Mind by Design

Critical thinking vs analytical thinking:

Critical thinking vs analytical thinking: The differences and similarities

The ability to think clearly and make informed decisions is paramount to life. This article delves deep into the realms of analytical thinking and critical thinking, shedding light on their differences and how they complement each other. By understanding these thinking styles, you’ll be better equipped to tackle complex problems, evaluate information, and make well-informed decisions. Let’s dive in!

Introduction to Analytical and Critical Thinking

Analytical and critical thinking are two skills essential for solving problems and making decisions in various aspects of life. While both involve the use of logic and reasoning, they differ in their approach and outcomes. Analytical thinking involves breaking down complex information into smaller parts, while critical thinking involves taking a holistic view and evaluating information from different angles. Analytical thinking involves the ability to dissect a problem or situation into its individual components and examining each part separately. It requires careful observation and the ability to identify patterns and relationships. This type of thinking is essential for tasks such as data analysis, problem-solving, and troubleshooting.

Critical thinking vs analytical thinking:

Critical thinking, on the other hand, involves the ability to assess information objectively, evaluate its credibility, and make logical judgments. It involves questioning assumptions, examining evidence, and considering different perspectives. Critical thinking is crucial for making informed decisions, weighing pros and cons, and avoiding biases and fallacies.

Both analytical and critical thinking complement each other and are necessary for effective problem-solving and decision-making. Analytical thinking provides a structured and systematic approach to understanding complex problems , while critical thinking helps evaluate different options and make sound judgments.

Developing analytical and critical thinking skills can greatly benefit individuals in various aspects of life. In academia, these skills are necessary for understanding and interpreting complex subjects, conducting research, and writing analytical essays. In the workplace, analytical and critical thinking skills are highly valued by employers as they enable employees to solve problems efficiently and make informed decisions. In daily life, these skills are essential for evaluating information, distinguishing between fact and opinion, and making rational choices.

There are various ways to improve analytical and critical thinking skills. Engaging in activities that require logical reasoning, such as puzzles, brain teasers, and mathematical problems, can help develop analytical thinking abilities. Reading diverse sources of information, questioning assumptions, and actively seeking different perspectives can enhance critical thinking skills . Additionally, engaging in debates, discussions, and problem-solving exercises can promote both analytical and critical thinking.

Analytical and critical thinking skills are essential for problem-solving and decision-making in various aspects of life. They involve breaking down complex information and evaluating it from different angles. Developing these skills can lead to more effective problem-solving, informed decision-making, and overall improved cognitive abilities. 

Traits of an Analytical Thinker

An analytical thinker is one who is adept at breaking down complex problems into smaller parts. This type of thinking is linear and involves analyzing cause and effect relationships. Analytical thinking uses logic and reasoning to come to a conclusion, often relying on data and facts. Some key traits of an analytical thinker include:

  • The ability to dissect complex information into smaller pieces.
  • A knack for recognizing patterns and relationships.
  • A methodical approach to problem-solving.

What Does It Mean to Think Critically?

Critical thinking, on the other hand, is a type of higher-order thinking that requires a more holistic approach. Critical thinkers are often skeptical, questioning the validity of information before accepting it. They are adept at evaluating information from various sources and are not easily swayed by outside information. Key aspects of critical thinking include :

  • The ability to form an opinion based on evidence.
  • Considering multiple perspectives before making a decision.
  • Recognizing biases and challenging one’s own assumptions.

Analytical Thinking vs Critical Thinking: The Major Differences

While both analytical and critical thinking are essential for solving problems, they differ in several key ways:

  • Approach : Analytical thinking is more linear and focuses on breaking down complex information into smaller parts. Critical thinking, however, is holistic and looks at the bigger picture.
  • Use of Information : Analytical thinkers rely heavily on facts and data, while critical thinkers use facts in conjunction with other pieces of information and perspectives.
  • Outcome : Analytical thinking often leads to a single logical conclusion, whereas critical thinking might result in multiple potential solutions or outcomes.

is critical thinking and analytical thinking the same

The Processes: Analytical Thinking Process vs Critical Thinking Process

Both styles of thinking have distinct processes:

  • Analytical Thinking Process : Starts with gathering data, followed by breaking down complex problems, analyzing the cause and effect relationships, and finally drawing a conclusion.
  • Critical Thinking Process : Begins with gathering diverse pieces of information, evaluating their validity, considering various perspectives, and finally forming an opinion or decision.

Using Analytical and Critical Thinking in Real Life Scenarios

In real-life scenarios, these thinking styles can be applied in various ways. For instance, when faced with a business decision, an analytical thinker might focus on the numbers and statistics, while a critical thinker might consider the potential impact on employees, company culture, and external stakeholders.

Analytical thinking can be particularly useful when analyzing financial data and making data-driven decisions. For example, a business owner might use analytical thinking to analyze the company’s financial statements and determine the profitability and financial health of the business. They might examine key financial ratios, such as return on investment or gross profit margin, to assess the efficiency and effectiveness of various business operations.

On the other hand, critical thinking can be applied when evaluating different options and considering the potential consequences of each option. For example, when considering a potential business expansion, a critical thinker may explore the potential impact on existing employees, the company’s culture, and the external stakeholders. They may assess the potential risks and benefits of the expansion, considering factors such as increased competition, resource allocation, and market demand.

Analytical and critical thinking can also be applied in personal decision-making. For example, when considering a major life decision such as buying a house or changing careers, analytical thinking can help weigh the financial implications, such as the monthly mortgage payments or future earning potential. Critical thinking can help evaluate the potential impact on personal goals, values, and overall satisfaction.

In everyday life, analytical thinking can be useful when evaluating product options or making purchasing decisions. For example, comparing different phone models based on features, specifications, and customer reviews can help individuals make an informed choice. Critical thinking can be applied when assessing the potential consequences of a decision, such as considering the long-term environmental impact of a product or the ethical practices of a particular company.

Both analytical and critical thinking are valuable skills in problem-solving. They can help individuals identify the root causes of a problem, analyze potential solutions, and evaluate their effectiveness. Whether it’s troubleshooting a technical issue, resolving a conflict, or devising strategies to improve personal or professional performance, these thinking styles can be instrumental in finding effective solutions. 

Analytical and Critical Thinking in Problem-Solving

Problem-solving requires a combination of both analytical and critical thinking. Analytical thinking helps break the problem into manageable parts, while critical thinking helps in evaluating potential solutions and considering their implications.

The Importance of Combining Both Thinking Styles

While both styles are powerful on their own, combining analytical and critical thinking skills can lead to more robust solutions. This combination allows for a thorough analysis of a problem while also considering the broader implications and potential consequences of a decision.

Mistakes to Avoid: Misconceptions about Analytical and Critical Thinking

Many assume that analytical thinking and critical thinking are one and the same, but this is a misconception. It’s important to recognize their distinct differences and strengths. Another common mistake is over-relying on one style and neglecting the other, leading to potential oversights in decision-making.

is critical thinking and analytical thinking the same

Key Takeaways: The Future of Analytical and Critical Thinking

In summary, here are the most important things to remember:

  • Distinct yet Complementary : While analytical and critical thinking have distinct processes and outcomes, they are complementary and can be used together for more effective decision-making.
  • Real-world Applications : Both styles are essential in various aspects of life, from business decisions to personal choices.
  • Continuous Learning : As the world becomes more complex, honing both analytical and critical thinking skills will be crucial for success.

Embrace both styles of thinking and watch as your decision-making skills, problem-solving abilities, and overall understanding of complex situations improve dramatically.

Q: What is the difference between critical thinking and analytical thinking?

A: Critical thinking and analytical thinking are similar thinking skills, but there are some differences between the two. Critical thinking involves gathering information, evaluating and interpreting it, and then making a judgment or decision based on that information. Analytical thinking, on the other hand, focuses more on breaking down complex problems into smaller components, analyzing the relationships between these components, and coming up with solutions based on this analysis. So while both skills involve a logical and systematic approach to thinking, critical thinking is more focused on making judgments and decisions, whereas analytical thinking is more focused on problem-solving and analysis.

Q: How do I use critical thinking in everyday life?

A: Critical thinking is a valuable skill that can be applied in various aspects of everyday life. To use critical thinking, you need to approach situations and problems with an open and questioning mind. This involves challenging your own assumptions and beliefs, gathering and evaluating information from different sources, considering alternative perspectives, and making informed decisions based on evidence and logical reasoning. By using critical thinking, you can enhance your problem-solving skills, improve your decision-making abilities , and think more creatively and independently.

Q: How do I use analytical thinking in my professional life?

A: Analytical thinking is an important skill in many professional fields. To use analytical thinking, you need to be able to break down complex problems or tasks into smaller parts, analyze the relationships between these parts, and come up with logical and well-reasoned solutions. This involves gathering and evaluating relevant data, identifying patterns or trends, and using logical reasoning to draw conclusions. By using analytical thinking, you can improve your problem-solving and decision-making abilities, demonstrate a logical and organized approach to your work, and effectively communicate your analysis and solutions to others.

Q: Can critical thinking and analytical thinking be used together?

A: Yes, critical thinking and analytical thinking are complementary skills that can be used together. Both skills involve a systematic and logical approach to thinking, and they can reinforce each other in problem-solving and decision-making processes. Critical thinking provides the framework for evaluating and interpreting information, while analytical thinking provides the tools for breaking down complex problems and finding solutions. By using both skills together, you can enhance your ability to think critically and analytically, make more informed decisions, and solve problems more effectively.

Q: What are the differences between analytical reasoning and critical thinking?

A: Analytical reasoning and critical thinking are related skills that involve a logical and systematic approach to thinking. However, there are some differences between the two. Analytical reasoning is more focused on the process of breaking down complex problems or arguments, identifying logical relationships between different elements, and drawing conclusions based on this analysis. Critical thinking, on the other hand, is a broader skill that involves evaluating and interpreting information, questioning assumptions and biases, and making judgments or decisions based on evidence and logical reasoning. While analytical reasoning is an important part of critical thinking, critical thinking encompasses a wider range of cognitive processes and skills.

Q: How can I develop and improve my analytical thinking skills?

A: To develop and improve your analytical thinking skills, you can engage in activities that stimulate your logical and problem-solving abilities. This may involve practicing with puzzles and brainteasers, analyzing case studies or real-life scenarios, participating in debates or discussions, learning and applying different analytical frameworks or models, and seeking feedback on your analytical thinking from others. Additionally, you can also cultivate your analytical thinking skills by staying curious, asking thoughtful questions, and continuously seeking new knowledge and perspectives. With practice and perseverance, you can enhance your analytical thinking abilities and become a more effective problem solver and decision maker.

Q: How can I become a critical thinker?

A: Becoming a critical thinker requires a conscious effort to develop and refine your thinking skills. Here are some steps you can take to become a critical thinker : 1. Cultivate intellectual humility and open-mindedness: Be willing to consider alternative viewpoints and challenge your own assumptions and beliefs. 2. Develop strong analytical and reasoning skills: Learn to gather and evaluate evidence, identify logical fallacies, and draw logical and well-supported conclusions. 3. Practice active listening and effective communication: Listen attentively to others’ perspectives, ask thoughtful questions, and communicate your own ideas clearly and persuasively. 4. Seek out diverse sources of information: Expose yourself to different perspectives and viewpoints to broaden your understanding and avoid bias. 5. Reflect and evaluate your own thinking: Regularly reflect on your own thinking processes, identify any biases or logical gaps, and work on improving your critical thinking skills.

Q: What role does critical thinking play in problem-solving?

A: Critical thinking is a fundamental skill in problem-solving. It helps you approach problems with a logical and systematic mindset, evaluate potential solutions, and make informed decisions. Critical thinking allows you to gather and analyze relevant information, identify patterns or trends, consider different perspectives or alternatives, weigh the pros and cons, and choose the most effective solution. By using critical thinking in problem-solving, you can enhance your ability to find creative and innovative solutions, overcome obstacles, and make well-informed decisions that are based on sound reasoning and evidence.

Q: Why is critical thinking important?

A: Critical thinking is important because it enables you to think independently, make informed decisions, solve problems effectively, and evaluate information and arguments critically. In a rapidly changing and complex world, critical thinking allows you to navigate through information overload, identify biases or misinformation, and make sense of a wide range of conflicting information. It also helps you develop a deep understanding of concepts and ideas, construct well-reasoned arguments, and communicate your thoughts effectively. In both personal and professional contexts, critical thinking is a valuable skill that empowers you to be a more effective and successful individual.

Q: How does analytical thinking contribute to problem-solving?

A: Analytical thinking is a key component of problem-solving. It involves breaking down complex problems into smaller components, analyzing the relationships between these components, and identifying patterns or trends. Analytical thinking helps you understand the underlying causes of problems, explore different possible solutions, and evaluate their feasibility and effectiveness. By using analytical thinking, you can approach problems in a structured and systematic way, make well-informed decisions, and find creative and innovative solutions. Analytical thinking provides a solid foundation for problem-solving, enabling you to effectively address challenges and find solutions in various domains.

Similar Posts

How can you improve your mindset? [and become a better person]

How can you improve your mindset? [and become a better person]

It is indeed possible to improve your mindset, and in this article, we will go into greater detail about how you can do that by understanding that your ideas directly influence the behaviors you take. Your deeds will shape your identity over time. Improving your frame of mind and the thoughts that run through your…

How to stop overthinking negative thoughts in 15 easy ways

How to stop overthinking negative thoughts in 15 easy ways

Overthinking negative thoughts can be one of the most exhausting mental processes that a person can go through. I know this from personal experience. The hamster wheel in your head of continuous negative thoughts that you can’t stop can drive you insane. It’s important to make it a priority to learn how to stop overthinking…

Let that sink in – What does it mean and how to use it

Let that sink in – What does it mean and how to use it

Let that sink in is a common phrase used by people during conversation. Like many random sayings, this one is pretty straightforward. Its origins are not exact but the meaning of this phrase is pretty clear. What does is mean when someone says “let that sink in”? Let that sink in can mean to make…

Why great leaders have a growth mindset

Why great leaders have a growth mindset

All great companies have great leaders. This is one of the core characteristics of great companies. They are no doubt some of the most studied leaders the world has ever known. Yet there is often a lot of confusion around what makes a great leader and why they have these characteristics. This post will help…

What are Desired Outcomes? (10 steps to achieving your goals)

What are Desired Outcomes? (10 steps to achieving your goals)

Understanding what your desired outcomes are is the most important part of your goal-setting process. In this article, you’ll understand how to define what success means for you and map out good habits that will get you there. This is an introduction to an informative and factual blog post that discusses the stages involved in…

The Pros and Cons of a Fixed Mindset

The Pros and Cons of a Fixed Mindset

There is a view of human intelligence as static—you either have it or you don’t. This belief is dangerous because it produces an unhealthy, limiting effect on what people think they can do. A person with a fixed mindset will give up easily when faced with a difficult challenge, while someone with a growth mindset…

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Terms and Conditions - Privacy Policy

is critical thinking and analytical thinking the same

Critical Thinking vs Analytical Thinking: What’s the Difference?

What is critical thinking, what is analytical thinking, traits of critical thinkers, traits of analytical thinkers, for example, why are critical thinking and analytical skills important, how to develop a critical thinking and analytical mind , critical thinking vs analytical thinking faqs.

Other Related Blogs

  • Curious:  They possess a natural curiosity and an insatiable desire to learn and understand. They constantly ask questions and seek deeper knowledge.
  • Structured Problem-Solving :  Analytical thinkers approach problems systematically. They break down complex issues into smaller, manageable components for thorough analysis.
  • Data-driven:  They rely on data and evidence to support their conclusions. Data analysis is a key aspect of their decision-making process.
  • Critical Evaluation:  They critically assess the quality and reliability of information sources. They are discerning about the credibility of data.
  • Logical Reasoning:  They employ logical reasoning to connect facts and deduce insights. Their arguments are based on sound logic.

is critical thinking and analytical thinking the same

  • Questioning Attitude:  Critical thinkers question assumptions, statements, and conventional wisdom. They challenge ideas to seek deeper understanding.
  • Open-Minded:  They maintain an open mind, considering multiple perspectives and being receptive to new information.
  • Problem-Solving:  Critical thinkers approach problems by examining all angles, evaluating evidence, and identifying the best possible solutions.
  • Inquisitive:  They have a natural curiosity and an appetite for knowledge. They are motivated to dig deeper into subjects.
  • Emotional Intelligence :  They are attuned to emotions, both their own and those of others. This awareness helps them understand human behavior and reactions.

Critical Thinking vs Analytical Thinking for Managers

  • A retail store manager might use analytical thinking skills to analyze sales data to identify patterns and trends. For example, they might examine sales data to determine which products are selling well and at what times of day or year. They might then use this information to adjust inventory levels, schedule staff, or develop marketing campaigns to capitalize on trends. 
  • A manager might use analytical thinking skills to analyze financial data to identify cost savings or revenue growth opportunities. For example, they might analyze expense data to identify areas where costs are higher than expected and develop strategies to reduce them. They might also analyze sales data to identify opportunities to expand into new markets or increase revenue from existing customers. 
  • A manager might use critical thinking skills to evaluate competing proposals for a new project. For example, they might consider each proposal based on feasibility, cost, the potential impact on the organization, and alignment with its strategic goals. They might then use this evaluation to make an informed decision about which proposal to pursue. 
  • A manager might use critical thinking skills to evaluate the performance of individual employees or teams. For example, they might evaluate employee performance based on factors such as productivity, quality of work, and adherence to company policies and procedures. They might then use this evaluation to decide on promotions, training, development, or disciplinary action. 
  • 5 Tips To Manage Multiple Teams Simultaneously To Get The Desired Outcomes
  • 7 Ways You Can Learn How To Be An Effective Trainer At The Workplace
  • 11 Lifelong Learning Benefits That Fuel Personal and Professional Growth
  • Satisficer vs Maximizer: 2 types of managers in the workplace
  • 5 Steps to Decision-Making Process for Effective Managers
  • 3 Examples of Continuous Performance Management for Managers
  • How to Make Tough Decisions as a Leader?
  • Empowering Success: Best Practices for Call Center Training and Development
  • Grooming for Management: The Key to Building a Sustainable Leadership Pipeline
  • 5 Important Benefits and Challenges of Team-Building Activities at Work
  • Effective problem-solving: Critical thinking and analytical skills are essential for identifying, analyzing, and solving complex problems. By breaking down problems into smaller parts and evaluating each part objectively, individuals can develop effective solutions to complex problems .
  • Improved decision-making: Critical thinking and analytical skills help individuals make well-informed decisions by evaluating and synthesizing information from multiple sources. By objectively assessing information, individuals can make decisions based on evidence rather than biases or emotions.
  • Increased creativity: Analytical thinking skills can help individuals identify patterns and connections between seemingly unrelated pieces of information, leading to creative problem-solving and innovative solutions.
  • Better communication: Critical thinking skills help individuals evaluate the quality of arguments and evidence presented by others, leading to more transparent and effective communication .
  • Success in the workplace: Employers value critical thinking and analytical skills because they enable individuals to be more effective problem-solvers and decision-makers, leading to better business outcomes and increased success.

is critical thinking and analytical thinking the same

  • Ask questions: Ask questions to clarify information, evaluate evidence, and challenge assumptions. This helps you better understand the information and think more critically about it.
  • Seek out diverse perspectives: Engage with people who have different backgrounds and experiences from your own. This helps you to see problems from different angles and gain new insights.
  • Evaluate sources: Practice evaluating the credibility of sources, such as news articles or research studies. This helps you develop a critical eye and avoid being swayed by false information.
  • Practice active listening: When engaging in conversation, try to listen to others and truly understand their perspectives. This helps you to evaluate information objectively and avoid making assumptions.
  • Practice problem-solving: Regularly engage in problem-solving activities like puzzles or brain teasers. This helps you to develop your analytical skills and practice thinking creatively.
  • Practice analyzing data: Analyze data from different sources and identify patterns or trends. This helps you to develop your analytical skills and practice thinking critically about information.
  • Reflect on your thinking: Regularly reflect on your thinking processes and evaluate how you approach problems or make decisions. This helps you identify improvement areas and develop better critical thinking habits.
  • Seek feedback: Ask for feedback from others on your critical thinking and analytical skills. This helps you to identify areas where you can improve and develop new strategies for thinking more critically.
  • Practice decision-making: Practice decision making based on evidence and logical reasoning rather than emotions or biases. This helps you to develop more effective decision-making skills.
  • Engage in a debate: Participate in debates or discussions where you are challenged to defend your position and evaluate opposing arguments. This helps you to practice critical thinking and develop more effective communication skills.

Test your critical thinking skills for free!

Start the free critical thinking skills assessment for managers .

Is analyzing a critical thinking skill?

Can you be both an analytical and critical thinker, how can i be critical and analytical .

Critical Thinking Barriers

6 Steps to Beat Common Critical Thinking Barriers at Work

How to develop the 8 conceptual skills every manager needs, 7 ways to develop critical thinking skills as a manager, 5 steps to excellent strategic thinking skills for managers.

is critical thinking and analytical thinking the same

  • Top Courses
  • Online Degrees
  • Find your New Career
  • Join for Free

What Is Analytical Thinking and How Can You Improve Your Analytical Thinking Skills?

Learn why analytical thinking is important and how it differs from critical and creative thinking. Explore some good-paying jobs for analytical thinkers, and find out how you can improve your analytical thinking skills.

is critical thinking and analytical thinking the same

When processing a lot of information or facing challenging problems, it often helps to take an analytical approach. Analytical thinking helps you determine the validity of information and allows you to carefully consider problems and arrive at the best solutions.

What is analytical thinking? 

Analytical thinking involves using a systemic approach to make decisions or solve problems. Analytical thinkers can better understand information and come to a sensible conclusion by breaking it into parts. 

For instance, once analytical thinkers identify a problem, they typically gather more information, develop possible solutions, test them, and analyze which works best. Solving complex problems often requires analytical reasoning, which may involve:

Determining causation (if and how one event causes another)

Examining similarities, differences, and relationships

Predicting the next event by following a sequence

Recognizing patterns or trends

Using conditional and converse (if-then) statements 

Why is analytical thinking important?

In daily life, analytical thinking allows you to sift through a steady barrage of information from the news, social media, and accounts from friends and family to get to the truth. Analytical thinking also offers professional value. Employers look for candidates with good analytical skills to help solve problems and make sound decisions in the workplace. 

How is analytical thinking different from creative and critical thinking?

To better understand analytical thinking, it helps to learn how it's different from other types of thinking. For instance, when solving a problem, analytical thinkers take a methodical approach, breaking up information and analyzing each part until they form a conclusion. 

Creative thinkers take a less organized approach to problem-solving. They examine a problem from many angles and welcome new information to come up with a creative solution.  

Critical thinkers are open-minded and have superior evaluative skills. To develop a logical solution to a problem, a critical thinker studies evidence, asks questions, assesses other points of view, and explores any relative assumptions or biases. 

4 good-paying careers for analytical thinkers 

If you can think analytically, it can benefit you in a variety of careers. Explore four good-paying careers for analytical thinkers. 

1. Business analyst

Median annual US salary (BLS): $95,290 [ 1 ]

Job outlook: 10 percent job growth [ 1 ]

Job requirements: A business analyst often holds a bachelor's or master's degree in business administration . Skills that benefit a business analyst include analytical skills, communication, problem-solving, and time management. 

Tasks and responsibilities: As a business analyst, you'll gather information about a company by observing business practices and procedures, examining financial data, and conducting employee interviews. Then, you'll study and evaluate the information and make recommendations to help the company run more effectively.  

Read more: What Is a Business Analyst? Career Guide

2. Cybersecurity analyst

Median annual US salary (BLS): $112,000 [ 2 ]

Job outlook: 32 percent job growth [ 2 ]

Job requirements: A cybersecurity analyst often holds a bachelor's degree in cybersecurity or computer and information technology. Skills that benefit a cybersecurity analyst include analytical skills, attention to detail, communication, computer skills, and problem-solving.

Tasks and responsibilities: A cybersecurity analyst develops and monitors methods for safeguarding computer networks and systems within an organization. Additional tasks involve creating security standards and procedures, writing security reports, and providing tech support for employees installing or learning new security software.

3. Data scientist

Median annual US salary (BLS): $103,500 [ 3 ]

Job outlook: 35 percent job growth [ 3 ]

Job requirements: A data scientist usually holds a bachelor's degree but may hold a master's or PhD in data science, computer science, mathematics, or statistics. Skills that benefit a data scientist include analytical skills, logical reasoning, communication, computer skills, and proficiency in math.  

Tasks and responsibilities: A data scientist gathers, analyzes, and interprets data. Your additional duties in this role include presenting findings of data analysis and making recommendations based on findings. Types of industries that use data scientists include business, education, government, health care, and professional sports.

4. Financial analyst 

Median annual US salary (BLS): $96,220 [ 4 ]

Job outlook: 8 percent job growth [ 4 ]

Job requirements: A financial analyst commonly holds a bachelor's degree in finance, business, or a related field like accounting, economics, or statistics. Skills that benefit a financial analyst include analytical skills, attention to detail, communication, computer skills, decision-making, and proficiency in math. 

Tasks and responsibilities: Generally, a financial analyst offers guidance to individuals or businesses regarding finances and investments. Different types of financial analysts include financial risk analysts, fund managers, portfolio managers, and ratings analysts. 

Read more: What Is a Financial Analyst? (+ How to Become One)

Tips for improving your analytical thinking skills 

The ability to think analytically offers benefits in your professional and personal life. To improve your analytical thinking skills, go through some key steps when problem-solving or decision-making:

Do your research.

Gather information.

Think of several ideas or solutions.

Analyze your ideas or solutions and choose the best one.

Evaluate the success of the idea or solution. 

Consider these additional tips for becoming a more analytical thinker:

Take an analytics class or classes.

Boost analytical skills with riddles, crossword puzzles, jigsaw puzzles, or strategic board games like chess or checkers.

Enhance your ability to analyze a problem and break it into steps by taking a math class. Equations and world problems require careful examination, and you may have to engage in trial and error before solving them. 

Read books about data analytics or other types of analytics that interest you.

Network with analytics professionals.

Next steps on Coursera

To determine if you would enjoy a career in analytics, consider the Google Data Analytics Professional Certificate on Coursera. You'll have the opportunity to learn how to gather data, clean and organize it for analysis, and conduct analysis using various computer programs. 

When you finish this eight-course series, you may have as much knowledge as many junior-level data analysts. You'll also receive a Professional Certificate highlighting your data analytics expertise.

Article sources

US Bureau of Labor Statistics. " Occupational Outlook Handbook: Management Analysts , https://www.bls.gov/OOH/business-and-financial/management-analysts.htm?utm_source=fit/programs/8422/ms-information-technology-database-administration/classesutm_medium." Accessed February 23, 2024.

US Bureau of Labor Statistics. " Occupational Outlook Handbook: Information Security Analysts , https://www.bls.gov/ooh/computer-and-information-technology/information-security-analysts.htm." Accessed February 23, 2024.

US Bureau of Labor Statistics. " Occupational Outlook Handbook: Data Scientists , https://www.bls.gov/ooh/math/data-scientists.htm." Accessed February 23, 2024.

US Bureau of Labor Statistics. " Occupational Outlook Handbook: Financial Analysts , https://www.bls.gov/ooh/business-and-financial/financial-analysts.htm." Accessed February 23, 2024.

Keep reading

Coursera staff.

Editorial Team

Coursera’s editorial team is comprised of highly experienced professional editors, writers, and fact...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

The Peak Performance Center

The Peak Performance Center

The pursuit of performance excellence, analytical thinking and critical thinking.

Some people assume that analytical thinking and critical thinking are one in the same. However, that is incorrect. Although there are similarities, there are distinct differences between the two.

Definitions:

Analytical thinking is the mental process of breaking down complex information or comprehensive data into fundamental parts or basic principles.

Critical thinking is the mental process of carefully evaluating information and determining how to interpret it in order to make a sound judgment.

Differences between Analytical Thinking and Critical Thinking

A basic difference between analytical thinking and critical thinking is analytical thinking involves breaking down complex information into smaller parts while critical thinking involves taking outside knowledge into account while evaluating information. Basically, analytical thinking seeks to review and breakdown the information gathered while critical thinking looks to make a holistic judgment using various sources of information including a person’s own existing knowledge.

Analytical thinking is more linear and step-by-step breakdown of information. On the other hand, critical thinking is more holistic as it seeks to assess, question, verify, infer, interpret, and formulate.

Analytical thinking can be thought of as a step in the critical thinking process. When you have a complex problem to solve, you would want to use your analytical skills before your critical thinking skills. Critical thinking does involve breaking down information into parts and analyzing the parts in a logical, step-by-step manner. However, it also involves taking other information to make a judgment or formulate innovative solutions.

Additionally, with analytical thinking, you use facts within the information gathered to support your conclusion. Conversely, with critical thinking, you make a judgment based on your opinion formed by evaluating various sources of information including your own knowledge and experiences.

analytical-thinking-and-critical-thinking

About Analytical Thinking

Analytical thinking uses a step-by-step method to analyze a problem or situation by breaking it down into smaller parts in order to come to a conclusion.

With analytical thinking, you make conclusions by breaking down complex information into smaller parts and analyzing the parts. You look for patterns and trends as well a cause and effect within the information in order to find connections between the parts. In the end, you make draw a conclusion based on the available facts.

Steps for Analytical Thinking

Analytical thinking begins by gathering all relevant information. You then break up large, complex data into smaller, more manageable sizes. You then examine each sub-part to understand its components and relationship to the larger more complex data. You compare sets of data from different sources by looking at the information through different points of view with the objective to understand how it connects to other information. You search for patterns, trends, and cause and effect. Finally, you draw appropriate conclusions from the information in order to arrive at appropriate solutions.

Analytical thinking involves:

  • Gathering relevant information
  • Focusing on facts and evidence
  • Examining chunks of data or information
  • Identifying key issues
  • Using logic and reasoning to process information
  • Separating more complex information into simpler parts
  • Sub-dividing information into manageable sizes
  • Finding patterns and recognizing trends
  • Identify cause and effect
  • Understanding connections and relationships
  • Eliminating extraneous information
  • Organizing Information
  • Drawing appropriate conclusions

About Critical Thinking

Critical thinking employs logic and reasoning to come to a conclusion about how best to perceive and interpret information in order to make sound judgments.

With critical thinking, you make conclusions regarding your unique perception of the information. You look into other pieces of data that could be relevant. Then you combine your new information with your existing knowledge of the world in order to make the most accurate assessment. Essentially, you reflect upon information in order to form a sound judgment that reconciles scientific evidence with common sense. Ultimately, you make reasoned judgments that are logical and well thought out by assessing the evidence that supports a specific theory or conclusion.

Steps for Critical Thinking

Critical thinking involves gathering all relevant information, then evaluating the information to determine how it should be best interpreted. You evaluate information by asking questions, assessing value, and making inferences. You then formulate ideas and theories based on the evaluation. You consider outside information rather than sticking strictly with the information presented. You then consider alternative possibilities before reaching a well-reasoned conclusion. Finally, you test your conclusions in an attempt to verify if evidence supports your conclusions and make your judgment.

Critical thinking involves:

  • Evaluating information
  • Asking questions
  • Assessing bias or unsubstantiated assumptions
  • Making inferences from the information and filling in gaps
  • Using abstract ideas to interpret information
  • Formulating ideas
  • Weighing opinions
  • Reaching well-reasoned conclusions
  • Considering alternative possibilities
  • Testing conclusions
  • Verifying if evidence/argument support the conclusions

is critical thinking and analytical thinking the same

Copyright © 2024 | WordPress Theme by MH Themes

web analytics

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

  • Find a Course
  • For Business
  • For Educators
  • Product News

Analytical thinking: what it is and why it matters more than ever

January 30, 2024

is critical thinking and analytical thinking the same

Welcome back to our high-impact workplace skills series. We really enjoyed the conversations happening in the comments section of last week’s top skills of 2023 issue, so be sure to check those out for perspectives and insights from fellow members of our Career Chat community.

One comment that’s been on our mind came from Kendra Vivian Lewis , who asked some thoughtful questions about the comparative importance of workplace and technical skills and if there’s a way to forecast which skills will be important in the coming years. This week’s topic—analytical thinking, the number one skill on the list—is a great example as we explore both questions. Be sure to read to the end to discover a special offer that we’re running on Coursera Plus subscriptions through September 21.

What it means to think analytically

Analytical thinking involves using data to understand problems, identify potential solutions, and suggest the solution that’s most likely to have the desired impact. It’s similar to critical thinking skills , which are the skills you use to interpret information and make decisions.

In order to succeed as a strong analytical thinker, you also need to have strong technical skills in your field. Remember: technical skills describe the things you do, while workplace skills describe how you do them. So your workplace skills, used effectively, enhance your technical skills. That’s why we consider them to be high-impact—they stand to make your work more impactful than it would have been had you only used your technical skills.

To illustrate, suppose you just started a job as a data analyst for a think tank focused on climate change, and you’ve been tasked with raising community engagement in future climate action efforts.

You might start with your technical data analysis skills as you gather data from a few sources. Then, you’ll use your analytical thinking skills to determine the validity of each data source. Perhaps you’ll discard one source when you learn the research was funded by a firm with a financial stake in fossil fuel consumption. Your technical skills lead again as you clean data, and then you’ll return to your analytical thinking skills to analyze and interpret your findings, ultimately leading to your recommendation to start a transparency campaign to display water and energy use in the community.

Tell us in the comments: How do you use your analytical skills alongside your technical skills in your day-to-day work?

Why analytical skills top the list

To develop the skills list, the World Economic Forum surveyed 800+ global employers on their views of skills and jobs over the next five years, so this list is forward-looking. According to the Future of Jobs Report , employers believe analytical thinking skills will grow in importance by 72 percent in this timeframe.

The reason employers are keen to hire employees with strong analytical thinking skills is informed by trends in automation and technological advancements. While technical data analysis becomes easier with automation, reasoning and decision-making automation is advancing at a much slower pace—meaning employers anticipate that, within the next five years, we’ll have a wealth of data at our fingertips and too few people to interpret what that data means.

Where to begin

For a crash course in critical thinking, try the University of California, Davis’s Critical Thinking Skills for the Professional course. You can finish this beginner-level course in about 7 hours.

For a more comprehensive exploration into analytical thinking , try Duke University’s Introduction to Logic and Critical Thinking Specialization . Over four courses, you’ll learn how to effectively argue and reason using logic.

For a technical process to guide your analytical thinking, try Google’s Data Analytics Professional Certificate . Ground your analytical thinking skills in technical know-how in this eight-course series.

Interested in multiple programs? Don’t miss this special offer!

Through September 21, we’re offering $100 off annual Coursera Plus subscriptions for new subscribers. With this offer, you’ll pay less than $25 per month for one year of access to 6,100 courses, Specializations, and Professional Certificates with flexibility to start new courses and move between programs at your pace.

This offer is a great choice if you are frequently tempted to enroll in multiple courses at once or plan to complete a Specialization or Professional Certificate within the next year. If that sounds like you, take a closer look at the offer and the Coursera Plus course catalog.

That’s all for this week! Join us next week to talk about motivation and self-awareness skills.

Keep reading

  • How to answer interview questions with the STAR method
  • Coursera Receives Industry-first Authorized Instructional Platform Designation from the American Council on Education
  • How to answer “what are your strengths and weaknesses?” in interviews

The University of Nottingham homepage

  • Studying at university
  • Being organised
  • Searching for information
  • Types of information resources
  • Reading strategies
  • Evaluating information
  • Using statistics and data

Critical and analytical thinking

  • Creative and exploratory thinking
  • Evaluation and judgement
  • Referencing
  • Assessment and feedback

People who can help

What is critical and analytical thinking.

In essence, this means looking very closely at the detail and not taking what you read or are told for granted. This is likely to involve some or all of the following:

Check list:

  • Evaluating how far sources and materials are up-to-date and relevant
  • Evaluating if the evidence or examples used support the points or claims made
  • Evaluating opinions, arguments or solutions using appropriate criteria and benchmarks
  • Following a line of reasoning through to its logical conclusion
  • Checking for bias or unfounded assumptions
  • Evaluating the argument to check that the evidence presented really does support the conclusions drawn.

You will need to do this for books and other resources that you consult throughout your learning. You are expected to be applying critical and analytical thinking to assessing your sources, using evidence that has been well researched rather than just your own, or someone else's, unjustified opinion.This is especially true when you are using materials and sources drawn from the internet. Website material in particular may not have been subjected to the same processes of peer-reviewing as many printed materials.

Peer-reviewing is a core process of evaluating materials proposed for publication and involves appropriate experts in a field assessing the validity, reliability and intellectual contribution the writing would make to the field and its intended readership.

Interpreting the contributions of broadcast media materials such as YouTube videos, radio, television, and film may also present challenges for applying critical and analytical thinking. You may need to consider the impact of any legal constraints for meeting publication or broadcast guidelines and the extent to which review or approval in advance may be limited.

In selecting evidence and developing your own opinion you will need to take into account the potential bias inherent in the sources you consult. Talk to your subject tutors to access advice on critically analysing the relevant range of resources you may refer to in your academic discipline.

Critical thinking

Further reading

  • Dissertations, projects and theses

Reading and interpreting sources and data

Practical strategies for critical analysis.

  • Writing critically 
  • Relevance tree - for dissertation topic planning

More from Academic Support study resources  

Talk to someone in your school or a specialist support service

Studying Effectively

Kings Meadow Campus Lenton Lane Nottingham, NG7 2NR

telephone: +44 (0) 115 951 5151 fax: +44 (0) 115 951 3666 Contact us

Legal information

  • Terms and conditions
  • Posting rules
  • Accessibility
  • Freedom of information
  • Charity gateway
  • Cookie policy

Connect with the University of Nottingham through social media and our blogs .

Find us on Facebook

Analytical Thinking vs. Critical Thinking

The step-by-step process of how information becomes ideas – the Information Chain – is one way to define ‘analytical thinking.’ But even that phrase is loosely defined because I often hear ‘critical thinking’ used as a synonym. I see them as different, and they serve different needs. Here’s Analytical Thinking versus Critical Thinking.

is critical thinking and analytical thinking the same

Analytical Thinking … focuses on a specific thing, such as a thing, a piece of information or an idea. By examining this singular entity, you break it down into smaller, more understandable components.

Look at a vendor’s invoice for example. You can break it down by amount, date, invoice number, the total amount vs the different expenses, terms and conditions, bank payments details.

In other words, Analytical Thinking is thinking inside itself .

is critical thinking and analytical thinking the same

To critique the vendor’s invoice, you have to put it beside something else to understand it, such as another invoice. Is the total amount or individual expenses the same or different? What are the dates of when work was done? Is this the same purchase order, or a different number?

In other words, Critical Thinking is thinking outside of itself .

And, never forget one of the most important aspects of critical thinking, thanks to Walter Shewhart . Information without context is useless.

Something that both Analytical Thinking and Critical Thinking have in common is either can be applied anytime and anywhere during creative problem solving.  If you look at the Hourglass Figure (below), you can be analytical or critical when gathering information (in the green strategic or convergent stage) or when brainstorming potential ideas (in the blue creative or divergent stage).

Hourglass Glass, detailed

So what’s the point of all this?

Whether you’re using Analytical Thinking or Critical Thinking – or even looking at something generally – you are trying to extract five useful qualities. You want to know if this thing is …

  • Accurate?   Is it exact? Factual?
  • Authentic?   Is it genuine?  Consistent?
  • Objective?   Is it free from bias, stereotypes, prejudice and motives?
  • Valid?   Is it what it says it is?
  • Worth?   What is its price or cost?

Most of all, these five values add up to Value .

Before we close, one last point about Analytical Thinking or Critical Thinking. To do either, don’t forget the need for …

  • Curiosity – the intense desire to know something. If you didn’t have it, you’d never think further than absolutely what’s necessary.
  • Scepticism – an attitude of doubt toward something to gauge if its ‘real’ or ‘true.’ Without scepticism, the mind accepts anything. (This point reminds me of the old Chicago newspaperman’s mantra about truth: ‘Even if your mother says she loves you, check it out.’)
  • Humility – the ability to admit when you’re wrong and not take it personally. Even the best among us make mistakes. You could review something and 100% believe it, but find out later you’re wrong. Be humble, admit it, laugh at yourself, and move on.

Whether you’re applying Analytical Thinking or Critical Thinking, or even Strategic Thinking vs Creative Thinking (the Hourglass Figure), here’s some questions to consider.

  • Are you starting with the right goals?  Are they S.M.A.R.T. ?
  • Are you addressing the real problem?  Or, are you fixing a symptom?  More so, are you solving the wrong problem?
  • Where are you gathering research?  Who says it’s quality, reputable information?  (Hint: if you don’t know where to start, start with the topic’s history, which will help you understand the current state of affairs.)
  • Are you only research to prove yourself right, or should you also do research to prove yourself wrong?  Also, the best place to start research is with the people who have the problem.
  • Are you analysing information deeply enough?  A search that never goes beyond the first page of Google is not research, it’s laziness.
  • Are you fairly comparing or contrasting information?  Information from a reputable physician versus ‘Dr Google’ lead to different outcomes.
  • Are you extracting a true insight? Says who?  (Again, if you already knew it, it’s not an insight.)
  • Are you generating enough ideas (even bad ideas)?
  • How are you selecting the best ideas, and does the ‘client’ agree with your criteria?
  • Do your ideas actually address the business problem?

How have you used Analytical Thinking or Critical Thinking in the past?   Any suggestions or tips to help others be analytical or critical in a productive way?

No comment yet, add your voice below!

Add a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

analytical thinking vs critical thinking

  • No Comments
  • Categories: Analytical and Critical Thinking , Definitions , Problem Solving , Strategic Thinking
  • Tags: analytical thinking , authentic , critical thinking , curiosity , goal , hourglass figure , information , information chain , insights , research , scepticism , value , worth

The Nature and Development of Critical-Analytic Thinking

  • Review Article
  • Published: 12 October 2014
  • Volume 26 , pages 477–493, ( 2014 )

Cite this article

is critical thinking and analytical thinking the same

  • James P. Byrnes 1 &
  • Kevin N. Dunbar 2  

3309 Accesses

53 Citations

3 Altmetric

Explore all metrics

In this article, we attempt to provide an overview of the features of the abilities, aptitudes, and frames of minds that are attributed to critical thinking and provide the broad outlines of the development of critical-analytic thinking (CAT) abilities. In addition, we evaluate the potential viability of three main hypotheses regarding the reasons for developmental trends in CAT and address problems of achieving the ideal of a critical-analytic thinker at all age levels. The first hypothesis is that standard instruction in disciplines such as the sciences and social sciences, couch findings, and theories as matters of choice rather than as inferences is being more warranted than others. The second hypothesis is that there are developmental constraints on the expression of CAT that would limit the efficacy of instruction seeking to promote increased appreciation for inferential warrants and the idea of progress in disciplines. These constraints could be tied to the acquisition of knowledge, development of expertise, and brain development. The third hypothesis pertains to motivational reasons for not exerting the time and effort required to engage in CAT. We conclude by proposing a research agenda to investigate these hypotheses, as the first step in understanding the kinds of interventions that might be needed to increase the level of CAT expressed in high school and college graduates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

is critical thinking and analytical thinking the same

Stage Theory of Cognitive Development—Jean Piaget

is critical thinking and analytical thinking the same

Carl Rogers: A Person-Centered Approach

Multiple intelligences theory—howard gardner.

Alexander, P. A. (2014). Thinking critically-analytically about critical-analytic thinking: an introduction. Educational Psychology Review.

American Nursing Association. (2010). Nursing: scope and standards of practice (2nd ed.). MD: Silver Spring.

Google Scholar  

Baltes, B., & Staudinger, U. M. (2000). Wisdom: a metaheuristic (pragmatic) to orchestrate mind and virtue toward excellence. American Psychologist, 55 , 122–136.

Article   Google Scholar  

Baron, J. (2007). Thinking and deciding (4th ed.). New York: Cambridge University Press.

Bassok, M., & Novick, L. R. (2012). Problem solving. In K. J. Holyoak & R. G. Morrison (Eds.), The Oxford handbook of thinking and reasoning (pp. 413–432). New York: Oxford University Press.

Baum, L. A., Danovich, J. H., & Keil, F. C. (2008). Children’s sensitivity to circular explanations. Journal of Experimental Child Psychology, 100 , 146–155.

Berliner, D. C. (1993). The 100-year journey of educational psychology: from interest, to disdain, to respect for practice. In T. K. Fagan & G. R. VandenBos (Eds.), Exploring applied psychology: origins and critical analyses (pp. 37–78). Washington, DC: American Psychological Association.

Bloom, P. (2000). How children learn the meaning of words . Cambridge: MIT Press.

Brookfield, S. D. (2012). Teaching for critical thinking: tools and techniques to help students question their assumptions . San Francisco: Jossey-Bass.

Byrnes (2008). Cognitive development in instructional contexts (3rd ed.). Needham Hts: Allyn & Bacon.

Capstick, S. B. & Pidgeon, N. F. (2014). What is climate change scepticism? Examination of the concept using a mixed methods study of the UK public. Global Environmental Change, 24 , 389–401.

Chi, M. T. H., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5 , 121–152.

Dewey, J. D. (1933). How we think, a restatement of the relation of reflective thinking to the educative process . Boston: D. C. Heath.

Diamond, A. (2012). Activities and programs that improve children’s executive functions. Current Directions in Psychological Science, 21 , 335–341.

Dumas, D., Alexander, P., Baker, L.M., Jablansky, S., & Dunbar, K. N. (2014). Clinical relations: how relational reasoning supports medical education and practice. Educational Psychology. First published online May 8.

Dunbar, K. (2002). Science as category: implications of InVivo science for theories of cognitive development, scientific discovery, and the nature of science. In S. Stich & P. Carruthers (Eds.), Cognitive models of science (pp. 154–170). New York: Cambridge University Press.

Dunbar, K., Fugelsang, J., & Stein, C. (2007). Do naive theories ever go away? Using brain and behavior to understand changes in concepts. In M. Lovett & P. Shah (Eds.), Thinking with data (pp. 193–206). Mahwah: Lawrence Erlbaum Associates.

Dunbar, K. N., & Klahr, D. (2012). Scientific thinking and reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Oxford handbook of thinking and reasoning (pp. 701–718). New York: Oxford University Press.

Ennis, R. H. (1987). A taxonomy of critical thinking dispositions and abilities. In J. B. Baron & R. J. Sternberg (Eds.), Teaching thinking skills: theory and practice (pp. 9–26). New York: W. H. Freeman.

Ericsson, K. A. (2013). Exceptional memory and expert performance: from Simon and Chase’s theory of expertise to skilled memory and beyond. In J. J. Staszewski (Ed.), Expertise and skill acquisition: the impact of William G. Chase (pp. 201–228). New York: Psychology Press.

Evans, J. S. B. T. (2012). Dual process theories of deductive reasoning: facts and fallacies. In K. J. Holyoak & R. G. Morrison (Eds.), The Oxford handbook of thinking and reasoning (pp. 115–133). New York: Oxford University Press.

Evans, J. S. B. T., & Stanovich, K. E. (2013). Dual-process theories of higher cognition: advancing the debate. Perspectives on Psychological Science, 8 (223–241), 263–271.

Fugelsang, J.A., & Dunbar, K. N. (2005). Brain-based mechanisms underlying complex causal thinking. Neuropsychologia, 43 , 1204–1213.

Glaser, E. (1941). An experiment in the development of critical thinking . New York: J. J. Little and Ives Company.

Green, A. E., & Dunbar, K. N. (2012). Mental function as genetic expression: emerging insights from cognitive neurogenetics. In K. J. Holyoak & R. G. Morrison (Eds.), Oxford handbook of thinking and reasoning (pp. 90–114). New York: Oxford University Press.

Halpern, D. F. (2014). Thought and knowledge: an introduction to critical thinking (5th ed.). New York: Psychology Press.

Harris, P. J. (2002). What do children learn from testimony? In P. Carruthers, S. P. Stich, & M. Siegal (Eds.), The cognitive basis of science (pp. 316–334). New York: Cambridge University Press.

Chapter   Google Scholar  

Johnson-Laird, P. N. (1980). Mental models in cognitive science. Cognitive Science, 4, 71–115.

Kahan, D. M. (2013). Ideology, motivated reasoning, and cognitive reflection. Judgment and Decision Making, 8 , 407–424.

Kahneman, D. (2011). Thinking, fast and slow . New York: Farrar, Straus, and Giroux.

Karmiloff-Smith, A., & Farran, E. K. (2012). Theoretical and empirical directions within a neuroconstructivist framework. In E. K. Farran & A. Karmiloff-Smith (Eds.), Neurodevelopmental disorders across the lifespan: a neuroconstructivist approach (pp. 363–372). New York: Oxford University Press.

Mulvey, K. L., Hitti, A., & Killen, M. (2013). Morality, intentionality, and exclusion: how children navigate the social world. In M. Banaji & S. Gelman (Eds.), Navigating the social world: a developmental perspective (pp. 377–384). New York: Oxford University Press.

Klaczinski, P. A., & Lavallee, K. L. (2005). Domain-specific identity, epistemic regulation, and intellectual ability as predictors of belief-based reasoning: a dual-process perspective. Journal of Experimental Psychology, 92 , 1–24.

Klaczynski, P. A., & Robinson, B. (2000). Personal theories, intellectual ability and epistemological beliefs: adult age differences in everyday reasoning biases. Psychology and Aging, 15 , 400–416.

Kuhl, P. K. (2006). A new view of language acquisition. In H. Luria, D, M, Seymour & T. Smoke (Eds.), Language and linguistics in context: readings and applications for teachers (pp. 29–42). Mahwah: Lawrence Erlbaum Associates Publishers.

Kuhn, D. (1999). A developmental model of critical thinking. Educational Researcher, 28 , 16–26.

Kuhn, D. (2011). What people may do versus can do. Behavioral and Brain Sciences, 343 , 83.

Kuhn, D., & Crowell, A. (2011). Dialogic argumentation as a vehicle for developing young adolescents’ reasoning. Psychological Science, 22 , 545–552.

Lehrer, R., Schauble, L., & Lucas, D. (2008). Supporting development of the epistemology of inquiry. Cognitive Development, 23 , 512–529.

Lombrozo, T. (2012). Explanation and abductive inference. In K. J. Holyoak & R. G. Morrison (Eds.), The Oxford handbook of thinking and reasoning (pp. 260–276). New York: Oxford University Press.

Maggioni, L., VanSledright, B., & Alexander, P. A. (2009). Walking on the borders: a measure of epistemic cognition in history. Journal of Experimental Education, 77 , 187–213.

Mercier, H. (2011). Reasoning serves argumentation in children. Cognitive Development, 26 , 177–191.

Mercier, H., & Sperber, D. (2011). Why do humans reason? Arguments for an argumentative theory. Behavioral and Brain Sciences, 34 , 57–111.

Mills, C. M. (2012). Knowing when to doubt: developing a critical stance when learning from others. Developmental Psychology, 49 , 404–418.

Moore, T. J. (2011). Critical thinking and language: the challenge of generic skills and disciplinary discourse . New York: Continuum International Publishing Group.

Nandagopal, K., & Ericsson, K. A. (2012). Enhancing students’ performance in traditional education: implications from the expert–performance approach and deliberate practice. In K. R. Harris, S. Graham, & T. Urdan (Eds.), Educational psychology handbook. Volume 1: theories, constructs, and critical issues (pp. 257–293). Washington, DC: American Psychological Association.

Newell, A., & Simon, H. A. (1972). Human problem solving . Englewood Cliffs: Prentice Hall.

Rosch, E. (1975). Cognitive representations of semantic categories. Journal of Experimental Psychology, 104 , 192–233.

Schraw, G., & Gutierrez, A. (2012). Assessment of thinking skills. In M. F. Shaughnessy (Ed.), Critical thinking and higher order thinking: a current perspective (pp. 191–203). Hauppague: Nova Science Publishers.

Smith, E. E., & Medin, D. L. (1981). Categories and concepts . Cambridge: Harvard University Press.

Book   Google Scholar  

Stanovich, K. E. (2012). On the distinction between rationality and intelligence: implications for understanding individual differences in reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Oxford handbook of thinking and reasoning (pp. 433–455). New York: Oxford University Press.

Stanovich, K. E., & West, R. F. (2008). On the relative independence of thinking biases and cognitive ability. Journal of Personality and Social Psychology, 94 , 672–695.

Stanovich, K. E., West, R. F., & Toplak, M. E. (2013). Myside bias, rational thinking, and intelligence. Current Directions in Psychological Science, 22 , 259–264.

Sternberg, R. J., Jarvin, L., Birney, D. P., Naples, A., Stemler, S. E., Newman, T., Otterbach, R., Parish, C., Randi, J., & Grigorenko, E. L. (2014). Testing the theory of successful intelligence in teaching grade 4 language arts, mathematics, and science. Journal of Educational Psychology, 106 , 881–899.

Swanson, H. L., & Alloway, T. P. (2012). Working memory, learning, and academic achievement. In K. R. Harris, S. Graham, & T. Urdan (Eds.), Educational psychology handbook. Volume 1: theories, constructs, and critical issues (pp. 327–366). Washington, DC: American Psychological Association.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: statistics, structure, and abstraction. Science, 331 (6022), 1279–1285.

Toplak, M. E., West, R. F., & Stanovich, K. E. (2014). Rational thinking and cognitive sophistication: development, cognitive abilities, and thinking dispositions. Developmental Psychology, 50 , 1037–1048.

Thompson, V., & Evans, J. S. B. T. (2012). Belief bias in informal reasoning. Thinking and Reasoning, 18 , 278–310.

Willingham, W. T. (2008). Critical thinking: why is it so hard to teach? Arts Education Policy Review, 109 , 21–29.

Wittgenstein, L. (1953). Philosophical investigations. (Anscombe, G.E.M., trans.) . Oxford: Basil Blackwell.

Wong, S. L., & Hodson, D. (2009). From the horse’s mouth: what scientists say about scientific investigation and scientific knowledge. Science Education, 93 , 109–130.

Download references

Author information

Authors and affiliations.

College of Education, Temple University, 1301 Cecil B. Moore Ave, Philadelphia, PA, 19122, USA

James P. Byrnes

Department of Human Development, Measurement and Statistics, College of Education, University of Maryland, College Park, MD, 20742, USA

Kevin N. Dunbar

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to James P. Byrnes .

Rights and permissions

Reprints and permissions

About this article

Byrnes, J.P., Dunbar, K.N. The Nature and Development of Critical-Analytic Thinking. Educ Psychol Rev 26 , 477–493 (2014). https://doi.org/10.1007/s10648-014-9284-0

Download citation

Published : 12 October 2014

Issue Date : December 2014

DOI : https://doi.org/10.1007/s10648-014-9284-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Critical thinking
  • Analytic thinking
  • Rationality
  • Find a journal
  • Publish with us
  • Track your research

Differences Between Analytical & Critical Thinking

Kyra sheahan.

Analytical thinking can help you problem-solve issues in your life.

Any time you read literary materials or experience something that requires you to comprehend it, you employ a variety of thinking skills. Thinking skills relate to the way in which you process and understand information, and you employ specific thinking skills based on what you wish to gain from your thoughts. Analytical and critical thinking are two styles of thinking skills that are commonly used, but employed for different purposes.

Explore this article

  • Analytical Thinking
  • Critical Thinking
  • Facts-Based

1 Analytical Thinking

Analytical thinking describes a thinking style that enables a person to break down complex information or a series of comprehensive data. It uses a step-by-step method to analyze a problem and then come to an answer or solution. In essence, analytical thinking represents a cause and effect style of looking at a problem, and is sometimes referred to as perceiving something through multiple lenses. An example of analytical thinking involves understanding the relationship between leaves and the color green. One could ask "Why are leaves green?" and then use analytical thinking skills to tie the answer together.

2 Critical Thinking

Critical thinking has to do with evaluating information that is fed to you, and determining how to interpret it, what to believe and whether something appears to be right or wrong. In this style of thinking the thinker employs reasoning to come to a conclusion about how he wants to perceive the information. Critical thinking also takes outside information into account during the thought process. Rather than sticking strictly with the information presented, critical thinking lets the thinker explore other elements that could be of influence.

3 Facts-Based

Analytical and critical thinking styles both look at facts, but those facts are then used for different purposes. When it comes to analytical thinking, facts are used to build on information and support evidence that leads to a logical conclusion. Critical thinking, on the other hand, uses facts to determine a belief, form an opinion or decide whether something makes sense.

The processes of analytical thinking and critical thinking are different. Analytical thinking uses a linear and focused process, with one thought following the other in a stream-like formation. Critical thinking occurs more in circles and can go around and around until a conclusion is stumbled upon.

The purposes of critical thinking and analytical thinking are not the same. You do not employ critical thinking strategies to figure out the solution to a complex question or to problem-solve. Rather, analytical thinking is used for this purpose. However, you would not use analytical thinking if your main goal was to come up with a belief or perception about something. In this case, you would use critical thinking methods.

About the Author

Kyra Sheahan has been a writer for various publications since 2008. Her work has been featured in "The Desert Leaf" and "Kentucky Doc Magazine," covering health and wellness, environmental conservatism and DIY crafts. Sheahan holds an M.B.A. with an emphasis in finance.

Related Articles

Seven Key Features of Critical Thinking

Seven Key Features of Critical Thinking

Advantages & Disadvantages of Positivism

Advantages & Disadvantages of Positivism

How to Increase Your Critical Thinking Skills

How to Increase Your Critical Thinking Skills

The Difference Between Research & Science

The Difference Between Research & Science

How Does Bloom's Taxonomy Relate to Critical Thinking Information?

How Does Bloom's Taxonomy Relate to Critical Thinking...

What Are the Differences Between Bias & Fallacy?

What Are the Differences Between Bias & Fallacy?

Techniques Used to Solve Ethical Dilemmas

Techniques Used to Solve Ethical Dilemmas

What Are the Four Forms of Critical Thinking and Writing?

What Are the Four Forms of Critical Thinking and Writing?

How to Identify a Hypothesis

How to Identify a Hypothesis

Comprehension Skills That Require Critical Thinking

Comprehension Skills That Require Critical Thinking

What Did Plato Contribute to Philosophy?

What Did Plato Contribute to Philosophy?

How to Write a DBQ Essay

How to Write a DBQ Essay

When Should You Apply the Idea of Bloom's Taxonomy to Guide Your Critical Reading of Arguments?

When Should You Apply the Idea of Bloom's Taxonomy...

Format for Writing an Information Paper

Format for Writing an Information Paper

What Is the Difference Between Conclusion and Inference?

What Is the Difference Between Conclusion and Inference?

What Actions or Behaviors Are Indicative of a Critical Thinker?

What Actions or Behaviors Are Indicative of a Critical...

Important Elements in Writing Argument Essays

Important Elements in Writing Argument Essays

Beliefs Of Agnostics

Beliefs Of Agnostics

Types of Argument Syles

Types of Argument Syles

Types of Critical Thinking Skills

Types of Critical Thinking Skills

Regardless of how old we are, we never stop learning. Classroom is the educational resource for people of all ages. Whether you’re studying times tables or applying to college, Classroom has the answers.

  • Accessibility
  • Terms of Use
  • Privacy Policy
  • Copyright Policy
  • Manage Preferences

© 2020 Leaf Group Ltd. / Leaf Group Media, All Rights Reserved. Based on the Word Net lexical database for the English Language. See disclaimer .

is critical thinking and analytical thinking the same

Work Life is Atlassian’s flagship publication dedicated to unleashing the potential of every team through real-life advice, inspiring stories, and thoughtful perspectives from leaders around the world.

Kelli María Korducki

Contributing Writer

Dominic Price

Work Futurist

Dr. Mahreen Khan

Senior Quantitative Researcher, People Insights

Kat Boogaard

Principal Writer

is critical thinking and analytical thinking the same

How to build critical thinking skills for better decision-making

It’s simple in theory, but tougher in practice – here are five tips to get you started.

Get stories like this in your inbox

Have you heard the riddle about two coins that equal thirty cents, but one of them is not a nickel? What about the one where a surgeon says they can’t operate on their own son?

Those brain teasers tap into your critical thinking skills. But your ability to think critically isn’t just helpful for solving those random puzzles – it plays a big role in your career. 

An impressive 81% of employers say critical thinking carries a lot of weight when they’re evaluating job candidates. It ranks as the top competency companies consider when hiring recent graduates (even ahead of communication ). Plus, once you’re hired, several studies show that critical thinking skills are highly correlated with better job performance.

So what exactly are critical thinking skills? And even more importantly, how do you build and improve them? 

What is critical thinking?

Critical thinking is the ability to evaluate facts and information, remain objective, and make a sound decision about how to move forward.

Does that sound like how you approach every decision or problem? Not so fast. Critical thinking seems simple in theory but is much tougher in practice, which helps explain why 65% of employers say their organization has a need for more critical thinking. 

In reality, critical thinking doesn’t come naturally to a lot of us. In order to do it well, you need to:

  • Remain open-minded and inquisitive, rather than relying on assumptions or jumping to conclusions
  • Ask questions and dig deep, rather than accepting information at face value
  • Keep your own biases and perceptions in check to stay as objective as possible
  • Rely on your emotional intelligence to fill in the blanks and gain a more well-rounded understanding of a situation

So, critical thinking isn’t just being intelligent or analytical. In many ways, it requires you to step outside of yourself, let go of your own preconceived notions, and approach a problem or situation with curiosity and fairness.

It’s a challenge, but it’s well worth it. Critical thinking skills will help you connect ideas, make reasonable decisions, and solve complex problems.

7 critical thinking skills to help you dig deeper

Critical thinking is often labeled as a skill itself (you’ll see it bulleted as a desired trait in a variety of job descriptions). But it’s better to think of critical thinking less as a distinct skill and more as a collection or category of skills. 

To think critically, you’ll need to tap into a bunch of your other soft skills. Here are seven of the most important. 

Open-mindedness

It’s important to kick off the critical thinking process with the idea that anything is possible. The more you’re able to set aside your own suspicions, beliefs, and agenda, the better prepared you are to approach the situation with the level of inquisitiveness you need. 

That means not closing yourself off to any possibilities and allowing yourself the space to pull on every thread – yes, even the ones that seem totally implausible.

As Christopher Dwyer, Ph.D. writes in a piece for Psychology Today , “Even if an idea appears foolish, sometimes its consideration can lead to an intelligent, critically considered conclusion.” He goes on to compare the critical thinking process to brainstorming . Sometimes the “bad” ideas are what lay the foundation for the good ones. 

Open-mindedness is challenging because it requires more effort and mental bandwidth than sticking with your own perceptions. Approaching problems or situations with true impartiality often means:

  • Practicing self-regulation : Giving yourself a pause between when you feel something and when you actually react or take action.
  • Challenging your own biases: Acknowledging your biases and seeking feedback are two powerful ways to get a broader understanding. 

Critical thinking example

In a team meeting, your boss mentioned that your company newsletter signups have been decreasing and she wants to figure out why.

At first, you feel offended and defensive – it feels like she’s blaming you for the dip in subscribers. You recognize and rationalize that emotion before thinking about potential causes. You have a hunch about what’s happening, but you will explore all possibilities and contributions from your team members.

Observation

Observation is, of course, your ability to notice and process the details all around you (even the subtle or seemingly inconsequential ones). Critical thinking demands that you’re flexible and willing to go beyond surface-level information, and solid observation skills help you do that.

Your observations help you pick up on clues from a variety of sources and experiences, all of which help you draw a final conclusion. After all, sometimes it’s the most minuscule realization that leads you to the strongest conclusion.

Over the next week or so, you keep a close eye on your company’s website and newsletter analytics to see if numbers are in fact declining or if your boss’s concerns were just a fluke. 

Critical thinking hinges on objectivity. And, to be objective, you need to base your judgments on the facts – which you collect through research. You’ll lean on your research skills to gather as much information as possible that’s relevant to your problem or situation. 

Keep in mind that this isn’t just about the quantity of information – quality matters too. You want to find data and details from a variety of trusted sources to drill past the surface and build a deeper understanding of what’s happening. 

You dig into your email and website analytics to identify trends in bounce rates, time on page, conversions, and more. You also review recent newsletters and email promotions to understand what customers have received, look through current customer feedback, and connect with your customer support team to learn what they’re hearing in their conversations with customers.

The critical thinking process is sort of like a treasure hunt – you’ll find some nuggets that are fundamental for your final conclusion and some that might be interesting but aren’t pertinent to the problem at hand.

That’s why you need analytical skills. They’re what help you separate the wheat from the chaff, prioritize information, identify trends or themes, and draw conclusions based on the most relevant and influential facts. 

It’s easy to confuse analytical thinking with critical thinking itself, and it’s true there is a lot of overlap between the two. But analytical thinking is just a piece of critical thinking. It focuses strictly on the facts and data, while critical thinking incorporates other factors like emotions, opinions, and experiences. 

As you analyze your research, you notice that one specific webpage has contributed to a significant decline in newsletter signups. While all of the other sources have stayed fairly steady with regard to conversions, that one has sharply decreased.

You decide to move on from your other hypotheses about newsletter quality and dig deeper into the analytics. 

One of the traps of critical thinking is that it’s easy to feel like you’re never done. There’s always more information you could collect and more rabbit holes you could fall down.

But at some point, you need to accept that you’ve done your due diligence and make a decision about how to move forward. That’s where inference comes in. It’s your ability to look at the evidence and facts available to you and draw an informed conclusion based on those. 

When you’re so focused on staying objective and pursuing all possibilities, inference can feel like the antithesis of critical thinking. But ultimately, it’s your inference skills that allow you to move out of the thinking process and onto the action steps. 

You dig deeper into the analytics for the page that hasn’t been converting and notice that the sharp drop-off happened around the same time you switched email providers.

After looking more into the backend, you realize that the signup form on that page isn’t correctly connected to your newsletter platform. It seems like anybody who has signed up on that page hasn’t been fed to your email list. 

Communication

3 ways to improve your communication skills at work

3 ways to improve your communication skills at work

If and when you identify a solution or answer, you can’t keep it close to the vest. You’ll need to use your communication skills to share your findings with the relevant stakeholders – like your boss, team members, or anybody who needs to be involved in the next steps.

Your analysis skills will come in handy here too, as they’ll help you determine what information other people need to know so you can avoid bogging them down with unnecessary details. 

In your next team meeting, you pull up the analytics and show your team the sharp drop-off as well as the missing connection between that page and your email platform. You ask the web team to reinstall and double-check that connection and you also ask a member of the marketing team to draft an apology email to the subscribers who were missed. 

Problem-solving

Critical thinking and problem-solving are two more terms that are frequently confused. After all, when you think critically, you’re often doing so with the objective of solving a problem.

The best way to understand how problem-solving and critical thinking differ is to think of problem-solving as much more narrow. You’re focused on finding a solution.

In contrast, you can use critical thinking for a variety of use cases beyond solving a problem – like answering questions or identifying opportunities for improvement. Even so, within the critical thinking process, you’ll flex your problem-solving skills when it comes time to take action. 

Once the fix is implemented, you monitor the analytics to see if subscribers continue to increase. If not (or if they increase at a slower rate than you anticipated), you’ll roll out some other tests like changing the CTA language or the placement of the subscribe form on the page.

5 ways to improve your critical thinking skills

Beyond the buzzwords: Why interpersonal skills matter at work

Beyond the buzzwords: Why interpersonal skills matter at work

Think critically about critical thinking and you’ll quickly realize that it’s not as instinctive as you’d like it to be. Fortunately, your critical thinking skills are learned competencies and not inherent gifts – and that means you can improve them. Here’s how:

  • Practice active listening: Active listening helps you process and understand what other people share. That’s crucial as you aim to be open-minded and inquisitive.
  • Ask open-ended questions: If your critical thinking process involves collecting feedback and opinions from others, ask open-ended questions (meaning, questions that can’t be answered with “yes” or “no”). Doing so will give you more valuable information and also prevent your own biases from influencing people’s input.
  • Scrutinize your sources: Figuring out what to trust and prioritize is crucial for critical thinking. Boosting your media literacy and asking more questions will help you be more discerning about what to factor in. It’s hard to strike a balance between skepticism and open-mindedness, but approaching information with questions (rather than unquestioning trust) will help you draw better conclusions. 
  • Play a game: Remember those riddles we mentioned at the beginning? As trivial as they might seem, games and exercises like those can help you boost your critical thinking skills. There are plenty of critical thinking exercises you can do individually or as a team . 
  • Give yourself time: Research shows that rushed decisions are often regrettable ones. That’s likely because critical thinking takes time – you can’t do it under the wire. So, for big decisions or hairy problems, give yourself enough time and breathing room to work through the process. It’s hard enough to think critically without a countdown ticking in your brain. 

Critical thinking really is critical

The ability to think critically is important, but it doesn’t come naturally to most of us. It’s just easier to stick with biases, assumptions, and surface-level information. 

But that route often leads you to rash judgments, shaky conclusions, and disappointing decisions. So here’s a conclusion we can draw without any more noodling: Even if it is more demanding on your mental resources, critical thinking is well worth the effort.

Advice, stories, and expertise about work life today.

Radford University

Center for Innovation and Analytics

Departments

  • Academic Affairs
  • Audit and Advisory Services
  • Finance and Administration
  • Human Resources
  • Information Technology
  • Office of the President
  • Student Affairs
  • University Advancement
  • University Relations
  • Other Offices and Departments
  • About the Center for Innovation and Analytics
  • Areas of Growth in Analytics
  • Analytics Career Preparation
  • Microsoft Office Specialist Certifications
  • Executives in Residence in Analytics
  • Success Stories
  • Analytics Events
  • SAS Joint Graduate Certificate in Business Analytics
  • Analytics Resources
  • Online SAS Joint Graduate Certificate in Business Analytics Certificate
  • The Background to Support the Center
  • What the Center Provides
  • Skills Required by Employers
  • Director's Bio

P.O. Box 6953 Radford, VA 24142 Kyle Hall Suite 231 540.831.5513 cia@radford.edu cia-analytics@radford.edu cia-innovation@radford.edu

Dr. Wil Stanton, Director wstanton@radford.edu cia-analytics@radford.edu

Vicki Perkins, Administrative Assistant vperkins1@radford.edu

Problem Solving, Critical Thinking, and Analytical Reasoning Skills Sought by Employers

In this section:

Problem Solving

  • Critical Thinking

Analytical Reasoning

View the content on this page in a Word document.

Critical thinking, analytical reasoning, and problem-solving skills are required to perform well on tasks expected by employers. 1 Having good problem-solving and critical thinking skills can make a major difference in a person’s career. 2

Every day, from an entry-level employee to the Chairman of the Board, problems need to be resolved. Whether solving a problem for a client (internal or external), supporting those who are solving problems, or discovering new problems to solve, the challenges faced may be simple/complex or easy/difficult.

A fundamental component of every manager's role is solving problems. So, helping students become a confident problem solver is critical to their success; and confidence comes from possessing an efficient and practiced problem-solving process.

Employers want employees with well-founded skills in these areas, so they ask four questions when assessing a job candidate 3 :

  • Evaluation of information: How well does the applicant assess the quality and relevance of information?
  • Analysis and Synthesis of information: How well does the applicant analyze and synthesize data and information?
  • Drawing conclusions: How well does the applicant form a conclusion from their analysis?
  • Acknowledging alternative explanations/viewpoints: How well does the applicant consider other options and acknowledge that their answer is not the only perspective?

When an employer says they want employees who are good at solving complex problems, they are saying they want employees possessing the following skills:

  • Analytical Thinking — A person who can use logic and critical thinking to analyze a situation.
  • Critical Thinking – A person who makes reasoned judgments that are logical and well thought out.
  • Initiative — A person who will step up and take action without being asked. A person who looks for opportunities to make a difference.
  • Creativity — A person who is an original thinker and have the ability to go beyond traditional approaches.
  • Resourcefulness — A person who will adapt to new/difficult situations and devise ways to overcome obstacles.
  • Determination — A person who is persistent and does not give up easily.
  • Results-Oriented — A person whose focus is on getting the problem solved.

Two of the major components of problem-solving skills are critical thinking and analytical reasoning.  These two skills are at the top of skills required of applicants by employers.

- Return to top of page -

Critical Thinking 4

“Mentions of critical thinking in job postings have doubled since 2009, according to an analysis by career-search site Indeed.com.” 5 Making logical and reasoned judgments that are well thought out is at the core of critical thinking. Using critical thinking an individual will not automatically accept information or conclusions drawn from to be factual, valid, true, applicable or correct. “When students are taught how to use critical thinking to tap into their creativity to solve problems, they are more successful than other students when they enter management-training programs in large corporations.” 6

A strong applicant should question and want to make evidence-based decisions. Employers want employees who say things such as: “Is that a fact or just an opinion? Is this conclusion based on data or gut feel?” and “If you had additional data could there be alternative possibilities?” Employers seek employees who possess the skills and abilities to conceptualize, apply, analyze, synthesize, and evaluate information to reach an answer or conclusion.

Employers require critical thinking in employees because it increases the probability of a positive business outcome. Employers want employees whose thinking is intentional, purposeful, reasoned, and goal directed.

Recruiters say they want applicants with problem-solving and critical thinking skills. They “encourage applicants to prepare stories to illustrate their critical-thinking prowess, detailing, for example, the steps a club president took to improve attendance at weekly meetings.” 7

Employers want students to possess analytical reasoning/thinking skills — meaning they want to hire someone who is good at breaking down problems into smaller parts to find solutions. “The adjective, analytical, and the related verb analyze can both be traced back to the Greek verb, analyein — ‘to break up, to loosen.’ If a student is analytical, you are good at taking a problem or task and breaking it down into smaller elements in order to solve the problem or complete the task.” 9

Analytical reasoning connotes a person's general aptitude to arrive at a logical conclusion or solution to given problems. Just as with critical thinking, analytical thinking critically examines the different parts or details of something to fully understand or explain it. Analytical thinking often requires the person to use “cause and effect, similarities and differences, trends, associations between things, inter-relationships between the parts, the sequence of events, ways to solve complex problems, steps within a process, diagraming what is happening.” 10

Analytical reasoning is the ability to look at information and discern patterns within it. “The pattern could be the structure the author of the information uses to structure an argument, or trends in a large data set. By learning methods of recognizing these patterns, individuals can pull more information out of a text or data set than someone who is not using analytical reasoning to identify deeper patterns.” 11

Employers want employees to have the aptitude to apply analytical reasoning to problems faced by the business. For instance, “a quantitative analyst can break down data into patterns to discern information, such as if a decrease in sales is part of a seasonal pattern of ups and downs or part of a greater downward trend that a business should be worried about. By learning to recognize these patterns in both numbers and written arguments, an individual gains insights into the information that someone who simply takes the information at face value will miss.” 12

Managers with excellent analytical reasoning abilities are considered good at, “evaluating problems, analyzing them from more than one angle and finding a solution that works best in the given circumstances”. 13 Businesses want managers who can apply analytical reasoning skills to meet challenges and keep a business functioning smoothly

A person with good analytical reasoning and pattern recognition skills can see trends in a problem much easier than anyone else.

GCFGlobal Logo

  • Get started with computers
  • Learn Microsoft Office
  • Apply for a job
  • Improve my work skills
  • Design nice-looking docs
  • Getting Started
  • Smartphones & Tablets
  • Typing Tutorial
  • Online Learning
  • Basic Internet Skills
  • Online Safety
  • Social Media
  • Zoom Basics
  • Google Docs
  • Google Sheets
  • Career Planning
  • Resume Writing
  • Cover Letters
  • Job Search and Networking
  • Business Communication
  • Entrepreneurship 101
  • Careers without College
  • Job Hunt for Today
  • 3D Printing
  • Freelancing 101
  • Personal Finance
  • Sharing Economy
  • Decision-Making
  • Graphic Design
  • Photography
  • Image Editing
  • Learning WordPress
  • Language Learning
  • Critical Thinking
  • For Educators
  • Translations
  • Staff Picks
  • English expand_more expand_less

Critical Thinking and Decision-Making  - What is Critical Thinking?

Critical thinking and decision-making  -, what is critical thinking, critical thinking and decision-making what is critical thinking.

GCFLearnFree Logo

Critical Thinking and Decision-Making: What is Critical Thinking?

Lesson 1: what is critical thinking, what is critical thinking.

Critical thinking is a term that gets thrown around a lot. You've probably heard it used often throughout the years whether it was in school, at work, or in everyday conversation. But when you stop to think about it, what exactly is critical thinking and how do you do it ?

Watch the video below to learn more about critical thinking.

Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions . It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better.

illustration of the terms logic, reasoning, and creativity

This may sound like a pretty broad definition, and that's because critical thinking is a broad skill that can be applied to so many different situations. You can use it to prepare for a job interview, manage your time better, make decisions about purchasing things, and so much more.

The process

illustration of "thoughts" inside a human brain, with several being connected and "analyzed"

As humans, we are constantly thinking . It's something we can't turn off. But not all of it is critical thinking. No one thinks critically 100% of the time... that would be pretty exhausting! Instead, it's an intentional process , something that we consciously use when we're presented with difficult problems or important decisions.

Improving your critical thinking

illustration of the questions "What do I currently know?" and "How do I know this?"

In order to become a better critical thinker, it's important to ask questions when you're presented with a problem or decision, before jumping to any conclusions. You can start with simple ones like What do I currently know? and How do I know this? These can help to give you a better idea of what you're working with and, in some cases, simplify more complex issues.  

Real-world applications

illustration of a hand holding a smartphone displaying an article that reads, "Study: Cats are better than dogs"

Let's take a look at how we can use critical thinking to evaluate online information . Say a friend of yours posts a news article on social media and you're drawn to its headline. If you were to use your everyday automatic thinking, you might accept it as fact and move on. But if you were thinking critically, you would first analyze the available information and ask some questions :

  • What's the source of this article?
  • Is the headline potentially misleading?
  • What are my friend's general beliefs?
  • Do their beliefs inform why they might have shared this?

illustration of "Super Cat Blog" and "According to survery of cat owners" being highlighted from an article on a smartphone

After analyzing all of this information, you can draw a conclusion about whether or not you think the article is trustworthy.

Critical thinking has a wide range of real-world applications . It can help you to make better decisions, become more hireable, and generally better understand the world around you.

illustration of a lightbulb, a briefcase, and the world

/en/problem-solving-and-decision-making/why-is-it-so-hard-to-make-decisions/content/

  • Departments, units, and programs
  • College leadership
  • Diversity, equity, and inclusion
  • Faculty and staff resources
  • LAS Strategic Plan

Facebook

  • Apply to LAS
  • Liberal arts & sciences majors
  • LAS Insider blog
  • Admissions FAQs
  • Parent resources
  • Pre-college summer programs

Quick Links

Request info

  • Academic policies and standing
  • Advising and support
  • College distinctions
  • Dates and deadlines
  • Intercollegiate transfers
  • LAS Lineup student newsletter
  • Programs of study
  • Scholarships
  • Certificates
  • Student emergencies

Student resources

  • Access and Achievement Program
  • Career services
  • First-Year Experience
  • Honors program
  • International programs
  • Internship opportunities
  • Paul M. Lisnek LAS Hub
  • Student research opportunities
  • Expertise in LAS
  • Research facilities and centers
  • Dean's Distinguished Lecture series
  • Alumni advice
  • Alumni award programs
  • Get involved
  • LAS Alumni Council
  • LAS@Work: Alumni careers
  • Study Abroad Alumni Networks
  • Update your information
  • Nominate an alumnus for an LAS award
  • Faculty honors
  • The Quadrangle Online
  • LAS News email newsletter archive
  • LAS social media
  • Media contact in the College of LAS
  • LAS Landmark Day of Giving
  • About giving to LAS
  • Building projects
  • Corporate engagement
  • Faculty support
  • Lincoln Scholars Initiative
  • Impact of giving

Why is critical thinking important?

What do lawyers, accountants, teachers, and doctors all have in common?

Students in the School of Literatures, Languages, Cultures, and Linguistics give a presentation in a classroom in front of a screen

What is critical thinking?

The Oxford English Dictionary defines critical thinking as “The objective, systematic, and rational analysis and evaluation of factual evidence in order to form a judgment on a subject, issue, etc.” Critical thinking involves the use of logic and reasoning to evaluate available facts and/or evidence to come to a conclusion about a certain subject or topic. We use critical thinking every day, from decision-making to problem-solving, in addition to thinking critically in an academic context!

Why is critical thinking important for academic success?

You may be asking “why is critical thinking important for students?” Critical thinking appears in a diverse set of disciplines and impacts students’ learning every day, regardless of major.

Critical thinking skills are often associated with the value of studying the humanities. In majors such as English, students will be presented with a certain text—whether it’s a novel, short story, essay, or even film—and will have to use textual evidence to make an argument and then defend their argument about what they’ve read. However, the importance of critical thinking does not only apply to the humanities. In the social sciences, an economics major , for example, will use what they’ve learned to figure out solutions to issues as varied as land and other natural resource use, to how much people should work, to how to develop human capital through education. Problem-solving and critical thinking go hand in hand. Biology is a popular major within LAS, and graduates of the biology program often pursue careers in the medical sciences. Doctors use critical thinking every day, tapping into the knowledge they acquired from studying the biological sciences to diagnose and treat different diseases and ailments.

Students in the College of LAS take many courses that require critical thinking before they graduate. You may be asked in an Economics class to use statistical data analysis to evaluate the impact on home improvement spending when the Fed increases interest rates (read more about real-world experience with Datathon ). If you’ve ever been asked “How often do you think about the Roman Empire?”, you may find yourself thinking about the Roman Empire more than you thought—maybe in an English course, where you’ll use text from Shakespeare’s Antony and Cleopatra to make an argument about Roman imperial desire.  No matter what the context is, critical thinking will be involved in your academic life and can take form in many different ways.

The benefits of critical thinking in everyday life

Building better communication.

One of the most important life skills that students learn as early as elementary school is how to give a presentation. Many classes require students to give presentations, because being well-spoken is a key skill in effective communication. This is where critical thinking benefits come into play: using the skills you’ve learned, you’ll be able to gather the information needed for your presentation, narrow down what information is most relevant, and communicate it in an engaging way. 

Typically, the first step in creating a presentation is choosing a topic. For example, your professor might assign a presentation on the Gilded Age and provide a list of figures from the 1870s—1890s to choose from. You’ll use your critical thinking skills to narrow down your choices. You may ask yourself:

  • What figure am I most familiar with?
  • Who am I most interested in? 
  • Will I have to do additional research? 

After choosing your topic, your professor will usually ask a guiding question to help you form a thesis: an argument that is backed up with evidence. Critical thinking benefits this process by allowing you to focus on the information that is most relevant in support of your argument. By focusing on the strongest evidence, you will communicate your thesis clearly.

Finally, once you’ve finished gathering information, you will begin putting your presentation together. Creating a presentation requires a balance of text and visuals. Graphs and tables are popular visuals in STEM-based projects, but digital images and graphics are effective as well. Critical thinking benefits this process because the right images and visuals create a more dynamic experience for the audience, giving them the opportunity to engage with the material.

Presentation skills go beyond the classroom. Students at the University of Illinois will often participate in summer internships to get professional experience before graduation. Many summer interns are required to present about their experience and what they learned at the end of the internship. Jobs frequently also require employees to create presentations of some kind—whether it’s an advertising pitch to win an account from a potential client, or quarterly reporting, giving a presentation is a life skill that directly relates to critical thinking. 

Fostering independence and confidence

An important life skill many people start learning as college students and then finessing once they enter the “adult world” is how to budget. There will be many different expenses to keep track of, including rent, bills, car payments, and groceries, just to name a few! After developing your critical thinking skills, you’ll put them to use to consider your salary and budget your expenses accordingly. Here’s an example:

  • You earn a salary of $75,000 a year. Assume all amounts are before taxes.
  • 1,800 x 12 = 21,600
  • 75,000 – 21,600 = 53,400
  • This leaves you with $53,400
  • 320 x 12 = 3,840 a year
  • 53,400-3,840= 49,560
  • 726 x 12 = 8,712
  • 49,560 – 8,712= 40,848
  • You’re left with $40,848 for miscellaneous expenses. You use your critical thinking skills to decide what to do with your $40,848. You think ahead towards your retirement and decide to put $500 a month into a Roth IRA, leaving $34,848. Since you love coffee, you try to figure out if you can afford a daily coffee run. On average, a cup of coffee will cost you $7. 7 x 365 = $2,555 a year for coffee. 34,848 – 2,555 = 32,293
  • You have $32,293 left. You will use your critical thinking skills to figure out how much you would want to put into savings, how much you want to save to treat yourself from time to time, and how much you want to put aside for emergency funds. With the benefits of critical thinking, you will be well-equipped to budget your lifestyle once you enter the working world.

Enhancing decision-making skills

Choosing the right university for you.

One of the biggest decisions you’ll make in your life is what college or university to go to. There are many factors to consider when making this decision, and critical thinking importance will come into play when determining these factors.

Many high school seniors apply to colleges with the hope of being accepted into a certain program, whether it’s biology, psychology, political science, English, or something else entirely. Some students apply with certain schools in mind due to overall rankings. Students also consider the campus a school is set in. While some universities such as the University of Illinois are nestled within college towns, New York University is right in Manhattan, in a big city setting. Some students dream of going to large universities, and other students prefer smaller schools. The diversity of a university’s student body is also a key consideration. For many 17- and 18-year-olds, college is a time to meet peers from diverse racial and socio-economic backgrounds and learn about life experiences different than one’s own.

With all these factors in mind, you’ll use critical thinking to decide which are most important to you—and which school is the right fit for you.

Develop your critical thinking skills at the University of Illinois

At the University of Illinois, not only will you learn how to think critically, but you will put critical thinking into practice. In the College of LAS, you can choose from 70+ majors where you will learn the importance and benefits of critical thinking skills. The College of Liberal Arts & Sciences at U of I offers a wide range of undergraduate and graduate programs in life, physical, and mathematical sciences; humanities; and social and behavioral sciences. No matter which program you choose, you will develop critical thinking skills as you go through your courses in the major of your choice. And in those courses, the first question your professors may ask you is, “What is the goal of critical thinking?” You will be able to respond with confidence that the goal of critical thinking is to help shape people into more informed, more thoughtful members of society.

With such a vast representation of disciplines, an education in the College of LAS will prepare you for a career where you will apply critical thinking skills to real life, both in and outside of the classroom, from your undergraduate experience to your professional career. If you’re interested in becoming a part of a diverse set of students and developing skills for lifelong success, apply to LAS today!

Read more first-hand stories from our amazing students at the LAS Insider blog .

  • Privacy Notice
  • Accessibility

Back Home

  • Search Search Search …
  • Search Search …

Analytical Thinking vs Problem Solving: A Comprehensive Comparison

Analytical Thinking vs Problem Solving

Analytical thinking and problem solving are crucial skills in various aspects of life, including personal and professional situations. While they may seem interchangeable, there are distinct differences between the two. Analytical thinking focuses on breaking down complex information into smaller, manageable components to understand a situation and evaluate alternatives effectively. On the other hand, problem solving involves devising practical solutions to overcome challenges or resolve issues that arise in daily life or the workplace.

is critical thinking and analytical thinking the same

Both analytical thinking and problem-solving skills contribute to making well-informed decisions, managing risks, and achieving success in various areas of life. By understanding these skills’ distinctions and applying them effectively, individuals can enhance their performance in the workplace, handle complex situations with ease, and make better choices in their personal lives.

Key Takeaways

  • Analytical thinking is about understanding complex situations, while problem-solving focuses on finding practical solutions.
  • Mastery of both skills leads to informed decision-making and improved risk management.
  • These abilities are essential for workplace success and overall personal growth.

Understanding Analytical Thinking

is critical thinking and analytical thinking the same

Nature of Analytical Thinking

Analytical thinking refers to a mental process in which a person systematically breaks down complex problems or situations into smaller, manageable components. This enables the identification of essential elements and their relationships, leading to an effective solution. Analytical thinkers excel in identifying patterns, interpreting data, and drawing conclusions based on factual information. Unlike reactive problem-solving, which focuses on finding immediate remedies, analytical thinking is strategic in nature, seeking long-term solutions by addressing the root causes of a problem.

Key components of analytical thinking include reasoning, fact-checking, and questioning assumptions. This skill set allows individuals to approach problems with an open mind, meticulously gather and analyze data, and make well-informed decisions. Ultimately, analytical thinking leads to more informed and strategic decision-making, increasing the likelihood of success in professional and personal endeavors.

How Analytical Thinking Works

The process of analytical thinking unfolds in several stages:

  • Identify the problem or situation : Determine the issue that needs addressing and clearly define its scope.
  • Gather relevant data : Collect information related to the problem from various sources, ensuring its accuracy and reliability.
  • Break down the problem : Dissect the problem into smaller, manageable parts to gain a better understanding of its intricacies.
  • Analyze and interpret data : Examine the data to identify patterns, trends, and relationships, and derive insights using logical reasoning.
  • Question assumptions : Challenge any preconceived notions or biases that may skew the analysis and arrive at the most objective conclusions possible.
  • Generate solutions : Propose potential solutions based on the analysis, weighing their pros and cons.

It is important to note that analytical thinking is not solely reserved for mathematicians or scientists but is a valuable skill applicable to a wide range of disciplines and professions. From business analysts, who require analytical thinking and problem-solving skills to identify and implement changes, to daily decision-making in personal lives, analytical reasoning plays a vital role in successfully navigating through various complexities.

Significance of Problem Solving

Features of problem solving.

Problem solving is an essential skill that helps individuals and organizations tackle challenges effectively. Problem-solving skills enable individuals to identify problems or obstacles, analyze the situation, and find appropriate solutions. These skills include critical thinking, analytical reasoning, decision-making, and learning from the process. People with strong problem-solving abilities can better cope with stress, handle risk, and adapt to change in a fast-paced environment.

In the context of decision-making, problem solving requires individuals to evaluate multiple options and select the one with the highest probability of success. A well-developed thinking process is crucial to identifying and analyzing creative solutions, as it helps individuals see beyond the apparent issues and delve deeper into the underlying causes.

Process of Problem Solving

The process of problem-solving typically involves several stages:

  • Identify the problem : Recognizing the issue at hand and understanding its impact on the situation.
  • Gather information : Collecting relevant data and facts that will help in understanding the problem.
  • Analyze the problem : Examining the situation, breaking it into smaller parts, and identifying the root causes.
  • Generate solutions : Brainstorming various possible solutions and evaluating their feasibility.
  • Choose the best solution : Using decision-making skills to select the most suitable solution based on available information.
  • Implement the solution : Putting the chosen solution into action and monitoring its effectiveness.
  • Evaluate and learn : Reflecting on the outcomes and learning from the experience for future problem-solving situations.

By sharpening problem-solving skills and employing an organized thinking process, individuals can enhance their abilities to overcome challenges and make informed decisions, leading to personal and professional growth.

Comparing Analytical Thinking and Problem Solving

Similarities.

Both analytical thinking and problem solving involve the process of breaking down complex situations into smaller, manageable components. In both approaches, individuals need to evaluate the information at hand, identify patterns, and derive conclusions based on the evidence. This often involves receiving feedback, adapting to new information, and adjusting one’s approach.

Moreover, practicing both analytical thinking and problem-solving techniques can lead to improved decision-making abilities. This development, in turn, translates into greater efficiency and effectiveness in personal and professional contexts.

Differences

While analytical thinking and problem solving share some similarities, they also have notable differences. Analytical thinking typically follows a linear and sequential process, whereas problem solving might involve iterative processes and creative solutions.

Analytical thinking often focuses on dissecting a situation or a problem, looking for underlying patterns, and finding ways to logically deduce solutions. On the other hand, problem solving might require a combination of analytical and creative thinking, especially when faced with novel or ambiguous challenges. Problem solvers often need to develop unique strategies and evaluate alternative solutions before settling on the most effective approach.

In conclusion, analytical thinking and problem-solving, while both essential skills, have distinct applications and methods, and their effective use can be instrumental in achieving success in various aspects of life.

Ways to Improve Both Techniques

Developing analytical thinking.

Developing analytical thinking is vital for individuals seeking to improve their problem-solving abilities. One effective strategy is to practice creative activities, such as brainstorming or solving puzzles, to challenge the brain and foster development. Engaging in these tasks allows for the creation of new connections and enhances cognitive flexibility.

Another useful approach is to focus on communication and the art of listening. Active listening enables a better understanding of various perspectives and leads to well-informed decisions. Moreover, discussing complex topics can strengthen one’s ability to analyze and evaluate information effectively.

Collaborating with others can also help individuals enhance their analytical thinking skills. By working together, people can build on each other’s strengths and overcome challenges. Additionally, they can exchange ideas and learn from different viewpoints, which may lead to innovative solutions.

Enhancing Problem Solving Skills

To enhance problem-solving skills, one must be willing to take action and embrace challenges. Tackling problems head-on allows for growth and the development of practical strategies. Regular practice is essential for refining these skills and building confidence in decision-making.

Integrating soft skills, such as empathy and adaptability, play an essential role in problem-solving. Employing these abilities can improve interpersonal communication and contribute to the formation of more effective solutions.

Utilizing a methodical approach to problem-solving can also yield positive results. Techniques like breaking down complex issues into manageable steps or generating multiple possible solutions can enable a more comprehensive analysis, increasing the likelihood of success in overcoming challenges.

Finally, don’t shy away from seeking feedback from peers and mentors. Constructive criticism can highlight areas for improvement and further facilitate the development of both analytical thinking and problem-solving skills. Remember, the key to growth lies in continuous learning and adapting to new situations with confidence and clarity.

Importance in Workplace and Career Success

Relevance in the workplace.

Analytical thinking and problem solving play crucial roles in the workplace. These skills enable employees to efficiently tackle a variety of tasks and challenges. Analytical thinking refers to gathering, organizing, and evaluating information to detect patterns and identify problems. Effective problem solving involves devising creative solutions based on these findings 1 . In the modern workplace, individuals with strong analytical thinking skills can identify issues and make well thought-out decisions that contribute to overall company success 2 .

Effective communication is an important aspect of analytical thinking and problem solving. In a professional setting, employees must often convey their findings and ideas to stakeholders, ensuring that solutions are implemented appropriately and any concerns are addressed. This communication can lead to improved collaboration, clearer goals, and faster resolution of issues 3 .

Implication for Career Success

In addition to benefitting the workplace as a whole, strong analytical thinking and problem-solving skills are critical for individual career success. These skills can help professionals stand out among their peers and demonstrate their value to their organization. Professionals who can apply analytical thinking and problem-solving techniques are viewed as being able to think critically, make decisions, and take initiative, which are all highly valued by employers 4 .

Individuals who possess these skills are often able to make more informed judgments and sound decisions. This can lead to career advancement and job stability, as they are viewed as capable and dependable. Developing analytical thinking and problem-solving abilities can also open doors to new opportunities and industries, making individuals more versatile and efficient in their careers 5 .

Role in Decision Making and Risk Management

Influence on decision making.

Analytical thinking plays a crucial role in decision making, as it involves breaking things down into their component parts and using deductive reasoning to draw conclusions from given evidence and assumptions source . This allows individuals and organizations to carefully consider the pros and cons of each option, determine the feasibility of implementing potential solutions, and weigh the costs and benefits associated with each decision.

Problem-solving, on the other hand, is an analytical method that focuses on identifying potential solutions to specific situations source , sometimes requiring personal decision-making that may involve judgments or decisions on the way to find the best outcome. Both analytical thinking and problem-solving contribute to effective decision-making processes, as they provide tools and techniques for examining different courses of action and limiting uncertainties.

Contribution to Risk Management

Risk management is a critical aspect of decision-making, as it helps organizations and individuals identify, assess, and mitigate potential risks associated with various decisions. Analytical thinking contributes to risk management by enabling decision-makers to collect and analyze data, evaluate risks and their potential consequences, and make informed decisions based on the results source .

Similarly, problem-solving assists in risk management by addressing potential challenges that may arise during the implementation of solutions, such as examining potential obstacles, resource constraints, and other factors that may impact the success of an initiative source . By combining the strengths of both analytical thinking and problem-solving, decision-makers can enhance their risk management strategies and ensure a higher probability of success in their respective decisions.

In summary, analytical thinking and problem-solving are essential tools in decision-making and risk management, as they provide the necessary framework for evaluating options, weighing potential outcomes, and identifying potential challenges. By utilizing these methods, decision-makers can make more informed choices and mitigate potential risks associated with their decisions.

Utilization in Business Analysis

Application in business analysis.

Analytical thinking and problem solving are essential skills for business analysts in their day-to-day work. They are responsible for identifying, researching, and understanding complex business problems, as well as finding effective solutions to address them. By using their analytical thinking skills, business analysts can gather, assess, and interpret data from various sources to develop a comprehensive understanding of the situation at hand [1] .

When approaching a problem, business analysts consider several key factors, such as people, processes, and technology. They employ systems thinking to understand the enterprise holistically and how all these elements interact. This mindset helps them to not only identify the root cause of a problem, but also to develop solutions that address the underlying issues effectively [2] .

Understanding Financial Data

One key area where business analysts apply their analytical and problem-solving skills is in the realm of financial data. Here, they are tasked with interpreting complex financial information to derive valuable insights and make informed decisions for the organization.

In this context, their analytical thinking skills enable business analysts to:

  • Gather relevant financial data from multiple sources
  • Identify patterns, trends, and potential issues
  • Assess the quality and accuracy of the data
  • Develop conclusions and recommendations based on the analyzed data

By employing problem-solving skills, business analysts can:

  • Understand the impact of financial data on business processes and performance
  • Identify potential areas for improvement or optimization
  • Propose and evaluate relevant solutions for financial issues [3]

Overall, business analysis relies heavily on the combination of analytical thinking and problem-solving skills to address various challenges faced by organizations. The ability to understand and interpret financial data significantly contributes to the success and growth of any enterprise.

Real Life Examples

Analytical thinking and problem solving are essential skills in both personal and professional life. They allow individuals to tackle complex issues, identify the root causes, and develop effective solutions. Let’s examine some real-life examples that emphasize the differences between these two thought processes.

In the workplace, an employee might face a challenge in increasing sales. Applying analytical thinking , the individual would gather data, identify patterns, and evaluate market trends to understand the factors impacting sales performance. With this information, they can determine which areas need improvement and develop targeted strategies to address the issue. For example, they may discover that customers are dissatisfied with the available products in a particular category, prompting changes in the company’s product offering.

On the other hand, problem-solving involves addressing specific situations, such as dealing with a dissatisfied customer. In this instance, the employee would need to rely on their experience and emotional intelligence to find a solution. They would listen to the customer’s concerns, empathize with their feelings, and proactively offer options to resolve the problem. This process may include correcting mistakes made during a transaction or offering compensation for a negative experience.

Another example can be found in the realm of personal finance. Analytical thinking would be employed to evaluate one’s financial situation and understand patterns in spending habits. This analysis could reveal areas where money may be saved or better utilized. For instance, it may uncover excessive spending on dining out or ineffective monthly budgeting practices.

Conversely, problem-solving can come into play when an unexpected financial emergency occurs. In such cases, one would need to quickly evaluate the situation and devise creative solutions to address the crisis. This might involve temporarily reducing non-essential expenses, seeking additional sources of income, or negotiating payment plans with creditors.

In both of these real-life scenarios, analytical thinking and problem-solving work in tandem, complementing each other to achieve effective outcomes. While individuals may favor one approach over the other, it is crucial to recognize and develop both skillsets to navigate the complexities of modern life successfully.

  • https://www.glassdoor.com/blog/guide/analytical-thinking/ ↩
  • https://www.indeed.com/career-advice/career-development/problem-solving-and-decision-making ↩
  • https://www.radford.edu/content/cobe/innovation-analytics/analytics/career-prep/report-e.html ↩
  • https://www.indeed.com/career-advice/career-development/critical-thinking-vs-problem-solving ↩
  • https://www.amanet.org/analytical-thinking-problem-solving-and-decision-making/ ↩

You may also like

critical thinking and logic

Critical Thinking and Logic – A Brief Walkthrough

Shelter, food, clothing, and water – these are usually considered as the most important necessities to live decently and sufficiently. In order […]

What is Hindsight Bias

What is Hindsight Bias: A Comprehensive Analysis

Hindsight bias is a psychological phenomenon that occurs when people believe they knew the outcome of an event before it happened. It […]

47 Critical Thinking Questions for High School Students

47 Critical Thinking Questions for High School Students

Critical thinking is defined as analyzing and thinking objectively about an issue to form a judgment. Critical thinking skills are important for […]

critical thinking under pressure

Critical Thinking Under Pressure

Putting together coherent thoughts is hard. It is even harder to think critically when you are under some sort of pressure. Being […]

COMMENTS

  1. Critical thinking vs analytical thinking: The differences and similarities

    Critical thinking vs analytical thinking can be mistaken for the same thing but they are indeed different. Critical thinking is the process of reasoning through information, concepts, or data that are acquired by sensory experience. Analytical thinking is the type of thought that typically centres on problem-solving in many areas. Analytical thinking can be applied in various ways to solve ...

  2. Analytical Thinking vs. Critical Thinking (Plus Jobs That Use Them

    Another difference between analytical thinking and critical thinking is the direction individuals using them take to think about information. Analytical thinking is more linear and focused, whereas critical thinking is more circular. When individuals think analytically, they tend to move one from thought to the next straight formation.

  3. Critical Thinking vs Analytical Thinking: What's the Difference?

    Critical Thinking vs Analytical Thinking for Managers Critical thinking and analytical thinking are two crucial cognitive skills often used interchangeably, but there are subtle differences between the two. Analytical thinking involves breaking down complex information into smaller, more manageable parts to understand how they relate. This type ...

  4. What Is Analytical Thinking and How Can You Improve Your ...

    Analytical thinking involves using a systemic approach to make decisions or solve problems. Analytical thinkers can better understand information and come to a sensible conclusion by breaking it into parts. For instance, once analytical thinkers identify a problem, they typically gather more information, develop possible solutions, test them ...

  5. Key Differences: Analytical Thinking vs. Critical Thinking

    Hierarchy. You may use analytical thinking while practising critical thinking since analytical thinking is a part of critical thinking. For example, when using critical thinking to determine the validity of a news anchor's statements, you may use analytical thinking to break down the anchor's statements into smaller pieces to analyze, then ...

  6. Analytical Thinking and Critical Thinking

    Basically, analytical thinking seeks to review and breakdown the information gathered while critical thinking looks to make a holistic judgment using various sources of information including a person's own existing knowledge. Analytical thinking is more linear and step-by-step breakdown of information. On the other hand, critical thinking is ...

  7. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  8. Analytical thinking: what it is and why it matters more than ever

    Analytical thinking involves using data to understand problems, identify potential solutions, and suggest the solution that's most likely to have the desired impact. It's similar to critical thinking skills, which are the skills you use to interpret information and make decisions. In order to succeed as a strong analytical thinker, you also ...

  9. Critical Thinking

    Critical Thinking is the process of using and assessing reasons to evaluate statements, assumptions, and arguments in ordinary situations. The goal of this process is to help us have good beliefs, where "good" means that our beliefs meet certain goals of thought, such as truth, usefulness, or rationality. Critical thinking is widely ...

  10. Thinking Critically and Analytically about Critical-Analytic Thinking

    The purpose of this special issue on critical-analytic thinking is to share conundrums, insights, and recommendations that arose from this multidisciplinary assembly and the subsequent examinations that have arisen from the continuing conversations among the attending scholars with the broader educational psychology community.

  11. PDF The Thinker's Guide to Analytic Thinking

    Critical Thinking Reading and Writing Test—Assesses the ability of students to use reading and writing as tools for acquiring knowledge. Provides grading rubrics and outlines five levels of close reading and substantive writing (1-24 copies $6 00 each; 25-199 copies $4 00 each; 200-499 copies $2 50 each) #563m.

  12. Critical and analytical thinking

    What is critical and analytical thinking? In essence, this means looking very closely at the detail and not taking what you read or are told for granted. This is likely to involve some or all of the following: Check list: Evaluating the argument to check that the evidence presented really does support the conclusions drawn.

  13. Analytical Thinking vs. Critical Thinking

    In other words, Analytical Thinking is thinking inside itself. Critical Thinking … focuses on evaluating a specific thing, piece of information or an idea by comparing and contrasting it to something else to better understand it. To critique the vendor's invoice, you have to put it beside something else to understand it, such as another ...

  14. Critical Thinking vs Analytical Thinking vs Creative Thinking

    Analytical thinking would be identifying the exact ingredients, proportions, and processes involved in the recipe for your favourite cookie. Critical thinking would be considering the criteria for what makes that cookie tasty and then judging the cookie in relation to that criteria. Creative thinking is imagining your own idea of the perfect ...

  15. The Nature and Development of Critical-Analytic Thinking

    Paraphrasing Berliner's assessment of educational psychology, critical-analytic thinking has a long history but a short past.Dewey's and Glaser's classic work can be considered the beginnings of the modern instantiation of the critical-analytic thinking movement that has spawned a vast literature and the hope for a more deeply informed populous.

  16. Differences Between Analytical & Critical Thinking

    Any time you read literary materials or experience something that requires you to comprehend it, you employ a variety of thinking skills. Thinking skills relate to the way in which you process and understand information, and you employ specific thinking skills based on what you wish to gain from your thoughts. ...

  17. Critical-thinking-vs-analytical-thinking

    In critical thinking, your conclusion will be based on the opinion formed after the different sources of information have already been evaluated. In analytical thinking, you will only need to analyze the facts within the gathered details to arrive at your conclusion. 4. Analytical thinking as part of the steps of the critical thinking process.

  18. How to build critical thinking skills for better decision-making

    It's easy to confuse analytical thinking with critical thinking itself, and it's true there is a lot of overlap between the two. But analytical thinking is just a piece of critical thinking. ... into the analytics for the page that hasn't been converting and notice that the sharp drop-off happened around the same time you switched email ...

  19. Analytical Thinking Vs. Critical Thinking (With Their Uses)

    Analytical thinking uses a more linear style of thinking and is more focused. Critical thinking is more circular in direction. While thinking analytically, you may move from one thought to the next in a linear pattern. Critical thinking involves moving around the same idea and studying it from various perspectives to derive a conclusion.

  20. Problem Solving, Critical Thinking, and Analytical Reasoning Skills

    Critical Thinking 4 "Mentions of critical thinking in job postings have doubled since 2009, according to an analysis by career-search site Indeed.com." 5 Making logical and reasoned judgments that are well thought out is at the core of critical thinking. Using critical thinking an individual will not automatically accept information or conclusions drawn from to be factual, valid, true ...

  21. Critical Thinking and Decision-Making: What is Critical Thinking?

    Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions. It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better. This may sound like a pretty broad definition, and that's because critical thinking is a ...

  22. How to improve your analytical thinking skills

    Analytical thinking is essential for effective problem-solving, decision-making, and equitable leadership. And yet, more research reveals only 38% of employees demonstrate the necessary balance of ...

  23. Why is critical thinking important?

    The importance of critical thinking can be found across a wide set of disciplines. They are not only used in the humanities but are also important to professionals in the social and behavioral sciences, physical sciences, and STEM—and the list does not end there. At the University of Illinois College of Liberal Arts & Sciences, you'll be ...

  24. Critical Thinking vs. Problem-Solving: What's the Difference?

    Critical thinking. This is a mode of thinking, compared to problem-solving, which is a set of solution-oriented strategies. Since critical thinking strengthens your reasoning, it makes it easier to learn new skills, including problem-solving. Working on your critical thinking can also help you understand yourself better, including your value ...

  25. Analytical Thinking vs Problem Solving: A Comprehensive Comparison

    Key Takeaways. Analytical thinking is about understanding complex situations, while problem-solving focuses on finding practical solutions. Mastery of both skills leads to informed decision-making and improved risk management. These abilities are essential for workplace success and overall personal growth.