962 1962

The effects of some environmental factors on growth and control of northern nutgrass. , Eugene Raymond Hill, Agronomy

Theses from 1961 1961

The use of fish by-product materials as fertilizers - alone and in mixtures or formulations. , Roy Augustus Barrett, Agronomy

Theses from 1959 1959

Interaction between height of cut and various nutrient levels on the development of turfgrass roots and tops. , Evangel John Bredakis, Agronomy

Theses from 1958 1958

A comparison of liquid and solid fertilizer for turf. , Norman Henry MacLeod, Agronomy

Theses from 1957 1957

Relationship of root cation exchange capacity to calcium uptake. , John M. White, Agronomy

Theses from 1956 1956

The role of nitrogen on the increased availability of fertilizer phosphorus. , William Makepeace Atwood, Agronomy

An investigation into the relation of soil compaction and soil fertility as affecting root development in soils. , Philip R. Pearson, Agronomy

Theses from 1955 1955

Effect of degree of saturation and nature of clay colloid upon the availability of calcium to tomatoes and the effect of type of colloid upon the migration of cations from plant root to clay colloids. , Paul Eck, Agronomy

A study of the physical properties of eolian influenced soils in the central lowland of Connecticut and Massachusetts. , A. Ritchie, Agronomy

Theses from 1953 1953

The effect of several organic salts with hydrogen ion in solubilizing rock phosphate. , Joseph Angelini, Agronomy

Studies on cation exchange capacity of plant roots with reference to their ecological phenomena. , Eliot Epstein, Agronomy

The curing of cigar tobacco with the use of kerosene as a source of heat, in comparison with the use of liquified petroleum gas for the purpose. , Claus Hans Tameling, Agronomy

The effect of soil fertility, rate of planting and variety on the value of corn for silage. , Hrant M. Yegian, Agronomy

Theses from 1952 1952

Potassium competition in grass-legume associations as a function of root cation exchange capacity. , Bryce Carroll Gray, Agronomy

Theses from 1951 1951

The precipitation of phosphorus by iron and aluminum as influenced by pH and pure organic substances. , Donald Bigelow Bradley, Agronomy

Solubilization effect of citric acid on some insoluble phosphate salts. , Jean Joseph Lucien Leclerc, Agronomy

Theses from 1950 1950

The chemical composition of the foliage of different plant species as affected by soils derived from different rocks. , Jean-Marie Lapensee, Agronomy

Effects of rates and ratios of calcium, magnesium, and potassium on composition and yield of Ladino clover. , Philip Beaumont Turner, Agronomy

Theses from 1949 1949

Up-take of selenium by carnations, loss of selenium from treated soils by leaching, and occurrence of selenium in Massachusetts soils. , Robert John Allen, Agronomy

The elimination of white clover (Trifolium repens) from turf with particular reference to nitrogen levels. , Geoffrey S. Cornish, Agronomy

Spent hops for construction of turf areas. , Moyle E. Harward, Agronomy

The influence of parent material on the base exchange of soils. , Michael Neznayko, Agronomy

The availability to plants of applied phosphorus as influenced by the presence of organic materials and fluoride. , Glenn C. Russell, Agronomy

Color as a soil amendment. , Roy Edward Sigafus, Agronomy

The influence of organic anions on the replacement of fixed phosphates at various pH levels. , Paul Herbert Struthers, Agronomy

The toxicity of the copper ion in the growth of soy beans and the influence of the copper ion on the transfer of magnesium in soy bean seedlings from seed and growing medium to the aerial parts of the plant. , Gordon Franklin Thomas, Agronomy

Theses from 1948 1948

The fixation of phosphorus by iron and its replacement by organic and inorganic ions. , Richard Merrill Swenson, Agronomy

Theses from 1947 1947

The relative effect on the nitrogen content of buckwheat plants grown in a medium treated by varied concentrations and combinations of boron, manganese, and copper ions. , Garland Booker Bass, Agronomy

The relative effect of various types of vegetative tissues on the total base exchange capacity, exchangeable bases and pH value of a laminated clay. , Ivan Hope Tomlinson, Agronomy

Theses from 1942 1942

The influence of family relationships upon the uptake of nitrogen in the soil by plants. , A. Boy Pack, Agronomy

Theses from 1941 1941

A study of absorption and excretion of potassium and calcium by the roots of barley in different solution media and changes in hydrogen-ion concentration. , George Wenzel, Agronomy

Theses from 1940 1940

The effect of certain organic compounds on the flocculation of clay suspension. , Edward Theodore Clapp, Agronomy

The relative toxicity of certain ions and the function of the calcium ion as an antagonist, as indicated by soybean roots. , Plese Corbett, Agronomy

The lignin and methoxyl content of some common crops. , John Wendell Hurdis, Agronomy

The effect of the calcium ion on the development of soy bean seedling and the antagonism of this ion to arsenic, boron, and selenium ions. , Elvin Ted Miles, Agronomy

The effect of certain plant residues upon the buffer capacity of two Massachusetts soils. , Moody Francis Trevett, Agronomy

Theses from 1939 1939

A study of the percentage and total intake of certain elements by calciphilic and calciphobic plants grown on soils varying in pH. , William H. Bender, Agronomy

Some factors influencing the activity of Aspergillus niger. , Charles H. Moran, Agronomy

The relative rate of nitrification of nitrogen materials on certain tobacco soils from Canada. , Julien Richard, Agronomy

Theses from 1938 1938

Nitrification in soils of Massachusetts as influenced by soil type and source of nitrogen , Raymond B. Farnsworth, Agronomy

Rates of decomposition of various bedding materials. , John M. Zak, Agronomy

Theses from 1937 1937

Increasing the iron content of hay grown on soils producing nutritional anemia in Massachusetts livestock , Karol Joseph Kucinski, Agronomy

Theses from 1936 1936

The effect of additions of calcium hydroxide upon the solubility of phosphorus in certain Massachusetts soils , John Nelson Everson, Agronomy

Theses from 1934 1934

Oxidation-reduction potentials and their application to soils , Matthew Cotton Darnell, Agronomy

Theses from 1932 1932

Studies of methods for determination of magnesium deficiency in soils , Jay L. Haddock, Agronomy

Theses from 1931 1931

Some factors affecting the flora of pastures , Richard Carol Foley, Agronomy

The effect of some forms of nitrogen on the growth and nitrogen content of wheat and rice plants , Guy. Thelin, Agronomy

Theses from 1930 1930

The Ammonification and nitrification of cottonseed meal and the nitrification of ammonium sulphate , Harold R. Knudsen, Agronomy

A study of varietal and cultural factors affecting stand and yield of soybeans , Rhea E. Stitt, Agronomy

Theses from 1928 1928

The salt requirement of Havana tobacco with nitric and ammonic nitrogen , Oliver W. Kelly, Agronomy

Nitrate nitrogen accumulation in soils as affected by soil reaction and certain treatments , George J. Larsinos, Agronomy

The effect of boron and manganese on the growth of tobacco plants , T. Robert Swanback, Agronomy

Theses from 1927 1927

On the nitrate accumulation as affected by soil type, soil management and cropping system , Alwyn C. Sessions, Agronomy

Theses from 1924 1924

Physical properties of fertilizer materials , Raymond Alson Mooney, Agronomy

Theses from 1920 1920

Factors affecting the pop-ability of pop corn , James A. Purington, Agronomy

Theses from 1917 1917

The decomposition of organic matter in soils , Fred G. Merkle, Agronomy

Effect of one crop upon another and upon the fertility of the soil , S. G. Mutkekar, Agronomy

Advanced Search

  • Notify me via email or RSS
  • Collections
  • Disciplines

Author Corner

  • Login for Faculty Authors
  • Faculty Author Gallery
  • Expert Gallery
  • University Libraries
  • UMass Amherst

This page is sponsored by the University Libraries.

© 2009 University of Massachusetts Amherst • Site Policies

Privacy Copyright

IMAGES

  1. Agricultural Research Communication Centre

    title research about agriculture pdf

  2. 156 Best Agriculture Research Topics For Your Thesis Paper

    title research about agriculture pdf

  3. INTRODUCTION

    title research about agriculture pdf

  4. FREE 10+ Agricultural Research Samples & Templates in PDF

    title research about agriculture pdf

  5. Introduction to Agriculture Handout

    title research about agriculture pdf

  6. (PDF) Sustainable Agricultural Practices

    title research about agriculture pdf

VIDEO

  1. History of agriculture

  2. International collaboration in agricultural research ver.1

  3. Agriculture research, education & extension |National institute NRC

  4. Agriculture for All Competitive Exams

  5. Role of Agriculture In Economics Development || Agriculture || With Current Scenario ||

  6. Modern Agriculture Moment's #agriculture #shorts #viral #trending

COMMENTS

  1. Agricultural Research: Applications and Future Orientations

    Definition. Agricultural research can be broadly defined as any research activity aimed at improving productivity and quality of crops by their genetic improvement, better plant protection, irrigation, storage methods, farm mechanization, efficient marketing, and a better management of resources (Loebenstein and Thottappilly 2007 ).

  2. PDF Economics of Research and Innovation in Agriculture

    This PDF is a selection from a published volume from the National Bureau of Economic Research Volume Title: Economics of Research and Innovation in Agriculture Volume Authors/Editors: Petra Moser, editor Volume Publisher: University of Chicago Press Volume ISBNs: 978--226-77905-8 (cloth), 978--226-77919-5 (electronic) Volume URL:

  3. (PDF) Research Methods: A handbook for agricultural researchers

    Thus, in this "Handbook", research methods are presented to help researchers in planning. and executing sound res earch and drawing relevant conclusions. for creating new knowledge and ...

  4. PDF Climate Change Impacts on Agriculture: Challenges, Opportunities, and

    Table 2.1 summarizes the main drivers and mechanisms of climate impact on cropping systems, which were reviewed by Bongaarts (1994), Rosenzweig et al. (2001), Boote et al. (2010), Kimball (2010), and Porter et al. (2014). Notably, direct climate impacts include both damage and benefits as well as opportunities for farm-level adaptations.

  5. PDF Essays on Agriculture and Rural Development in Developing Countries

    the water in the long-run. In chapter 2, we use the rollout of agricultural research centres in Indian districts to estimate the returns to location-specific knowledge generation on agricultural outcomes. The research centres influence cropping patterns, intensity of input use, and on-farm practices like intercropping with pulses.

  6. (PDF) Agricultural Research: Background and Issues

    R40 819. Cong res s io nal Res earch S erv ice. SUMM AR Y. Agricu ltural Re search: Backgrou nd and Issues. The U. S. Department of Agri culture (U SDA) Researc h, Education, and E conomics. (REE ...

  7. Research impact assessment in agriculture—A review of approaches and

    1. Introduction. Research has multiple impacts on society. In the light of the international discourse on grand societal challenges and sustainable development, the debate is reinforced about the role of research on economic growth, societal well-being, and environmental integrity ().Research impact assessment (RIA) is a key instrument to exploring this role ().

  8. PDF Recent Contributions of Agricultural Economics Research in the Field of

    From this perspective, the multidisciplinary approach of the agricultural economic research seems to perfectly fit the study of sustainable development. Overall, researchers identified three main dimensions of sustainability: economic, environmental, and social development. Despite their differences, these three main pillars should be ...

  9. PDF The Benefits from Agricultural Research and Development, Innovation

    measures of agricultural productivity, the effects of agricultural research and development (R&D) on agricultural innovation and productivity patterns, and the resulting social payoffs to investments in agricultural R&D. This review summarizes and interprets the main findings from that body of work.

  10. PDF Rural Growth and Development Revisited Study: Agricultural Research

    Agricultural research can benefit poor farmers who adopt improved technologies by increasing their incomes or reducing production and marketing risks (i.e., breeding for pest resistance). Research . PHILIPPINES: RURAL GROWTH AND DEVELOPMENT REVISITED STUDY: AGRICULTURAL RESEARCH, DEVELOPMENT, AND EXTENSION 0 1 = ...

  11. PDF Elevating the Impacts of Research in Agricultural Education

    Journal of Agricultural Education 249 Volume 61, Issue 2, 2020 Elevating the Impacts of Research in Agricultural Education James R. Lindner,1 Amy Harder2, and T. Grady Roberts3 Abstract Dissemination of research is a critical part of the research process. Researchers in agricultural education have long embraced this process.

  12. Unlocking Agricultural Innovation: A Roadmap for Growth and

    Agricultural innovation is crucial for navigating the dynamic market landscape and overcoming the diverse challenges posed by the current economic climate. It serves as a primary driver for both social advancement and economic prosperity, embodying the transformative force necessary for sustainable progress. Specifically, eco-friendly innovation not only boosts productivity but also promotes ...

  13. INTRODUCTION

    The report of the Board on Agriculture entitled Alternative Agriculture (National Research Council, 1989a) challenged everyone to rethink key components of conventional wisdom and contemporary scientific dogma. That report has provided encouragement and direction to those individuals and organizations striving toward more sustainable production ...

  14. [PDF] QUALITATIVE RESEARCH IN AGRICULTURAL ECONOMICS ...

    The qualitative paradigm is not widely discussed in agricultural economics, although research strategies are applied. The purpose of this contribution is (1) to elaborate on the paradigm of qualitative research; (2) to introduce purposes of qualitative research and provide examples; and (3) to discuss criteria of scientific rigor applicable.

  15. (PDF) On what basis is it agriculture?: A qualitative study of farmers

    Changes in agriculture and food production are essential in a transition towards sustainable food systems. The challenge is to ensure sufficient, healthy and sustainable nutrition for the growing ...

  16. PDF Agricultural Economics

    Purdue's Agricultural Economics Department covers a wide array of issues from development, trade, macroeconomics policy implications, agribusiness, production and consumption all the way to environmental and resource issues. Here in Ag Econ, we pride ourselves in our top-notch research, quality teaching and committed Extension.

  17. PDF AGROFORESTRY ADOPTION: A Thesis

    This work is supported by the United States Department of Agriculture National Institute of Food and Agriculture, Award number 2014-68006-32996, and by the USDA/ARS Dale Bumpers Small Farm Research Center, Agreement number 58-6020--007 from the USDA Agricultural Research Service.

  18. Full article: Plant organic farming research

    Organic farming and soil fertility. Badgley et al. [Citation 12] express an opinion that organic systems for food production can contribute substantially for feeding the fast growing human population on the current agricultural land base, while maintaining soil structure and fertility.The so-called conservation agriculture is being widely promoted in many areas mostly for the recovery of ...

  19. PDF AGRICULTURE AND RURAL DEVELOPMENT 46162

    agriculture remains fundamental to economic growth, poverty alleviation, and environmental sustainability. The World Bank's Agriculture and Rural Development publication series presents recent analyses of issues that affect agriculture's role as a source of economic development, rural livelihoods, and environmental services. The

  20. (PDF) Agriculture: Definition and Overview

    The Oxford English Dictiona ry (1971) defines agriculture. very broadly as "The science and art of cultivating the soil, including the allied pursuits of. gathering in the crops and rearing live ...

  21. Articles

    Greenhouse Evaluation of Biochar-Based Controlled-Release Nitrogen Fertilizer in Corn Production. Agricultural Research is a multi-disciplinary journal covering all disciplines of agricultural sciences to promote global research. The official publication ...

  22. Research Topics in Agricultural and Applied Economics

    Research Topics in Agricultural and Applied Economics Volume: 3 Editor(s) : Anthony N. Rezitis. DOI: 10.2174/97816080526391120301 eISBN: 978-1-60805-263-9, 2012 ISBN: 978-1-60805-699-6 ISSN: 2589-1472 (Print) ISSN: 1879-7415 (Online) Back Recommend this Book to your Library Cite as

  23. Agronomy Masters Theses Collection

    PDF. The availability to plants of applied phosphorus as influenced by the presence of organic materials and fluoride., Glenn C. Russell, Agronomy. PDF. Color as a soil amendment., Roy Edward Sigafus, Agronomy. PDF. The influence of organic anions on the replacement of fixed phosphates at various pH levels., Paul Herbert Struthers, Agronomy. PDF

  24. PDF Agricultural Research and Extension Funding Summary

    The state ag research and state extension funding represent Pennsylvania's investment in agricul-ture and the food and fiber sectors. This support allows the college to. leverage more than $100 million in other sources of revenue for Pennsylvania, such as federal formula funding and competitive grants and county funding.

  25. PDF Dear Colleague Letter: Joint National Science Foundation and United

    Foundational Research in Robotics (FRR) April 18, 2024. Dear Colleague: Recognizing the importance of use-inspired collaborations in promoting scientific discoveries, the National Science Foundation (NSF), in collaboration with United States Department of. Agriculture National Institute of Food and Agriculture (USDA/NIFA), seeks proposals to