Research Methods

  • Getting Started
  • Literature Review Research
  • Research Design
  • Research Design By Discipline
  • SAGE Research Methods
  • Teaching with SAGE Research Methods

Literature Review

  • What is a Literature Review?
  • What is NOT a Literature Review?
  • Purposes of a Literature Review
  • Types of Literature Reviews
  • Literature Reviews vs. Systematic Reviews
  • Systematic vs. Meta-Analysis

Literature Review  is a comprehensive survey of the works published in a particular field of study or line of research, usually over a specific period of time, in the form of an in-depth, critical bibliographic essay or annotated list in which attention is drawn to the most significant works.

Also, we can define a literature review as the collected body of scholarly works related to a topic:

  • Summarizes and analyzes previous research relevant to a topic
  • Includes scholarly books and articles published in academic journals
  • Can be an specific scholarly paper or a section in a research paper

The objective of a Literature Review is to find previous published scholarly works relevant to an specific topic

  • Help gather ideas or information
  • Keep up to date in current trends and findings
  • Help develop new questions

A literature review is important because it:

  • Explains the background of research on a topic.
  • Demonstrates why a topic is significant to a subject area.
  • Helps focus your own research questions or problems
  • Discovers relationships between research studies/ideas.
  • Suggests unexplored ideas or populations
  • Identifies major themes, concepts, and researchers on a topic.
  • Tests assumptions; may help counter preconceived ideas and remove unconscious bias.
  • Identifies critical gaps, points of disagreement, or potentially flawed methodology or theoretical approaches.
  • Indicates potential directions for future research.

All content in this section is from Literature Review Research from Old Dominion University 

Keep in mind the following, a literature review is NOT:

Not an essay 

Not an annotated bibliography  in which you summarize each article that you have reviewed.  A literature review goes beyond basic summarizing to focus on the critical analysis of the reviewed works and their relationship to your research question.

Not a research paper   where you select resources to support one side of an issue versus another.  A lit review should explain and consider all sides of an argument in order to avoid bias, and areas of agreement and disagreement should be highlighted.

A literature review serves several purposes. For example, it

  • provides thorough knowledge of previous studies; introduces seminal works.
  • helps focus one’s own research topic.
  • identifies a conceptual framework for one’s own research questions or problems; indicates potential directions for future research.
  • suggests previously unused or underused methodologies, designs, quantitative and qualitative strategies.
  • identifies gaps in previous studies; identifies flawed methodologies and/or theoretical approaches; avoids replication of mistakes.
  • helps the researcher avoid repetition of earlier research.
  • suggests unexplored populations.
  • determines whether past studies agree or disagree; identifies controversy in the literature.
  • tests assumptions; may help counter preconceived ideas and remove unconscious bias.

As Kennedy (2007) notes*, it is important to think of knowledge in a given field as consisting of three layers. First, there are the primary studies that researchers conduct and publish. Second are the reviews of those studies that summarize and offer new interpretations built from and often extending beyond the original studies. Third, there are the perceptions, conclusions, opinion, and interpretations that are shared informally that become part of the lore of field. In composing a literature review, it is important to note that it is often this third layer of knowledge that is cited as "true" even though it often has only a loose relationship to the primary studies and secondary literature reviews.

Given this, while literature reviews are designed to provide an overview and synthesis of pertinent sources you have explored, there are several approaches to how they can be done, depending upon the type of analysis underpinning your study. Listed below are definitions of types of literature reviews:

Argumentative Review      This form examines literature selectively in order to support or refute an argument, deeply imbedded assumption, or philosophical problem already established in the literature. The purpose is to develop a body of literature that establishes a contrarian viewpoint. Given the value-laden nature of some social science research [e.g., educational reform; immigration control], argumentative approaches to analyzing the literature can be a legitimate and important form of discourse. However, note that they can also introduce problems of bias when they are used to to make summary claims of the sort found in systematic reviews.

Integrative Review      Considered a form of research that reviews, critiques, and synthesizes representative literature on a topic in an integrated way such that new frameworks and perspectives on the topic are generated. The body of literature includes all studies that address related or identical hypotheses. A well-done integrative review meets the same standards as primary research in regard to clarity, rigor, and replication.

Historical Review      Few things rest in isolation from historical precedent. Historical reviews are focused on examining research throughout a period of time, often starting with the first time an issue, concept, theory, phenomena emerged in the literature, then tracing its evolution within the scholarship of a discipline. The purpose is to place research in a historical context to show familiarity with state-of-the-art developments and to identify the likely directions for future research.

Methodological Review      A review does not always focus on what someone said [content], but how they said it [method of analysis]. This approach provides a framework of understanding at different levels (i.e. those of theory, substantive fields, research approaches and data collection and analysis techniques), enables researchers to draw on a wide variety of knowledge ranging from the conceptual level to practical documents for use in fieldwork in the areas of ontological and epistemological consideration, quantitative and qualitative integration, sampling, interviewing, data collection and data analysis, and helps highlight many ethical issues which we should be aware of and consider as we go through our study.

Systematic Review      This form consists of an overview of existing evidence pertinent to a clearly formulated research question, which uses pre-specified and standardized methods to identify and critically appraise relevant research, and to collect, report, and analyse data from the studies that are included in the review. Typically it focuses on a very specific empirical question, often posed in a cause-and-effect form, such as "To what extent does A contribute to B?"

Theoretical Review      The purpose of this form is to concretely examine the corpus of theory that has accumulated in regard to an issue, concept, theory, phenomena. The theoretical literature review help establish what theories already exist, the relationships between them, to what degree the existing theories have been investigated, and to develop new hypotheses to be tested. Often this form is used to help establish a lack of appropriate theories or reveal that current theories are inadequate for explaining new or emerging research problems. The unit of analysis can focus on a theoretical concept or a whole theory or framework.

* Kennedy, Mary M. "Defining a Literature."  Educational Researcher  36 (April 2007): 139-147.

All content in this section is from The Literature Review created by Dr. Robert Larabee USC

Robinson, P. and Lowe, J. (2015),  Literature reviews vs systematic reviews.  Australian and New Zealand Journal of Public Health, 39: 103-103. doi: 10.1111/1753-6405.12393

literature study research method

What's in the name? The difference between a Systematic Review and a Literature Review, and why it matters . By Lynn Kysh from University of Southern California

literature study research method

Systematic review or meta-analysis?

A  systematic review  answers a defined research question by collecting and summarizing all empirical evidence that fits pre-specified eligibility criteria.

A  meta-analysis  is the use of statistical methods to summarize the results of these studies.

Systematic reviews, just like other research articles, can be of varying quality. They are a significant piece of work (the Centre for Reviews and Dissemination at York estimates that a team will take 9-24 months), and to be useful to other researchers and practitioners they should have:

  • clearly stated objectives with pre-defined eligibility criteria for studies
  • explicit, reproducible methodology
  • a systematic search that attempts to identify all studies
  • assessment of the validity of the findings of the included studies (e.g. risk of bias)
  • systematic presentation, and synthesis, of the characteristics and findings of the included studies

Not all systematic reviews contain meta-analysis. 

Meta-analysis is the use of statistical methods to summarize the results of independent studies. By combining information from all relevant studies, meta-analysis can provide more precise estimates of the effects of health care than those derived from the individual studies included within a review.  More information on meta-analyses can be found in  Cochrane Handbook, Chapter 9 .

A meta-analysis goes beyond critique and integration and conducts secondary statistical analysis on the outcomes of similar studies.  It is a systematic review that uses quantitative methods to synthesize and summarize the results.

An advantage of a meta-analysis is the ability to be completely objective in evaluating research findings.  Not all topics, however, have sufficient research evidence to allow a meta-analysis to be conducted.  In that case, an integrative review is an appropriate strategy. 

Some of the content in this section is from Systematic reviews and meta-analyses: step by step guide created by Kate McAllister.

  • << Previous: Getting Started
  • Next: Research Design >>
  • Last Updated: Aug 21, 2023 4:07 PM
  • URL: https://guides.lib.udel.edu/researchmethods
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 5. The Literature Review
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

A literature review surveys prior research published in books, scholarly articles, and any other sources relevant to a particular issue, area of research, or theory, and by so doing, provides a description, summary, and critical evaluation of these works in relation to the research problem being investigated. Literature reviews are designed to provide an overview of sources you have used in researching a particular topic and to demonstrate to your readers how your research fits within existing scholarship about the topic.

Fink, Arlene. Conducting Research Literature Reviews: From the Internet to Paper . Fourth edition. Thousand Oaks, CA: SAGE, 2014.

Importance of a Good Literature Review

A literature review may consist of simply a summary of key sources, but in the social sciences, a literature review usually has an organizational pattern and combines both summary and synthesis, often within specific conceptual categories . A summary is a recap of the important information of the source, but a synthesis is a re-organization, or a reshuffling, of that information in a way that informs how you are planning to investigate a research problem. The analytical features of a literature review might:

  • Give a new interpretation of old material or combine new with old interpretations,
  • Trace the intellectual progression of the field, including major debates,
  • Depending on the situation, evaluate the sources and advise the reader on the most pertinent or relevant research, or
  • Usually in the conclusion of a literature review, identify where gaps exist in how a problem has been researched to date.

Given this, the purpose of a literature review is to:

  • Place each work in the context of its contribution to understanding the research problem being studied.
  • Describe the relationship of each work to the others under consideration.
  • Identify new ways to interpret prior research.
  • Reveal any gaps that exist in the literature.
  • Resolve conflicts amongst seemingly contradictory previous studies.
  • Identify areas of prior scholarship to prevent duplication of effort.
  • Point the way in fulfilling a need for additional research.
  • Locate your own research within the context of existing literature [very important].

Fink, Arlene. Conducting Research Literature Reviews: From the Internet to Paper. 2nd ed. Thousand Oaks, CA: Sage, 2005; Hart, Chris. Doing a Literature Review: Releasing the Social Science Research Imagination . Thousand Oaks, CA: Sage Publications, 1998; Jesson, Jill. Doing Your Literature Review: Traditional and Systematic Techniques . Los Angeles, CA: SAGE, 2011; Knopf, Jeffrey W. "Doing a Literature Review." PS: Political Science and Politics 39 (January 2006): 127-132; Ridley, Diana. The Literature Review: A Step-by-Step Guide for Students . 2nd ed. Los Angeles, CA: SAGE, 2012.

Types of Literature Reviews

It is important to think of knowledge in a given field as consisting of three layers. First, there are the primary studies that researchers conduct and publish. Second are the reviews of those studies that summarize and offer new interpretations built from and often extending beyond the primary studies. Third, there are the perceptions, conclusions, opinion, and interpretations that are shared informally among scholars that become part of the body of epistemological traditions within the field.

In composing a literature review, it is important to note that it is often this third layer of knowledge that is cited as "true" even though it often has only a loose relationship to the primary studies and secondary literature reviews. Given this, while literature reviews are designed to provide an overview and synthesis of pertinent sources you have explored, there are a number of approaches you could adopt depending upon the type of analysis underpinning your study.

Argumentative Review This form examines literature selectively in order to support or refute an argument, deeply embedded assumption, or philosophical problem already established in the literature. The purpose is to develop a body of literature that establishes a contrarian viewpoint. Given the value-laden nature of some social science research [e.g., educational reform; immigration control], argumentative approaches to analyzing the literature can be a legitimate and important form of discourse. However, note that they can also introduce problems of bias when they are used to make summary claims of the sort found in systematic reviews [see below].

Integrative Review Considered a form of research that reviews, critiques, and synthesizes representative literature on a topic in an integrated way such that new frameworks and perspectives on the topic are generated. The body of literature includes all studies that address related or identical hypotheses or research problems. A well-done integrative review meets the same standards as primary research in regard to clarity, rigor, and replication. This is the most common form of review in the social sciences.

Historical Review Few things rest in isolation from historical precedent. Historical literature reviews focus on examining research throughout a period of time, often starting with the first time an issue, concept, theory, phenomena emerged in the literature, then tracing its evolution within the scholarship of a discipline. The purpose is to place research in a historical context to show familiarity with state-of-the-art developments and to identify the likely directions for future research.

Methodological Review A review does not always focus on what someone said [findings], but how they came about saying what they say [method of analysis]. Reviewing methods of analysis provides a framework of understanding at different levels [i.e. those of theory, substantive fields, research approaches, and data collection and analysis techniques], how researchers draw upon a wide variety of knowledge ranging from the conceptual level to practical documents for use in fieldwork in the areas of ontological and epistemological consideration, quantitative and qualitative integration, sampling, interviewing, data collection, and data analysis. This approach helps highlight ethical issues which you should be aware of and consider as you go through your own study.

Systematic Review This form consists of an overview of existing evidence pertinent to a clearly formulated research question, which uses pre-specified and standardized methods to identify and critically appraise relevant research, and to collect, report, and analyze data from the studies that are included in the review. The goal is to deliberately document, critically evaluate, and summarize scientifically all of the research about a clearly defined research problem . Typically it focuses on a very specific empirical question, often posed in a cause-and-effect form, such as "To what extent does A contribute to B?" This type of literature review is primarily applied to examining prior research studies in clinical medicine and allied health fields, but it is increasingly being used in the social sciences.

Theoretical Review The purpose of this form is to examine the corpus of theory that has accumulated in regard to an issue, concept, theory, phenomena. The theoretical literature review helps to establish what theories already exist, the relationships between them, to what degree the existing theories have been investigated, and to develop new hypotheses to be tested. Often this form is used to help establish a lack of appropriate theories or reveal that current theories are inadequate for explaining new or emerging research problems. The unit of analysis can focus on a theoretical concept or a whole theory or framework.

NOTE : Most often the literature review will incorporate some combination of types. For example, a review that examines literature supporting or refuting an argument, assumption, or philosophical problem related to the research problem will also need to include writing supported by sources that establish the history of these arguments in the literature.

Baumeister, Roy F. and Mark R. Leary. "Writing Narrative Literature Reviews."  Review of General Psychology 1 (September 1997): 311-320; Mark R. Fink, Arlene. Conducting Research Literature Reviews: From the Internet to Paper . 2nd ed. Thousand Oaks, CA: Sage, 2005; Hart, Chris. Doing a Literature Review: Releasing the Social Science Research Imagination . Thousand Oaks, CA: Sage Publications, 1998; Kennedy, Mary M. "Defining a Literature." Educational Researcher 36 (April 2007): 139-147; Petticrew, Mark and Helen Roberts. Systematic Reviews in the Social Sciences: A Practical Guide . Malden, MA: Blackwell Publishers, 2006; Torracro, Richard. "Writing Integrative Literature Reviews: Guidelines and Examples." Human Resource Development Review 4 (September 2005): 356-367; Rocco, Tonette S. and Maria S. Plakhotnik. "Literature Reviews, Conceptual Frameworks, and Theoretical Frameworks: Terms, Functions, and Distinctions." Human Ressource Development Review 8 (March 2008): 120-130; Sutton, Anthea. Systematic Approaches to a Successful Literature Review . Los Angeles, CA: Sage Publications, 2016.

Structure and Writing Style

I.  Thinking About Your Literature Review

The structure of a literature review should include the following in support of understanding the research problem :

  • An overview of the subject, issue, or theory under consideration, along with the objectives of the literature review,
  • Division of works under review into themes or categories [e.g. works that support a particular position, those against, and those offering alternative approaches entirely],
  • An explanation of how each work is similar to and how it varies from the others,
  • Conclusions as to which pieces are best considered in their argument, are most convincing of their opinions, and make the greatest contribution to the understanding and development of their area of research.

The critical evaluation of each work should consider :

  • Provenance -- what are the author's credentials? Are the author's arguments supported by evidence [e.g. primary historical material, case studies, narratives, statistics, recent scientific findings]?
  • Methodology -- were the techniques used to identify, gather, and analyze the data appropriate to addressing the research problem? Was the sample size appropriate? Were the results effectively interpreted and reported?
  • Objectivity -- is the author's perspective even-handed or prejudicial? Is contrary data considered or is certain pertinent information ignored to prove the author's point?
  • Persuasiveness -- which of the author's theses are most convincing or least convincing?
  • Validity -- are the author's arguments and conclusions convincing? Does the work ultimately contribute in any significant way to an understanding of the subject?

II.  Development of the Literature Review

Four Basic Stages of Writing 1.  Problem formulation -- which topic or field is being examined and what are its component issues? 2.  Literature search -- finding materials relevant to the subject being explored. 3.  Data evaluation -- determining which literature makes a significant contribution to the understanding of the topic. 4.  Analysis and interpretation -- discussing the findings and conclusions of pertinent literature.

Consider the following issues before writing the literature review: Clarify If your assignment is not specific about what form your literature review should take, seek clarification from your professor by asking these questions: 1.  Roughly how many sources would be appropriate to include? 2.  What types of sources should I review (books, journal articles, websites; scholarly versus popular sources)? 3.  Should I summarize, synthesize, or critique sources by discussing a common theme or issue? 4.  Should I evaluate the sources in any way beyond evaluating how they relate to understanding the research problem? 5.  Should I provide subheadings and other background information, such as definitions and/or a history? Find Models Use the exercise of reviewing the literature to examine how authors in your discipline or area of interest have composed their literature review sections. Read them to get a sense of the types of themes you might want to look for in your own research or to identify ways to organize your final review. The bibliography or reference section of sources you've already read, such as required readings in the course syllabus, are also excellent entry points into your own research. Narrow the Topic The narrower your topic, the easier it will be to limit the number of sources you need to read in order to obtain a good survey of relevant resources. Your professor will probably not expect you to read everything that's available about the topic, but you'll make the act of reviewing easier if you first limit scope of the research problem. A good strategy is to begin by searching the USC Libraries Catalog for recent books about the topic and review the table of contents for chapters that focuses on specific issues. You can also review the indexes of books to find references to specific issues that can serve as the focus of your research. For example, a book surveying the history of the Israeli-Palestinian conflict may include a chapter on the role Egypt has played in mediating the conflict, or look in the index for the pages where Egypt is mentioned in the text. Consider Whether Your Sources are Current Some disciplines require that you use information that is as current as possible. This is particularly true in disciplines in medicine and the sciences where research conducted becomes obsolete very quickly as new discoveries are made. However, when writing a review in the social sciences, a survey of the history of the literature may be required. In other words, a complete understanding the research problem requires you to deliberately examine how knowledge and perspectives have changed over time. Sort through other current bibliographies or literature reviews in the field to get a sense of what your discipline expects. You can also use this method to explore what is considered by scholars to be a "hot topic" and what is not.

III.  Ways to Organize Your Literature Review

Chronology of Events If your review follows the chronological method, you could write about the materials according to when they were published. This approach should only be followed if a clear path of research building on previous research can be identified and that these trends follow a clear chronological order of development. For example, a literature review that focuses on continuing research about the emergence of German economic power after the fall of the Soviet Union. By Publication Order your sources by publication chronology, then, only if the order demonstrates a more important trend. For instance, you could order a review of literature on environmental studies of brown fields if the progression revealed, for example, a change in the soil collection practices of the researchers who wrote and/or conducted the studies. Thematic [“conceptual categories”] A thematic literature review is the most common approach to summarizing prior research in the social and behavioral sciences. Thematic reviews are organized around a topic or issue, rather than the progression of time, although the progression of time may still be incorporated into a thematic review. For example, a review of the Internet’s impact on American presidential politics could focus on the development of online political satire. While the study focuses on one topic, the Internet’s impact on American presidential politics, it would still be organized chronologically reflecting technological developments in media. The difference in this example between a "chronological" and a "thematic" approach is what is emphasized the most: themes related to the role of the Internet in presidential politics. Note that more authentic thematic reviews tend to break away from chronological order. A review organized in this manner would shift between time periods within each section according to the point being made. Methodological A methodological approach focuses on the methods utilized by the researcher. For the Internet in American presidential politics project, one methodological approach would be to look at cultural differences between the portrayal of American presidents on American, British, and French websites. Or the review might focus on the fundraising impact of the Internet on a particular political party. A methodological scope will influence either the types of documents in the review or the way in which these documents are discussed.

Other Sections of Your Literature Review Once you've decided on the organizational method for your literature review, the sections you need to include in the paper should be easy to figure out because they arise from your organizational strategy. In other words, a chronological review would have subsections for each vital time period; a thematic review would have subtopics based upon factors that relate to the theme or issue. However, sometimes you may need to add additional sections that are necessary for your study, but do not fit in the organizational strategy of the body. What other sections you include in the body is up to you. However, only include what is necessary for the reader to locate your study within the larger scholarship about the research problem.

Here are examples of other sections, usually in the form of a single paragraph, you may need to include depending on the type of review you write:

  • Current Situation : Information necessary to understand the current topic or focus of the literature review.
  • Sources Used : Describes the methods and resources [e.g., databases] you used to identify the literature you reviewed.
  • History : The chronological progression of the field, the research literature, or an idea that is necessary to understand the literature review, if the body of the literature review is not already a chronology.
  • Selection Methods : Criteria you used to select (and perhaps exclude) sources in your literature review. For instance, you might explain that your review includes only peer-reviewed [i.e., scholarly] sources.
  • Standards : Description of the way in which you present your information.
  • Questions for Further Research : What questions about the field has the review sparked? How will you further your research as a result of the review?

IV.  Writing Your Literature Review

Once you've settled on how to organize your literature review, you're ready to write each section. When writing your review, keep in mind these issues.

Use Evidence A literature review section is, in this sense, just like any other academic research paper. Your interpretation of the available sources must be backed up with evidence [citations] that demonstrates that what you are saying is valid. Be Selective Select only the most important points in each source to highlight in the review. The type of information you choose to mention should relate directly to the research problem, whether it is thematic, methodological, or chronological. Related items that provide additional information, but that are not key to understanding the research problem, can be included in a list of further readings . Use Quotes Sparingly Some short quotes are appropriate if you want to emphasize a point, or if what an author stated cannot be easily paraphrased. Sometimes you may need to quote certain terminology that was coined by the author, is not common knowledge, or taken directly from the study. Do not use extensive quotes as a substitute for using your own words in reviewing the literature. Summarize and Synthesize Remember to summarize and synthesize your sources within each thematic paragraph as well as throughout the review. Recapitulate important features of a research study, but then synthesize it by rephrasing the study's significance and relating it to your own work and the work of others. Keep Your Own Voice While the literature review presents others' ideas, your voice [the writer's] should remain front and center. For example, weave references to other sources into what you are writing but maintain your own voice by starting and ending the paragraph with your own ideas and wording. Use Caution When Paraphrasing When paraphrasing a source that is not your own, be sure to represent the author's information or opinions accurately and in your own words. Even when paraphrasing an author’s work, you still must provide a citation to that work.

V.  Common Mistakes to Avoid

These are the most common mistakes made in reviewing social science research literature.

  • Sources in your literature review do not clearly relate to the research problem;
  • You do not take sufficient time to define and identify the most relevant sources to use in the literature review related to the research problem;
  • Relies exclusively on secondary analytical sources rather than including relevant primary research studies or data;
  • Uncritically accepts another researcher's findings and interpretations as valid, rather than examining critically all aspects of the research design and analysis;
  • Does not describe the search procedures that were used in identifying the literature to review;
  • Reports isolated statistical results rather than synthesizing them in chi-squared or meta-analytic methods; and,
  • Only includes research that validates assumptions and does not consider contrary findings and alternative interpretations found in the literature.

Cook, Kathleen E. and Elise Murowchick. “Do Literature Review Skills Transfer from One Course to Another?” Psychology Learning and Teaching 13 (March 2014): 3-11; Fink, Arlene. Conducting Research Literature Reviews: From the Internet to Paper . 2nd ed. Thousand Oaks, CA: Sage, 2005; Hart, Chris. Doing a Literature Review: Releasing the Social Science Research Imagination . Thousand Oaks, CA: Sage Publications, 1998; Jesson, Jill. Doing Your Literature Review: Traditional and Systematic Techniques . London: SAGE, 2011; Literature Review Handout. Online Writing Center. Liberty University; Literature Reviews. The Writing Center. University of North Carolina; Onwuegbuzie, Anthony J. and Rebecca Frels. Seven Steps to a Comprehensive Literature Review: A Multimodal and Cultural Approach . Los Angeles, CA: SAGE, 2016; Ridley, Diana. The Literature Review: A Step-by-Step Guide for Students . 2nd ed. Los Angeles, CA: SAGE, 2012; Randolph, Justus J. “A Guide to Writing the Dissertation Literature Review." Practical Assessment, Research, and Evaluation. vol. 14, June 2009; Sutton, Anthea. Systematic Approaches to a Successful Literature Review . Los Angeles, CA: Sage Publications, 2016; Taylor, Dena. The Literature Review: A Few Tips On Conducting It. University College Writing Centre. University of Toronto; Writing a Literature Review. Academic Skills Centre. University of Canberra.

Writing Tip

Break Out of Your Disciplinary Box!

Thinking interdisciplinarily about a research problem can be a rewarding exercise in applying new ideas, theories, or concepts to an old problem. For example, what might cultural anthropologists say about the continuing conflict in the Middle East? In what ways might geographers view the need for better distribution of social service agencies in large cities than how social workers might study the issue? You don’t want to substitute a thorough review of core research literature in your discipline for studies conducted in other fields of study. However, particularly in the social sciences, thinking about research problems from multiple vectors is a key strategy for finding new solutions to a problem or gaining a new perspective. Consult with a librarian about identifying research databases in other disciplines; almost every field of study has at least one comprehensive database devoted to indexing its research literature.

Frodeman, Robert. The Oxford Handbook of Interdisciplinarity . New York: Oxford University Press, 2010.

Another Writing Tip

Don't Just Review for Content!

While conducting a review of the literature, maximize the time you devote to writing this part of your paper by thinking broadly about what you should be looking for and evaluating. Review not just what scholars are saying, but how are they saying it. Some questions to ask:

  • How are they organizing their ideas?
  • What methods have they used to study the problem?
  • What theories have been used to explain, predict, or understand their research problem?
  • What sources have they cited to support their conclusions?
  • How have they used non-textual elements [e.g., charts, graphs, figures, etc.] to illustrate key points?

When you begin to write your literature review section, you'll be glad you dug deeper into how the research was designed and constructed because it establishes a means for developing more substantial analysis and interpretation of the research problem.

Hart, Chris. Doing a Literature Review: Releasing the Social Science Research Imagination . Thousand Oaks, CA: Sage Publications, 1 998.

Yet Another Writing Tip

When Do I Know I Can Stop Looking and Move On?

Here are several strategies you can utilize to assess whether you've thoroughly reviewed the literature:

  • Look for repeating patterns in the research findings . If the same thing is being said, just by different people, then this likely demonstrates that the research problem has hit a conceptual dead end. At this point consider: Does your study extend current research?  Does it forge a new path? Or, does is merely add more of the same thing being said?
  • Look at sources the authors cite to in their work . If you begin to see the same researchers cited again and again, then this is often an indication that no new ideas have been generated to address the research problem.
  • Search Google Scholar to identify who has subsequently cited leading scholars already identified in your literature review [see next sub-tab]. This is called citation tracking and there are a number of sources that can help you identify who has cited whom, particularly scholars from outside of your discipline. Here again, if the same authors are being cited again and again, this may indicate no new literature has been written on the topic.

Onwuegbuzie, Anthony J. and Rebecca Frels. Seven Steps to a Comprehensive Literature Review: A Multimodal and Cultural Approach . Los Angeles, CA: Sage, 2016; Sutton, Anthea. Systematic Approaches to a Successful Literature Review . Los Angeles, CA: Sage Publications, 2016.

  • << Previous: Theoretical Framework
  • Next: Citation Tracking >>
  • Last Updated: May 9, 2024 11:05 AM
  • URL: https://libguides.usc.edu/writingguide

Harvey Cushing/John Hay Whitney Medical Library

  • Collections
  • Research Help

YSN Doctoral Programs: Steps in Conducting a Literature Review

  • Biomedical Databases
  • Global (Public Health) Databases
  • Soc. Sci., History, and Law Databases
  • Grey Literature
  • Trials Registers
  • Data and Statistics
  • Public Policy
  • Google Tips
  • Recommended Books
  • Steps in Conducting a Literature Review

What is a literature review?

A literature review is an integrated analysis -- not just a summary-- of scholarly writings and other relevant evidence related directly to your research question.  That is, it represents a synthesis of the evidence that provides background information on your topic and shows a association between the evidence and your research question.

A literature review may be a stand alone work or the introduction to a larger research paper, depending on the assignment.  Rely heavily on the guidelines your instructor has given you.

Why is it important?

A literature review is important because it:

  • Explains the background of research on a topic.
  • Demonstrates why a topic is significant to a subject area.
  • Discovers relationships between research studies/ideas.
  • Identifies major themes, concepts, and researchers on a topic.
  • Identifies critical gaps and points of disagreement.
  • Discusses further research questions that logically come out of the previous studies.

APA7 Style resources

Cover Art

APA Style Blog - for those harder to find answers

1. Choose a topic. Define your research question.

Your literature review should be guided by your central research question.  The literature represents background and research developments related to a specific research question, interpreted and analyzed by you in a synthesized way.

  • Make sure your research question is not too broad or too narrow.  Is it manageable?
  • Begin writing down terms that are related to your question. These will be useful for searches later.
  • If you have the opportunity, discuss your topic with your professor and your class mates.

2. Decide on the scope of your review

How many studies do you need to look at? How comprehensive should it be? How many years should it cover? 

  • This may depend on your assignment.  How many sources does the assignment require?

3. Select the databases you will use to conduct your searches.

Make a list of the databases you will search. 

Where to find databases:

  • use the tabs on this guide
  • Find other databases in the Nursing Information Resources web page
  • More on the Medical Library web page
  • ... and more on the Yale University Library web page

4. Conduct your searches to find the evidence. Keep track of your searches.

  • Use the key words in your question, as well as synonyms for those words, as terms in your search. Use the database tutorials for help.
  • Save the searches in the databases. This saves time when you want to redo, or modify, the searches. It is also helpful to use as a guide is the searches are not finding any useful results.
  • Review the abstracts of research studies carefully. This will save you time.
  • Use the bibliographies and references of research studies you find to locate others.
  • Check with your professor, or a subject expert in the field, if you are missing any key works in the field.
  • Ask your librarian for help at any time.
  • Use a citation manager, such as EndNote as the repository for your citations. See the EndNote tutorials for help.

Review the literature

Some questions to help you analyze the research:

  • What was the research question of the study you are reviewing? What were the authors trying to discover?
  • Was the research funded by a source that could influence the findings?
  • What were the research methodologies? Analyze its literature review, the samples and variables used, the results, and the conclusions.
  • Does the research seem to be complete? Could it have been conducted more soundly? What further questions does it raise?
  • If there are conflicting studies, why do you think that is?
  • How are the authors viewed in the field? Has this study been cited? If so, how has it been analyzed?

Tips: 

  • Review the abstracts carefully.  
  • Keep careful notes so that you may track your thought processes during the research process.
  • Create a matrix of the studies for easy analysis, and synthesis, across all of the studies.
  • << Previous: Recommended Books
  • Last Updated: Jan 4, 2024 10:52 AM
  • URL: https://guides.library.yale.edu/YSNDoctoral

Library Homepage

Research Methods and Design

  • Action Research
  • Case Study Design

Literature Review

  • Quantitative Research Methods
  • Qualitative Research Methods
  • Mixed Methods Study
  • Indigenous Research and Ethics This link opens in a new window
  • Identifying Empirical Research Articles This link opens in a new window
  • Research Ethics and Quality
  • Data Literacy
  • Get Help with Writing Assignments

A literature review is a discussion of the literature (aka. the "research" or "scholarship") surrounding a certain topic. A good literature review doesn't simply summarize the existing material, but provides thoughtful synthesis and analysis. The purpose of a literature review is to orient your own work within an existing body of knowledge. A literature review may be written as a standalone piece or be included in a larger body of work.

You can read more about literature reviews, what they entail, and how to write one, using the resources below. 

Am I the only one struggling to write a literature review?

Dr. Zina O'Leary explains the misconceptions and struggles students often have with writing a literature review. She also provides step-by-step guidance on writing a persuasive literature review.

An Introduction to Literature Reviews

Dr. Eric Jensen, Professor of Sociology at the University of Warwick, and Dr. Charles Laurie, Director of Research at Verisk Maplecroft, explain how to write a literature review, and why researchers need to do so. Literature reviews can be stand-alone research or part of a larger project. They communicate the state of academic knowledge on a given topic, specifically detailing what is still unknown.

This is the first video in a whole series about literature reviews. You can find the rest of the series in our SAGE database, Research Methods:

Videos

Videos covering research methods and statistics

Identify Themes and Gaps in Literature (with real examples) | Scribbr

Finding connections between sources is key to organizing the arguments and structure of a good literature review. In this video, you'll learn how to identify themes, debates, and gaps between sources, using examples from real papers.

4 Tips for Writing a Literature Review's Intro, Body, and Conclusion | Scribbr

While each review will be unique in its structure--based on both the existing body of both literature and the overall goals of your own paper, dissertation, or research--this video from Scribbr does a good job simplifying the goals of writing a literature review for those who are new to the process. In this video, you’ll learn what to include in each section, as well as 4 tips for the main body illustrated with an example.

Cover Art

  • Literature Review This chapter in SAGE's Encyclopedia of Research Design describes the types of literature reviews and scientific standards for conducting literature reviews.
  • UNC Writing Center: Literature Reviews This handout from the Writing Center at UNC will explain what literature reviews are and offer insights into the form and construction of literature reviews in the humanities, social sciences, and sciences.
  • Purdue OWL: Writing a Literature Review The overview of literature reviews comes from Purdue's Online Writing Lab. It explains the basic why, what, and how of writing a literature review.

Organizational Tools for Literature Reviews

One of the most daunting aspects of writing a literature review is organizing your research. There are a variety of strategies that you can use to help you in this task. We've highlighted just a few ways writers keep track of all that information! You can use a combination of these tools or come up with your own organizational process. The key is choosing something that works with your own learning style.

Citation Managers

Citation managers are great tools, in general, for organizing research, but can be especially helpful when writing a literature review. You can keep all of your research in one place, take notes, and organize your materials into different folders or categories. Read more about citations managers here:

  • Manage Citations & Sources

Concept Mapping

Some writers use concept mapping (sometimes called flow or bubble charts or "mind maps") to help them visualize the ways in which the research they found connects.

literature study research method

There is no right or wrong way to make a concept map. There are a variety of online tools that can help you create a concept map or you can simply put pen to paper. To read more about concept mapping, take a look at the following help guides:

  • Using Concept Maps From Williams College's guide, Literature Review: A Self-guided Tutorial

Synthesis Matrix

A synthesis matrix is is a chart you can use to help you organize your research into thematic categories. By organizing your research into a matrix, like the examples below, can help you visualize the ways in which your sources connect. 

  • Walden University Writing Center: Literature Review Matrix Find a variety of literature review matrix examples and templates from Walden University.
  • Writing A Literature Review and Using a Synthesis Matrix An example synthesis matrix created by NC State University Writing and Speaking Tutorial Service Tutors. If you would like a copy of this synthesis matrix in a different format, like a Word document, please ask a librarian. CC-BY-SA 3.0
  • << Previous: Case Study Design
  • Next: Quantitative Research Methods >>
  • Last Updated: May 7, 2024 9:51 AM

CityU Home - CityU Catalog

Creative Commons License

Auraria Library red logo

Research Methods: Literature Reviews

  • Annotated Bibliographies
  • Literature Reviews
  • Scoping Reviews
  • Systematic Reviews
  • Scholarship of Teaching and Learning
  • Persuasive Arguments
  • Subject Specific Methodology

A literature review involves researching, reading, analyzing, evaluating, and summarizing scholarly literature (typically journals and articles) about a specific topic. The results of a literature review may be an entire report or article OR may be part of a article, thesis, dissertation, or grant proposal. A literature review helps the author learn about the history and nature of their topic, and identify research gaps and problems.

Steps & Elements

Problem formulation

  • Determine your topic and its components by asking a question
  • Research: locate literature related to your topic to identify the gap(s) that can be addressed
  • Read: read the articles or other sources of information
  • Analyze: assess the findings for relevancy
  • Evaluating: determine how the article are relevant to your research and what are the key findings
  • Synthesis: write about the key findings and how it is relevant to your research

Elements of a Literature Review

  • Summarize subject, issue or theory under consideration, along with objectives of the review
  • Divide works under review into categories (e.g. those in support of a particular position, those against, those offering alternative theories entirely)
  • Explain how each work is similar to and how it varies from the others
  • Conclude which pieces are best considered in their argument, are most convincing of their opinions, and make the greatest contribution to the understanding and development of an area of research

Writing a Literature Review Resources

  • How to Write a Literature Review From the Wesleyan University Library
  • Write a Literature Review From the University of California Santa Cruz Library. A Brief overview of a literature review, includes a list of stages for writing a lit review.
  • Literature Reviews From the University of North Carolina Writing Center. Detailed information about writing a literature review.
  • Undertaking a literature review: a step-by-step approach Cronin, P., Ryan, F., & Coughan, M. (2008). Undertaking a literature review: A step-by-step approach. British Journal of Nursing, 17(1), p.38-43

literature study research method

Literature Review Tutorial

  • << Previous: Annotated Bibliographies
  • Next: Scoping Reviews >>
  • Last Updated: Feb 29, 2024 12:00 PM
  • URL: https://guides.auraria.edu/researchmethods

1100 Lawrence Street Denver, CO 80204 303-315-7700 Ask Us Directions

Logo for University of Central Florida Pressbooks

Research Methods

Barry Mauer and John Venecek

literature study research method

We discuss the following topics on this page:

Research Method Types

We also provide the following activity:

Before discussing research   methods , we need to distinguish them from  methodologies  and  research skills .

  • Methodologies , linked to literary theories, are tools and lines of investigation: sets of practices and propositions about texts and the world.
  • Research methods  are about where and how you get answers to your research questions. Are you conducting interviews? Visiting archives? Doing close readings? Reviewing scholarship? You will need to choose which methods are most appropriate to use in your research and you need to gain some knowledge about how to use these methods. In other words, you need to do some research into research methods!
  • Research skills are about how you handle materials such as library search engines, citation management programs, special collections materials, and so on.

Your choice of research method depends on the kind of questions you are asking. For example, if you want to understand how an author progressed through several drafts to arrive at a final manuscript, you may need to use archival research methods. If you want to understand why a particular literary work became a bestseller, you may need to use audience studies research methods. If you want to know why a contemporary author wrote a particular work, you may need to interview the author. Usually literary research involves a combination of methods such as archival research and   discourse analysis .

Literary research methods tend to differ from research methods in the hard sciences (such as physics and chemistry). Science research must present results that are reproducible, while literary research rarely does (though it must still present evidence for its claims). Literary research often deals with questions of meaning, social conventions, representations of lived experience, and aesthetic effects; these are questions that reward dialogue and different perspectives rather than one great experiment that settles the issue. In literary research, we might get many valuable answers even though they are quite different from one another. Also in literary research, we usually have some room to speculate about answers, but our claims have to be plausible (believable) and our argument comprehensive (meaning we don’t overlook evidence that would alter our argument significantly if it were known).

A literary researcher might select the following set of theories and tools:

  • Theory: Critical Race Theory (CRT)
  • Methodology: Social Constructivism
  • Method: Scholarly
  • Skills: Search engines, citation management

We select our research methods based on the kinds of things we want to know. For example, we may be studying the relationship between literature and society, between author and text, or the status of a work in the literary canon. We may want to know about a work’s form, genre, or thematics. We may want to know about the audience’s reading and reception, or about methods for teaching literature in schools.

Below are a few research methods and their descriptions. You may need to consult with your instructor about which ones are most appropriate for your project. The first list covers methods most students use in their work. The second list covers methods more commonly used by advanced researchers. Even if you will not be using methods from this second list in your research project, you may encounter these research methods in the scholarship you find.

Most commonly used undergraduate research methods:

  • Scholarship Methods:  Studies the body of published scholarship written about a particular author, literary work, historical period, literary movement, genre, theme, theory, or method.
  • Textual Analysis Methods:  Used for close readings of literary texts, these methods also rely on literary theory and background information to support the reading.
  • Biographical Methods:  Used to study the life of the author to better understand their work and times, these methods involve reading biographies and autobiographies about the author, and may also include research into private papers, correspondence, and interviews.
  • Discourse Analysis Methods:  Studies language patterns to reveal ideology and social relations of power. This research involves the study of institutions, social groups, and social movements to understand how people in various settings use language to represent the world to themselves and others. Literary works may present complex mixtures of discourses which the characters (and readers) have to navigate.
  • Creative Writing Methods:  A literary re-working of another literary text, creative writing research is used to better understand a literary work by investigating its language, formal structures, composition methods, themes, and so on. For instance, a creative research project may retell a story from a minor character’s perspective to reveal an alternative reading of events. To qualify as research, a creative research project is usually combined with a piece of theoretical writing that explains and justifies the work.

Methods used more often by advanced researchers:

  • Archival Methods: Usually involves trips to special collections where original papers are kept. In these archives are many unpublished materials such as diaries, letters, photographs, ledgers, and so on. These materials can offer us invaluable insight into the life of an author, the development of a literary work, or the society in which the author lived. There are at least three major archives of James Baldwin’s papers: The Smithsonian , Yale , and The New York Public Library . Descriptions of such materials are often available online, but the materials themselves are typically stored in boxes at the archive.
  • Computational Methods:  Used for statistical analysis of texts such as studies of the popularity and meaning of particular words in literature over time.
  • Ethnographic Methods:  Studies groups of people and their interactions with literary works, for instance in educational institutions, in reading groups (such as book clubs), and in fan networks. This approach may involve interviews and visits to places (including online communities) where people interact with literary works. Note: before you begin such work, you must have  Institutional Review Board (IRB)  approval “to protect the rights and welfare of human participants involved in research.”
  • Visual Methods:  Studies the visual qualities of literary works. Some literary works, such as illuminated manuscripts, children’s literature, and graphic novels, present a complex interplay of text and image. Even works without illustrations can be studied for their use of typography, layout, and other visual features.

Regardless of the method(s) you choose, you will need to learn how to apply them to your work and how to carry them out successfully. For example, you should know that many archives do not allow you to bring pens (you can use pencils) and you may not be allowed to bring bags into the archives. You will need to keep a record of which documents you consult and their location (box number, etc.) in the archives. If you are unsure how to use a particular method, please consult a book about it. [1] Also, ask for the advice of trained researchers such as your instructor or a research librarian.

  • What research method(s) will you be using for your paper? Why did you make this method selection over other methods? If you haven’t made a selection yet, which methods are you considering?
  • What specific methodological approaches are you most interested in exploring in relation to the chosen literary work?
  • What is your plan for researching your method(s) and its major approaches?
  • If there are any elements of your assignment that need clarification, please list them.
  • What was the most important lesson you learned from this page? What point was confusing or difficult to understand?
  • Introduction to Research Methods: A Practical Guide for Anyone Undertaking a Research Project  by Catherine, Dr. Dawson
  • Practical Research Methods: A User-Friendly Guide to Mastering Research Techniques and Projects  by Catherine Dawson
  • Qualitative Inquiry and Research Design: Choosing Among Five Approaches  by John W. Creswell  Cheryl N. Poth
  • Qualitative Research Evaluation Methods: Integrating Theory and Practice  by Michael Quinn Patton
  • Research Design: Qualitative, Quantitative, and Mixed Methods Approaches  by John W. Creswell  J. David Creswell
  • Research Methodology: A Step-by-Step Guide for Beginners  by Ranjit Kumar
  • Research Methodology: Methods and Techniques  by C.R. Kothari

Research Methods Copyright © 2021 by Barry Mauer and John Venecek is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

A systematic literature review on coping mechanisms and food security during pandemics

  • Published: 09 May 2024

Cite this article

literature study research method

  • Yeni Budiawati   ORCID: orcid.org/0000-0003-2656-4552 1 ,
  • Ronnie S. Natawidjaja 2 ,
  • Dhanan Sarwo Utomo 3 ,
  • Tomy Perdana 2 &
  • Maman H. Karmana 2  

Coping strategies are vital during crises, and this review synthesizes existing research on coping strategies related to food security during pandemics while identifying research gaps. The paper examines implemented and needed policies to enhance individual and household food security, particularly during pandemic, which has garnered increased global academic interest. Endnote X9, following PRISMA guidelines, analyzes data collected from ProQuest, EBSCOhost, and Scopus databases. Publications from 2019 to 2022 predominantly focus on health sciences, utilizing quantitative methods and empirical data, with an emphasis on Asia. Categorizing research based on several sub-criteria reveals pandemic impacts, outcomes, geographic locations, economic development, and basic theories employed in the previous studies. Consequences of the pandemic studied include environmental quality and socioeconomic effects. Practical implications for food security policies, including urban planning, rural vulnerability, institutional strengthening, and support for vulnerable communities, are highlighted. The government should implement targeted policies, particularly for vulnerable groups like babies, children, elderly individuals with low incomes, female heads of families, low-income community groups, farmers, fishermen, those without permanent jobs, and the unemployed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

literature study research method

Availability of data and materials

Not applicable.

Ahmed, S., Downs, S. M., Yang, C., Chunlin, L., Ten Broek, N., & Ghosh-Jerath, S. (2020). Rapid tool based on a food environment typology framework for evaluating effects of the COVID-19 pandemic on food system resilience. Food Security, 12 (4), 773–778. https://doi.org/10.1007/s12571-020-01086-z

Article   PubMed   PubMed Central   Google Scholar  

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50 (2), 179–211.

Article   Google Scholar  

Amon, E., Charles, J., Kuhlik, E., Barankena, A., Godfrey Martin, M., Levina, K., & Jere, E. (2020). Relationship Between Food Insufficiency and HIV Infection Among Caregivers of Orphans and Vulnerable Children in Tanzania. HIV/AIDS : Research and Palliative Care, 12 , 271–282. https://doi.org/10.2147/HIV.S255549

Ariya, M., Karimi, J., Abolghasemi, S., Hematdar, Z., Naghizadeh, M. M., Moradi, M., & Barati-Boldaji, R. (2021). Food insecurity arises the likelihood of hospitalization in patients with COVID-19. Scientific Reports (Nature Publisher Group), 11 (1), 20072. https://doi.org/10.1038/s41598-021-99610-4

Article   CAS   Google Scholar  

Aziz, A. R. A., Ab Razak, N. H., Zulkifli, N. A., Amat, M. I., Othman, M. Z., & Musa, N. N. (2021). Systematic review of stress and coping strategies during pandemic COVID-19 among students in higher learning institutions. Malaysian Journal of Social Sciences and Humanities (MJSSH), 6 (11), 221–235.

Benzekri, N. A., Sambou, J., Diaw, B., El Hadji Ibrahima, S., Sall, F., Niang, A., Ba, S., Ngom, Ndèye Fatou., & G., Diallo, M. B., Hawes, S. E., Moussa, S., & Gottlieb, G. S. (2015). High prevalence of severe food insecurity and malnutrition among HIV-infected adults in Senegal, West Africa. PLoS ONE, 10 (11), e0141819. https://doi.org/10.1371/journal.pone.0141819

Article   CAS   PubMed   PubMed Central   Google Scholar  

Bergman, M. M. (2008). Advances in mixed methods research: Theories and applications . Sage.

Book   Google Scholar  

Bidisha, S. H., Mahmood, T., & Hossain, M. B. (2021). Assessing food poverty, vulnerability and food consumption inequality in the context of COVID-19: A case of Bangladesh. Social Indicators Research, 155 (1), 187–210. https://doi.org/10.1007/s11205-020-02596-1

Blaikie, N. (2007). Approaches to social enquiry: Advancing knowledge . Polity.

Google Scholar  

Bronfman, N. C., Repetto, P. B., Cisternas, P. C., & Castañeda, J. V. (2021). Factors influencing the adoption of COVID-19 preventive behaviors in Chile. Sustainability, 13 (10), 5331. https://doi.org/10.3390/su13105331

Bukusuba, J., Kikafunda, J. K., & Whitehead, R. G. (2007). Food security status in households of people living with HIV/AIDS (PLWHA) in a Ugandan urban setting. British Journal of Nutrition, 98 (1), 211–217. https://doi.org/10.1017/S0007114507691806

Article   CAS   PubMed   Google Scholar  

Cardarelli, K. M., DeWitt, E., Gillespie, R., Graham, R. H., Norman-Burgdolf, H., & Mullins, J. T. (2021). Policy implications of the COVID-19 pandemic on food insecurity in rural America: Evidence from Appalachia. International Journal of Environmental Research and Public Health, 18 (23), 12792. https://doi.org/10.3390/ijerph182312792

Carr, L. T. (1994). The strengths and weaknesses of quantitative and qualitative research: What method for nursing? Journal of Advanced Nursing, 20 (4), 716–721.

Célia Landmann, S., Deborah Carvalho, M., Berti, M., de Azevedo, B., Borges, P. R., de Souza, J., Romero, D., da Silva, W., & de, A., Giseli Nogueira, D., André Oliveira, W., Danilo Rodrigues Pereira da, S., Margareth Guimarães, L., Crizian Saar, G., Azevedo, L. O., Arthur Pate de Souza, F., Gracie, R., & Maria de Fátima de, P. (2021). Associations of sociodemographic factors and health behaviors with the emotional well-being of adolescents during the COVID-19 pandemic in Brazil. International Journal of Environmental Research and Public Health, 18 (11), 6160. https://doi.org/10.3390/ijerph18116160

Celorio-Sardà, R., Comas-Basté, O., Latorre-Moratalla, M. L., Zerón-Rugerio, M. F., Urpi-Sarda, M., Illán-Villanueva, M., Farran-Codina, A., Izquierdo-Pulido, M., & María del Carmen, V.-C. (2021). Effect of COVID-19 lockdown on dietary habits and lifestyle of food science students and professionals from Spain. Nutrients, 13 (5), 1494. https://doi.org/10.3390/nu13051494

Cevher, C., Altunkaynak, B., & Gürü, M. (2021). Impacts of COVID-19 on Agricultural production branches: An investigation of anxiety disorders among farmers. Sustainability, 13 (9), 5186. https://doi.org/10.3390/su13095186

Choy, L. T. (2014). The strengths and weaknesses of research methodology: Comparison and complimentary between qualitative and quantitative approaches. IOSR Journal of Humanities and Social Science, 19 (4), 99–104.

Conroy, A. A., Cohen, M. H., Frongillo, E. A., Tsai, A. C., Wilson, T. E., Wentz, E. L., Adimora, A. A., Merenstein, D., Ofotokun, I., Metsch, L., Kempf, M.-C., Adedimeji, A., Turan, J. M., Tien, P. C., & Weiser, S. D. (2019). Food insecurity and violence in a prospective cohort of women at risk for or living with HIV in the US. PLoS ONE, 14 (3), e0213365. https://doi.org/10.1371/journal.pone.0213365

Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches . Sage publications.

Das, S., Rasul, M. G., Hossain, M. S., Khan, A. R., Alam, M. A., Ahmed, T., & Clemens, J. D. (2020). Acute food insecurity and short-term coping strategies of urban and rural households of Bangladesh during the lockdown period of COVID-19 pandemic of 2020: Report of a cross-sectional survey. BMJ Open, 10 (12), e043365. https://doi.org/10.1136/bmjopen-2020-043365

Dasgupta, S., & Robinson, E. J. Z. (2021). Food insecurity, safety nets, and coping strategies during the COVID-19 Pandemic: Multi-country evidence from Sub-Saharan Africa. International Journal of Environmental Research and Public Health, 18 (19), 9997. https://doi.org/10.3390/ijerph18199997

Durán-Sandoval, D., Durán-Romero, G., & López, A. M. (2021). Achieving the food security strategy by quantifying food loss and waste. A case study of the chinese economy. Sustainability, 13 (21), 12259. https://doi.org/10.3390/su132112259

Elsahoryi, N., Al-Sayyed, H., Odeh, M., McGrattan, A., & Hammad, F. (2020). Effect of COVID-19 on food security: A cross-sectional survey. Clinical Nutrition ESPEN, 40 , 171–178.

Farrell, P., Thow, A. M., Wate, J. T., Nonga, N., Vatucawaqa, P., Brewer, T., Sharp, M. K., Farmery, A., Trevena, H., Reeve, E., Eriksson, H., Gonzalez, I., Mulcahy, G., Eurich, J. G., & Andrew, N. L. (2020). COVID-19 and Pacific food system resilience: Opportunities to build a robust response. Food Security, 12 (4), 783–791. https://doi.org/10.1007/s12571-020-01087-y

Flanagin, A. J., Stohl, C., & Bimber, B. J. C. (2006). Modeling the structure of collective action. Communication Monographs, 73 (1), 29–54.

Fluharty, M., & Fancourt, D. (2021). How have people been coping during the COVID-19 pandemic? Patterns and predictors of coping strategies amongst 26,016 UK adults. BMC Psychology, 9 , 1–12. https://doi.org/10.1186/s40359-021-00603-9

Francesconi, N., Wouterse, F., & Namuyiga, D. B. (2021). Agricultural cooperatives and COVID-19 in Southeast Africa. The role of managerial capital for rural resilience. Sustainability, 13 (3), 1046. https://doi.org/10.3390/su13031046

Garcia, A., Higgs, S., Lluch, A., Darcel, N., & Davidenko, O. (2021). Associations between perceived social eating norms and initiation and maintenance of changes in dietary habits during the first COVID-19 lockdown in France. Foods, 10 (11), 2745. https://doi.org/10.3390/foods10112745

Garcia, J., Hromi-Fiedler, A., Mazur, R. E., Marquis, G., Sellen, D., Lartey, A., & Pérez-Escamilla, R. (2013). Persistent household food insecurity, HIV, and maternal stress in Peri-Urban Ghana. BMC Public Health, 13 , 215. https://doi.org/10.1186/1471-2458-13-215

Gatiso, T. T., Grimes, T., Lormie, M., Clement, T., & Junker, J. (2018). The impact of the Ebola virus disease (EVD) epidemic on agricultural production and livelihoods in Liberia. PLoS Neglected Tropical Diseases, 12 (8), e0006580. https://doi.org/10.1371/journal.pntd.0006580

Ge, D., Zhang, X., Guo, X., Chu, J., Long, S., & Zhou, C. (2019). Suicidal ideation among the hypertensive individuals in Shandong, China: a path analysis. BMC Psychiatry, 19 , 1–9. https://doi.org/10.1186/s12888-019-2256-7

Ge, M., Yu, K., Ding, A., & Liu, G. (2022). Input-output efficiency of water-energy-food and its driving forces: Spatial-temporal heterogeneity of Yangtze River economic belt, China. International Journal of Environmental Research and Public Health, 19 (3), 1340. https://doi.org/10.3390/ijerph19031340

Gear, C., Koziol-Mclain, J., & Eppel, E. (2019). Exploring sustainable primary care responses to intimate partner violence in New Zealand: Qualitative use of complexity theory. BMJ Open, 9 (11), e031827. https://doi.org/10.1136/bmjopen-2019-031827

Gosh, K., Chowdhury, S., Acharjee, D. C., Mamun, A.-A., & Ghosh, R. J. S. (2022). Assessing the economic impacts of COVID-19 on the aquaculture and fisheries sectors in relation to food security: A critical review. Sustainability, 14 (14), 8766.

Green, L., Ashton, K., Sumina, A., Dyakova, M., Clemens, T., & Bellis, M. A. (2021). Using health impact assessment (HIA) to understand the wider health and well-being implications of policy decisions: the COVID-19 ‘staying at home and social distancing policy’ in Wales. BMC Public Health, 21 , 1–12. https://doi.org/10.1186/s12889-021-11480-7

Haeng-Mi, S., Won-Hee, C., Young-Hui, H., & Yang, H.-R. (2021). the lived experiences of COVID-19 patients in South Korea: A qualitative study. International Journal of Environmental Research and Public Health, 18 (14), 7419. https://doi.org/10.3390/ijerph18147419

Hanbazaza, M. A. (2021). The impact of COVID-19 curfew on food security status, eating habits, and health among adults living in Saudi Arabia. Progress in Nutrition, 23 (2), 10442. https://doi.org/10.23751/pn.v23i2.10442

Hardin, R. (2015). Collective action . RFF Press.

Harris, J., Depenbusch, L., Pal, A. A., Nair, R. M., & Ramasamy, S. (2020). Food system disruption: Initial livelihood and dietary effects of COVID-19 on vegetable producers in India. Food Security, 12 (4), 841–851. https://doi.org/10.1007/s12571-020-01064-5

Harvey, F. (2020). Coronavirus pandemic ‘will cause famine of biblical proportions.’ The Guardian, 4 , 21.

He, J., Liu, S., Li, T., Thuong, T. H., & M. (2021). The positive effects of unneeded consumption behaviour on consumers during the COVID-19 pandemic. International Journal of Environmental Research and Public Health, 18 (12), 6404. https://doi.org/10.3390/ijerph18126404

Hikmawati, I., & Setiyabudi, R. (2021). Epidemiology of COVID-19 in Indonesia: Common source and propagated source as a cause for outbreaks. Journal of Infection in Developing Countries, 15 (5), 646–652. https://doi.org/10.3855/jidc.14240

Hobfoll, S. E., Shirom, A., & Golembiewski, R. J. (2000). Conservation of resources theory. Handbook of Organization Behavior, 2 , 57–80.

Holmes, E. A., O'Connor, R. C., Perry, V. H., Tracey, I., Wessely, S., Arseneault, L., . . . Everall, I. J. T. L. P. (2020). Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science. 7 (6), 547–560. https://doi.org/10.1016/S2215-0366(20)30168-1

Hong, S., & Choi, S.-H. (2021). The Urban Characteristics of High Economic Resilient Neighborhoods during the COVID-19 Pandemic: A Case of Suwon. South Korea. Sustainability, 13 (9), 4679. https://doi.org/10.3390/su13094679

Huang, Y., Li, J., Yuan, Q., & Shi, V. (2021). Predicting the impacts of the COVID-19 pandemic on food supply chains and their sustainability: A simulation study. Discrete Dynamics in Nature and Society, 2021 , 1–9. https://doi.org/10.1155/2021/7109432

Huff, A. G., Beyeler, W. E., Kelley, N. S., & McNitt, J. A. (2015). How resilient is the United States’ food system to pandemics? Journal of Environmental Studies and Sciences, 5 (3), 337–347. https://doi.org/10.1007/s13412-015-0275-3

Iddi, S., Obiri-Yeboah, D., Aboh, I. K., Quansah, R., Samuel Asiedu, O., Nancy Innocentia Ebu, E., . . . Armah, F. A. (2021). Coping strategies adapted by Ghanaians during the COVID-19 crisis and lockdown: A population-based study. PLoS ONE, 16 (6). https://doi.org/10.1371/journal.pone.0253800

Igulot, P., & Magadi, M. A. (2018). Socioeconomic status and vulnerability to HIV infection in Uganda: Evidence from multilevel modelling of AIDS indicator survey data. AIDS Research and Treatment, 2018 , 15. https://doi.org/10.1155/2018/7812146

Jafri, A., Mathe, N., Aglago, E. K., Konyole, S. O., Ouedraogo, M., Audain, K., . . . Sanou, D. (2021). Food availability, accessibility and dietary practices during the COVID-19 pandemic: A multi-country survey. Public Health Nutrition, 24 (7), 1798-1805. https://doi.org/10.1017/S1368980021000987

Jaleta, M., Hodson, D., Abeyo, B., Yirga, C., & Erenstein, O. (2019). Smallholders’ coping mechanisms with wheat rust epidemics: Lessons from Ethiopia. PLoS ONE, 14 (7), e0219327. https://doi.org/10.1371/journal.pone.0219327

Javed, S., & Parveen, H. (2021). Adaptive coping strategies used by people during coronavirus. Journal of Education and Health Promotion, 10 (1), 122.

Jones, E. A., Mitra, A. K., & Bhuiyan, A. R. (2021). Impact of COVID-19 on mental health in adolescents: a systematic review. International Journal of Environmental Research and Public Health, 18 (5), 2470.

Kaur, M., Malik, D. P., Malhi, G. S., Sardana, V., Bolan, N. S., Lal, R., & Siddique, K. H. (2022). Rice residue management in the Indo-Gangetic Plains for climate and food security. A review. Agronomy for Sustainable Development, 42 (5), 92.

Kertati, I. (2021). Female family-head resilience in building family food security in new normal adaptation of covid-19 pandemic. WSEAS Transactions on Environment and Development, 17 , 810–818. https://doi.org/10.37394/232015.2021.17.76

Kitamura, Y., Karkour, S., Ichisugi, Y., & Itsubo, N. (2020). Evaluation of the economic, environmental, and social impacts of the COVID-19 pandemic on the Japanese tourism industry. Sustainability, 12 (24), 10302. https://doi.org/10.3390/su122410302

Kobayashi, L. C., Brendan, Q. O. S., Kler, J. S., Nishimura, R., Palavicino-Maggio, C. B., Eastman, M. R., Yamani Rikia, V., & Finlay, J. M. (2021). Cohort profile: the COVID-19 Coping Study, a longitudinal mixed-methods study of middle-aged and older adults’ mental health and well-being during the COVID-19 pandemic in the USA. BMJ Open, 11 (2), e044965. https://doi.org/10.1136/bmjopen-2020-044965

Article   PubMed   Google Scholar  

Laar, A., Abubakar, M., Laar, M., El-Adas, A., Amenyah, R., Atuahene, K., Quarshie, D., Adjei, A. A., & Quakyi, I. (2015). Coping strategies of HIV-affected households in Ghana. BMC Public Health, 15 , 1–9. https://doi.org/10.1186/s12889-015-1418-x

Langer, L. N. (1975). The black death in Russia: Its effects upon urban labor. Russian History, 2 (1), 53–67.

Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping . Springer publishing company.

Majrashi, A., Khalil, A., Nagshabandi, E. A., & Majrashi, A. (2021). Stressors and coping strategies among nursing students during the COVID-19 pandemic: scoping review. Nursing Reports, 11 (2), 444–459.

Malina, M. A., Nørreklit, H. S., & Selto, F. H. (2011). Lessons learned: Advantages and disadvantages of mixed method research. Qualitative Research in Accounting & Management, 8 (1), 59–71.

Migliore, G., Rizzo, G., Schifani, G., Quatrosi, G., Vetri, L., & Testa, R. (2021). Ethnocentrism effects on consumers’ behavior during COVID-19 pandemic. Economies, 9 (4), 160. https://doi.org/10.3390/economies9040160

Mirza Marvel, C., Vásquez, J. M., & N., Valentina Gomes Haensel, S., & Ferasso, M. (2021). Household food consumption and wastage during the COVID-19 pandemic outbreak: A comparison between Peru and Brazil. Sustainability, 13 (14), 7583. https://doi.org/10.3390/su13147583

Moher, D., Altman, D., Liberati, A., & Tetzlaff, J. (1996). PRISMA (Preferred reporting items for systematic reviews and meta-analyses). Annals of Internal Medicine, 6 .

Morales-Rodríguez, F. M. (2021). Fear, stress, resilience and coping strategies during COVID-19 in Spanish university students. Sustainability, 13 (11), 5824. https://doi.org/10.3390/su13115824

Muller, A. E., Hafstad, E. V., Himmels, J. P. W., Smedslund, G., Flottorp, S., Stensland, S. Ø., Stroobants, S., Van de Velde, S., & Vist, G. E. (2020). The mental health impact of the covid-19 pandemic on healthcare workers, and interventions to help them: A rapid systematic review. Psychiatry Research, 293 , 113441.

Muñoz-Violant, S., Violant-Holz, V., Gloria, G.-J.M., Teresa, A. M., & Rodríguez, M. J. (2021). Coping strategies patterns to buffer the psychological impact of the State of Emergency in Spain during the COVID-19 pandemic’s early months. Scientific Reports (Nature Publisher Group), 11 (1), 24400. https://doi.org/10.1038/s41598-021-03749-z

Muresan, I. C., Rezhen, H., Arion, F. H., Brata, A. M., Chereches, I. A., Chiciudean, G. O., Dumitras, D. E., Oroian, C. F., & Olivia Paula, T. (2021). Consumers’ attitude towards sustainable food consumption during the COVID-19 pandemic in Romania. Agriculture, 11 (11), 1050. https://doi.org/10.3390/agriculture11111050

Nang, A. F. M., Maat, S. M., & Mahmud, M. S. (2022). Teacher technostress and coping mechanisms during Covid-19 pandemic: A systematic review. Pegem Journal of Education and Instruction, 12 (2), 200–212.

Neusar, A. J. H. A. (2014). To trust or not to trust? Interpretations in Qualitative Research, 24 (2), 178–188.

Nguyen, P. H., Kachwaha, S., Pant, A., Tran, L. M., Ghosh, S., Sharma, P. K., . . . Menon, P. (2021). Impact of COVID-19 on household food insecurity and interlinkages with child feeding practices and coping strategies in Uttar Pradesh, India: A longitudinal community-based study. BMJ Open, 11 (4). https://doi.org/10.1136/bmjopen-2021-048738

Niharika Prasanna, K. (2022). Modeling the impact of Covid-19 on the farm produce availability and pricing in India. Interdisciplinary Journal of Information, Knowledge, and Management, 17 , 35–65. https://doi.org/10.28945/4897

Niles, M. T., Bertmann, F., Belarmino, E. H., & Went-worth, T. (2020). The early food insecurity impacts of COVID-19. Nutrients, 12 (7), 2096. https://doi.org/10.1101/2020.05.09.20096412

Olson, M. (1989). Collective action. In  The invisible hand (pp. 61–69). Springer.

Chapter   Google Scholar  

Otekunrin, O. A., Otekunrin, O. A., Sawicka, B., & Pszczółkowski, P. (2021). Assessing food insecurity and its drivers among smallholder farming households in rural Oyo State, Nigeria: The HFIAS approach. Agriculture, 11 (12), 1189. https://doi.org/10.3390/agriculture11121189

Panic, N., Leoncini, E., de Belvis, G., Ricciardi, W., & Boccia, S. J. P. o. (2013). Evaluation of the endorsement of the preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement on the quality of published systematic review and meta-analyses. 8 (12), e83138. https://doi.org/10.1371/journal.pone.0083138

Parekh, N., Ali, S. H., Joyce, O. C., Tozan, Y., Jones, A. M., Capasso, A., . . . DiClemente, R. J. (2021). Food insecurity among households with children during the COVID-19 pandemic: results from a study among social media users across the United States. Nutrition Journal, 20 , 1–11. https://doi.org/10.1186/s12937-021-00732-2

Passetti, E. E., Battaglia, M., Bianchi, L., & Annesi, N. (2021). Coping with the COVID-19 pandemic: the technical, moral and facilitating role of management control. Accounting, Auditing and Accountability Journal, 34 (6), 1430–1444. https://doi.org/10.1108/AAAJ-08-2020-4839

Phuong Hong, N., Kachwaha, S., Pant, A., Tran, L. M., Ghosh, S., Sharma, P. K., . . . Menon, P. (2021). Impact of COVID-19 on household food insecurity and interlinkages with child feeding practices and coping strategies in Uttar Pradesh, India: A longitudinal community-based study. BMJ Open, 11 (4). https://doi.org/10.1136/bmjopen-2021-048738

Pollard, C. M., Landrigan, T. J., Gray, J. M., McDonald, L., Creed, H., & Booth, S. (2021). Using the Food Stress Index for Emergency Food Assistance: An Australian Case Series Analysis during the COVID-19 Pandemic and Natural Disasters. International Journal of Environmental Research and Public Health, 18 (13), 6960. https://doi.org/10.3390/ijerph18136960

Rabbi, M. F., Oláh, J., Popp, J., Máté, D., & Kovács, S. (2021). Food Security and the COVID-19 Crisis from a Consumer Buying Behaviour Perspective—The Case of Bangladesh. Foods, 10 (12), 3073. https://doi.org/10.3390/foods10123073

Rahman, M. S. (2020). The advantages and disadvantages of using qualitative and quantitative approaches and methods in language “testing and assessment” research: A literature review .

Raman, R., Vinuesa, R., & Nedungadi, P. (2021). Bibliometric analysis of SARS, MERS, and COVID-19 studies from India and connection to sustainable development goals. Sustainability, 13 (14), 7555. https://doi.org/10.3390/su13147555

Rivera-Picón, C., Benavente-Cuesta, M. H., María Paz, Q.-A., & Rodríguez-Muñoz, P. M. (2022). Differences in resilience, psychological well-being and coping strategies between HIV patients and diabetics. Healthcare, 10 (2), 266. https://doi.org/10.3390/healthcare10020266

Rose, M. (2006). Gathering ‘dreams of presence’: A project for the cultural landscape. Environment and Planning D: Society and Space, 24 (4), 537–554.

Ruszczyk, H. A., Rahman, M. F., Bracken, L. J., & Sudha, S. (2021). Contextualizing the COVID-19 pandemic’s impact on food security in two small cities in Bangladesh. Environment and Urbanization, 33 (1), 239–254. https://doi.org/10.1177/0956247820965156

Sánchez-Rodríguez, E., Ferreira-Valente, A., Pimenta, F., Ciaramella, A., & Miró, J. (2022). Mental, physical and socio-economic status of adults living in Spain during the late stages of the state of emergency caused by COVID-19. International Journal of Environmental Research and Public Health, 19 (2), 854. https://doi.org/10.3390/ijerph19020854

Sarfaraz, A. H., Amir Karbassi, Y., Thomas, H., Özaydin, G., Khalili-Damghani, K., & Saiedeh Molla, H. (2022). Analyzing the Investment Behavior in the Iranian Stock Exchange during the COVID-19 Pandemic Using Hybrid DEA and Data Mining Techniques. Mathematical Problems in Engineering . https://doi.org/10.1155/2022/1667618

Sassi, M. (2021). Coping Strategies of Food Insecure Households in Conflict Areas: The Case of South Sudan. Sustainability, 13 (15), 8615. https://doi.org/10.3390/su13158615

Savela, T. (2018). The advantages and disadvantages of quantitative methods in schoolscape research. Linguistics and Education, 44 , 31–44.

Shahzad, M. A., Qing, P., Rizwan, M., Razzaq, A., & Faisal, M. (2021). COVID-19 pandemic, determinants of food insecurity, and household mitigation measures: A case study of Punjab. Pakistan. Healthcare (Switzerland). https://doi.org/10.3390/healthcare9060621

Article   PubMed Central   Google Scholar  

Singer, M., Bulled, N., Ostrach, B., & Mendenhall, E. (2017). Syndemics and the biosocial conception of health. The Lancet, 389 (10072), 941–950.

Starick, E., Montemarano, V., & Cassin, S. E. (2021). Coping during COVID-19: The Impact of Cognitive Appraisal on Problem Orientation, Coping Behaviors, Body Image, and Perceptions of Eating Behaviors and Physical Activity during the Pandemic. International Journal of Environmental Research and Public Health, 18 (21), 11305. https://doi.org/10.3390/ijerph182111305

Stephens, L., Rains, C., & Benjamin-Neelon, S. E. (2021). Connecting families to food resources amid the COVID-19 pandemic: A cross-sectional survey of early care and education providers in two U.S. states. Nutrients, 13 (9), 3137. https://doi.org/10.3390/nu13093137

Syed Abu, S., Kaiser, M. Z., & K., Sultana, N., & Mahmood, T. H. (2021). Quantifying uncertainty in food security modeling. Agriculture, 11 (1), 33. https://doi.org/10.3390/agriculture11010033

Tiyou, A., Belachew, T., Alemseged, F., & Biadgilign, S. (2012). Food insecurity and associated factors among HIV-infected individuals receiving highly active antiretroviral therapy in Jimma zone Southwest Ethiopia. Nutrition Journal, 11 , 51. https://doi.org/10.1186/1475-2891-11-51

Tromans, S., Verity, C., Harrison, H., Pankhania, P., Booth, H., & Chakraborty, N. (2020). Patterns of use of secondary mental health services before and during COVID-19 lockdown: observational study. BJPsych Open, 6 (6), e117. https://doi.org/10.1192/bjo.2020.104

Tsai, A. C., Hung, K. J., & Weiser, S. D. (2012). Is Food insecurity associated with HIV Risk? Cross-sectional evidence from sexually active women in Brazil. PLoS Medicine, 9 (4), e1001203. https://doi.org/10.1371/journal.pmed.1001203

Utomo, D. S., Onggo, B. S., & Eldridge, S. (2018). Applications of agent-based modelling and simulation in the agri-food supply chains. European Journal of Operational Research, 269 (3), 794–805. https://doi.org/10.1016/j.ejor.2017.10.041

Uutela, A. J. C. o. i. p. (2010). Economic crisis and mental health, 23 (2), 127–130. https://doi.org/10.1097/YCO.0b013e328336657d

Wannaprasert, P., & Choenkwan, S. (2021). Impacts of the covid-19 pandemic on ginger production: Supply chains, labor, and food security in northeast thailand. Forest and Society, 5 (1), 120–135. https://doi.org/10.24259/fs.v5i1.11897

Whelan, J., Brown, A. D., Coller, L., Strugnell, C., Allender, S., Alston, L., Hayward, J., Brimblecombe, J., & Bell, C. (2021). The impact of COVID-19 on rural food supply and demand in Australia: Utilising group model building to identifyretailer and customer perspectives. Nutrients, 13 (2), 417. https://doi.org/10.3390/nu13020417

Workie, E., Mackolil, J., Nyika, J., & Ramadas, S. (2020). Deciphering the impact of COVID-19 pandemic on food security, agriculture, and livelihoods: A review of the evidence from developing countries. Current Research in Environmental Sustainability, 2 , 100014.

Xu, J., & Peng, Z. (2015). People at risk of influenza pandemics: The evolution of perception and behavior. PLoS ONE, 10 (12), e0144868. https://doi.org/10.1371/journal.pone.0144868

Yan, N., Ren, R., & Nkengurutse, G. (2020). China’s model to combat the COVID-19 epidemic: A public health emergency governance approach. Global Health Research and Policy, 5 , 1–4. https://doi.org/10.1186/s41256-020-00161-4

Yazdanpanah, M., Moghadam, M. T., Savari, M., Zobeidi, T., Sieber, S., & Löhr, K. (2021). The Impact of Livelihood Assets on the Food Security of Farmers in Southern Iran during the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 18 (10), 5310. https://doi.org/10.3390/ijerph18105310

Yee, K., Hui Peng, P., Tan, Y. P., Teo, I., Tong Tan, E. U., Paul, J., Mahalakshmi, R., Mothi Babu, R., Chow, W., & Tan, H. K. (2021). Stressors and coping strategies of migrant workers diagnosed with COVID-19 in Singapore: a qualitative study. BMJ Open, 11 (3), e045949. https://doi.org/10.1136/bmjopen-2020-045949

Yegbemey, R. N., Christelle, M. K. A., Olorunnipa, I., Benali, M., Afari-Sefa, V., & Schreinemachers, P. (2021). COVID-19 Effects and Resilience of Vegetable Farmers in North-Western Nigeria. Agronomy, 11 (9), 1808. https://doi.org/10.3390/agronomy11091808

Download references

Acknowledgements

The authors are grateful to Yusup Hidayat, head of the Doctoral Program in Agricultural Sciences, at Padjadjaran University, who always provided motivation and wise input during the development of this manuscript. The author also thanks Medy Rachmadi, the Dean of the Faculty of Agriculture, who helped the students and provided useful critical insights. The authors also thank Romi Zamhir Islami, Elsy Lediana, and Winy Fetia for providing enthusiasm and motivation for the development of this manuscript.

This study was supported and funded by Padjadjaran University.

Author information

Authors and affiliations.

Agricultural Sciences Doctoral Study Program, Faculty of Agriculture, Padjadjaran University, Sumedang, 45363, Indonesia

Yeni Budiawati

Center for Sustainable Food Studies, Padjadjaran University, Jl. Dipati Ukur 46, Bandung City, 40132, West Java, Indonesia

Ronnie S. Natawidjaja, Tomy Perdana & Maman H. Karmana

Center for Sustainable Road Freight, Heriot-Watt University, Edinburgh, EH14 4AS, UK

Dhanan Sarwo Utomo

You can also search for this author in PubMed   Google Scholar

Contributions

YB searched three databases, reviewed the literature, summarized the search findings, and compiled the manuscript. RSN provided input for displaying the tables and drafting the manuscript. DSU defined the scope of the research subjects, developed a search strategy by systematically compiling keywords, provided substantial input during the design review stage, critically reviewed the manuscript, and helped shape the final version of the manuscript. TP provided input regarding content that should be displayed in the manuscript and substantial input regarding the final finalization of the manuscript. MHK provided critical input for the overall writing of the systematics and review of the final manuscript. All authors have approved the final manuscript.

Corresponding author

Correspondence to Yeni Budiawati .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Budiawati, Y., Natawidjaja, R.S., Sarwo Utomo, D. et al. A systematic literature review on coping mechanisms and food security during pandemics. Food Sec. (2024). https://doi.org/10.1007/s12571-024-01445-0

Download citation

Received : 24 July 2023

Accepted : 05 March 2024

Published : 09 May 2024

DOI : https://doi.org/10.1007/s12571-024-01445-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Coping strategy
  • Food security

Advertisement

  • Find a journal
  • Publish with us
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Lau F, Kuziemsky C, editors. Handbook of eHealth Evaluation: An Evidence-based Approach [Internet]. Victoria (BC): University of Victoria; 2017 Feb 27.

Cover of Handbook of eHealth Evaluation: An Evidence-based Approach

Handbook of eHealth Evaluation: An Evidence-based Approach [Internet].

Chapter 9 methods for literature reviews.

Guy Paré and Spyros Kitsiou .

9.1. Introduction

Literature reviews play a critical role in scholarship because science remains, first and foremost, a cumulative endeavour ( vom Brocke et al., 2009 ). As in any academic discipline, rigorous knowledge syntheses are becoming indispensable in keeping up with an exponentially growing eHealth literature, assisting practitioners, academics, and graduate students in finding, evaluating, and synthesizing the contents of many empirical and conceptual papers. Among other methods, literature reviews are essential for: (a) identifying what has been written on a subject or topic; (b) determining the extent to which a specific research area reveals any interpretable trends or patterns; (c) aggregating empirical findings related to a narrow research question to support evidence-based practice; (d) generating new frameworks and theories; and (e) identifying topics or questions requiring more investigation ( Paré, Trudel, Jaana, & Kitsiou, 2015 ).

Literature reviews can take two major forms. The most prevalent one is the “literature review” or “background” section within a journal paper or a chapter in a graduate thesis. This section synthesizes the extant literature and usually identifies the gaps in knowledge that the empirical study addresses ( Sylvester, Tate, & Johnstone, 2013 ). It may also provide a theoretical foundation for the proposed study, substantiate the presence of the research problem, justify the research as one that contributes something new to the cumulated knowledge, or validate the methods and approaches for the proposed study ( Hart, 1998 ; Levy & Ellis, 2006 ).

The second form of literature review, which is the focus of this chapter, constitutes an original and valuable work of research in and of itself ( Paré et al., 2015 ). Rather than providing a base for a researcher’s own work, it creates a solid starting point for all members of the community interested in a particular area or topic ( Mulrow, 1987 ). The so-called “review article” is a journal-length paper which has an overarching purpose to synthesize the literature in a field, without collecting or analyzing any primary data ( Green, Johnson, & Adams, 2006 ).

When appropriately conducted, review articles represent powerful information sources for practitioners looking for state-of-the art evidence to guide their decision-making and work practices ( Paré et al., 2015 ). Further, high-quality reviews become frequently cited pieces of work which researchers seek out as a first clear outline of the literature when undertaking empirical studies ( Cooper, 1988 ; Rowe, 2014 ). Scholars who track and gauge the impact of articles have found that review papers are cited and downloaded more often than any other type of published article ( Cronin, Ryan, & Coughlan, 2008 ; Montori, Wilczynski, Morgan, Haynes, & Hedges, 2003 ; Patsopoulos, Analatos, & Ioannidis, 2005 ). The reason for their popularity may be the fact that reading the review enables one to have an overview, if not a detailed knowledge of the area in question, as well as references to the most useful primary sources ( Cronin et al., 2008 ). Although they are not easy to conduct, the commitment to complete a review article provides a tremendous service to one’s academic community ( Paré et al., 2015 ; Petticrew & Roberts, 2006 ). Most, if not all, peer-reviewed journals in the fields of medical informatics publish review articles of some type.

The main objectives of this chapter are fourfold: (a) to provide an overview of the major steps and activities involved in conducting a stand-alone literature review; (b) to describe and contrast the different types of review articles that can contribute to the eHealth knowledge base; (c) to illustrate each review type with one or two examples from the eHealth literature; and (d) to provide a series of recommendations for prospective authors of review articles in this domain.

9.2. Overview of the Literature Review Process and Steps

As explained in Templier and Paré (2015) , there are six generic steps involved in conducting a review article:

  • formulating the research question(s) and objective(s),
  • searching the extant literature,
  • screening for inclusion,
  • assessing the quality of primary studies,
  • extracting data, and
  • analyzing data.

Although these steps are presented here in sequential order, one must keep in mind that the review process can be iterative and that many activities can be initiated during the planning stage and later refined during subsequent phases ( Finfgeld-Connett & Johnson, 2013 ; Kitchenham & Charters, 2007 ).

Formulating the research question(s) and objective(s): As a first step, members of the review team must appropriately justify the need for the review itself ( Petticrew & Roberts, 2006 ), identify the review’s main objective(s) ( Okoli & Schabram, 2010 ), and define the concepts or variables at the heart of their synthesis ( Cooper & Hedges, 2009 ; Webster & Watson, 2002 ). Importantly, they also need to articulate the research question(s) they propose to investigate ( Kitchenham & Charters, 2007 ). In this regard, we concur with Jesson, Matheson, and Lacey (2011) that clearly articulated research questions are key ingredients that guide the entire review methodology; they underscore the type of information that is needed, inform the search for and selection of relevant literature, and guide or orient the subsequent analysis. Searching the extant literature: The next step consists of searching the literature and making decisions about the suitability of material to be considered in the review ( Cooper, 1988 ). There exist three main coverage strategies. First, exhaustive coverage means an effort is made to be as comprehensive as possible in order to ensure that all relevant studies, published and unpublished, are included in the review and, thus, conclusions are based on this all-inclusive knowledge base. The second type of coverage consists of presenting materials that are representative of most other works in a given field or area. Often authors who adopt this strategy will search for relevant articles in a small number of top-tier journals in a field ( Paré et al., 2015 ). In the third strategy, the review team concentrates on prior works that have been central or pivotal to a particular topic. This may include empirical studies or conceptual papers that initiated a line of investigation, changed how problems or questions were framed, introduced new methods or concepts, or engendered important debate ( Cooper, 1988 ). Screening for inclusion: The following step consists of evaluating the applicability of the material identified in the preceding step ( Levy & Ellis, 2006 ; vom Brocke et al., 2009 ). Once a group of potential studies has been identified, members of the review team must screen them to determine their relevance ( Petticrew & Roberts, 2006 ). A set of predetermined rules provides a basis for including or excluding certain studies. This exercise requires a significant investment on the part of researchers, who must ensure enhanced objectivity and avoid biases or mistakes. As discussed later in this chapter, for certain types of reviews there must be at least two independent reviewers involved in the screening process and a procedure to resolve disagreements must also be in place ( Liberati et al., 2009 ; Shea et al., 2009 ). Assessing the quality of primary studies: In addition to screening material for inclusion, members of the review team may need to assess the scientific quality of the selected studies, that is, appraise the rigour of the research design and methods. Such formal assessment, which is usually conducted independently by at least two coders, helps members of the review team refine which studies to include in the final sample, determine whether or not the differences in quality may affect their conclusions, or guide how they analyze the data and interpret the findings ( Petticrew & Roberts, 2006 ). Ascribing quality scores to each primary study or considering through domain-based evaluations which study components have or have not been designed and executed appropriately makes it possible to reflect on the extent to which the selected study addresses possible biases and maximizes validity ( Shea et al., 2009 ). Extracting data: The following step involves gathering or extracting applicable information from each primary study included in the sample and deciding what is relevant to the problem of interest ( Cooper & Hedges, 2009 ). Indeed, the type of data that should be recorded mainly depends on the initial research questions ( Okoli & Schabram, 2010 ). However, important information may also be gathered about how, when, where and by whom the primary study was conducted, the research design and methods, or qualitative/quantitative results ( Cooper & Hedges, 2009 ). Analyzing and synthesizing data : As a final step, members of the review team must collate, summarize, aggregate, organize, and compare the evidence extracted from the included studies. The extracted data must be presented in a meaningful way that suggests a new contribution to the extant literature ( Jesson et al., 2011 ). Webster and Watson (2002) warn researchers that literature reviews should be much more than lists of papers and should provide a coherent lens to make sense of extant knowledge on a given topic. There exist several methods and techniques for synthesizing quantitative (e.g., frequency analysis, meta-analysis) and qualitative (e.g., grounded theory, narrative analysis, meta-ethnography) evidence ( Dixon-Woods, Agarwal, Jones, Young, & Sutton, 2005 ; Thomas & Harden, 2008 ).

9.3. Types of Review Articles and Brief Illustrations

EHealth researchers have at their disposal a number of approaches and methods for making sense out of existing literature, all with the purpose of casting current research findings into historical contexts or explaining contradictions that might exist among a set of primary research studies conducted on a particular topic. Our classification scheme is largely inspired from Paré and colleagues’ (2015) typology. Below we present and illustrate those review types that we feel are central to the growth and development of the eHealth domain.

9.3.1. Narrative Reviews

The narrative review is the “traditional” way of reviewing the extant literature and is skewed towards a qualitative interpretation of prior knowledge ( Sylvester et al., 2013 ). Put simply, a narrative review attempts to summarize or synthesize what has been written on a particular topic but does not seek generalization or cumulative knowledge from what is reviewed ( Davies, 2000 ; Green et al., 2006 ). Instead, the review team often undertakes the task of accumulating and synthesizing the literature to demonstrate the value of a particular point of view ( Baumeister & Leary, 1997 ). As such, reviewers may selectively ignore or limit the attention paid to certain studies in order to make a point. In this rather unsystematic approach, the selection of information from primary articles is subjective, lacks explicit criteria for inclusion and can lead to biased interpretations or inferences ( Green et al., 2006 ). There are several narrative reviews in the particular eHealth domain, as in all fields, which follow such an unstructured approach ( Silva et al., 2015 ; Paul et al., 2015 ).

Despite these criticisms, this type of review can be very useful in gathering together a volume of literature in a specific subject area and synthesizing it. As mentioned above, its primary purpose is to provide the reader with a comprehensive background for understanding current knowledge and highlighting the significance of new research ( Cronin et al., 2008 ). Faculty like to use narrative reviews in the classroom because they are often more up to date than textbooks, provide a single source for students to reference, and expose students to peer-reviewed literature ( Green et al., 2006 ). For researchers, narrative reviews can inspire research ideas by identifying gaps or inconsistencies in a body of knowledge, thus helping researchers to determine research questions or formulate hypotheses. Importantly, narrative reviews can also be used as educational articles to bring practitioners up to date with certain topics of issues ( Green et al., 2006 ).

Recently, there have been several efforts to introduce more rigour in narrative reviews that will elucidate common pitfalls and bring changes into their publication standards. Information systems researchers, among others, have contributed to advancing knowledge on how to structure a “traditional” review. For instance, Levy and Ellis (2006) proposed a generic framework for conducting such reviews. Their model follows the systematic data processing approach comprised of three steps, namely: (a) literature search and screening; (b) data extraction and analysis; and (c) writing the literature review. They provide detailed and very helpful instructions on how to conduct each step of the review process. As another methodological contribution, vom Brocke et al. (2009) offered a series of guidelines for conducting literature reviews, with a particular focus on how to search and extract the relevant body of knowledge. Last, Bandara, Miskon, and Fielt (2011) proposed a structured, predefined and tool-supported method to identify primary studies within a feasible scope, extract relevant content from identified articles, synthesize and analyze the findings, and effectively write and present the results of the literature review. We highly recommend that prospective authors of narrative reviews consult these useful sources before embarking on their work.

Darlow and Wen (2015) provide a good example of a highly structured narrative review in the eHealth field. These authors synthesized published articles that describe the development process of mobile health ( m-health ) interventions for patients’ cancer care self-management. As in most narrative reviews, the scope of the research questions being investigated is broad: (a) how development of these systems are carried out; (b) which methods are used to investigate these systems; and (c) what conclusions can be drawn as a result of the development of these systems. To provide clear answers to these questions, a literature search was conducted on six electronic databases and Google Scholar . The search was performed using several terms and free text words, combining them in an appropriate manner. Four inclusion and three exclusion criteria were utilized during the screening process. Both authors independently reviewed each of the identified articles to determine eligibility and extract study information. A flow diagram shows the number of studies identified, screened, and included or excluded at each stage of study selection. In terms of contributions, this review provides a series of practical recommendations for m-health intervention development.

9.3.2. Descriptive or Mapping Reviews

The primary goal of a descriptive review is to determine the extent to which a body of knowledge in a particular research topic reveals any interpretable pattern or trend with respect to pre-existing propositions, theories, methodologies or findings ( King & He, 2005 ; Paré et al., 2015 ). In contrast with narrative reviews, descriptive reviews follow a systematic and transparent procedure, including searching, screening and classifying studies ( Petersen, Vakkalanka, & Kuzniarz, 2015 ). Indeed, structured search methods are used to form a representative sample of a larger group of published works ( Paré et al., 2015 ). Further, authors of descriptive reviews extract from each study certain characteristics of interest, such as publication year, research methods, data collection techniques, and direction or strength of research outcomes (e.g., positive, negative, or non-significant) in the form of frequency analysis to produce quantitative results ( Sylvester et al., 2013 ). In essence, each study included in a descriptive review is treated as the unit of analysis and the published literature as a whole provides a database from which the authors attempt to identify any interpretable trends or draw overall conclusions about the merits of existing conceptualizations, propositions, methods or findings ( Paré et al., 2015 ). In doing so, a descriptive review may claim that its findings represent the state of the art in a particular domain ( King & He, 2005 ).

In the fields of health sciences and medical informatics, reviews that focus on examining the range, nature and evolution of a topic area are described by Anderson, Allen, Peckham, and Goodwin (2008) as mapping reviews . Like descriptive reviews, the research questions are generic and usually relate to publication patterns and trends. There is no preconceived plan to systematically review all of the literature although this can be done. Instead, researchers often present studies that are representative of most works published in a particular area and they consider a specific time frame to be mapped.

An example of this approach in the eHealth domain is offered by DeShazo, Lavallie, and Wolf (2009). The purpose of this descriptive or mapping review was to characterize publication trends in the medical informatics literature over a 20-year period (1987 to 2006). To achieve this ambitious objective, the authors performed a bibliometric analysis of medical informatics citations indexed in medline using publication trends, journal frequencies, impact factors, Medical Subject Headings (MeSH) term frequencies, and characteristics of citations. Findings revealed that there were over 77,000 medical informatics articles published during the covered period in numerous journals and that the average annual growth rate was 12%. The MeSH term analysis also suggested a strong interdisciplinary trend. Finally, average impact scores increased over time with two notable growth periods. Overall, patterns in research outputs that seem to characterize the historic trends and current components of the field of medical informatics suggest it may be a maturing discipline (DeShazo et al., 2009).

9.3.3. Scoping Reviews

Scoping reviews attempt to provide an initial indication of the potential size and nature of the extant literature on an emergent topic (Arksey & O’Malley, 2005; Daudt, van Mossel, & Scott, 2013 ; Levac, Colquhoun, & O’Brien, 2010). A scoping review may be conducted to examine the extent, range and nature of research activities in a particular area, determine the value of undertaking a full systematic review (discussed next), or identify research gaps in the extant literature ( Paré et al., 2015 ). In line with their main objective, scoping reviews usually conclude with the presentation of a detailed research agenda for future works along with potential implications for both practice and research.

Unlike narrative and descriptive reviews, the whole point of scoping the field is to be as comprehensive as possible, including grey literature (Arksey & O’Malley, 2005). Inclusion and exclusion criteria must be established to help researchers eliminate studies that are not aligned with the research questions. It is also recommended that at least two independent coders review abstracts yielded from the search strategy and then the full articles for study selection ( Daudt et al., 2013 ). The synthesized evidence from content or thematic analysis is relatively easy to present in tabular form (Arksey & O’Malley, 2005; Thomas & Harden, 2008 ).

One of the most highly cited scoping reviews in the eHealth domain was published by Archer, Fevrier-Thomas, Lokker, McKibbon, and Straus (2011) . These authors reviewed the existing literature on personal health record ( phr ) systems including design, functionality, implementation, applications, outcomes, and benefits. Seven databases were searched from 1985 to March 2010. Several search terms relating to phr s were used during this process. Two authors independently screened titles and abstracts to determine inclusion status. A second screen of full-text articles, again by two independent members of the research team, ensured that the studies described phr s. All in all, 130 articles met the criteria and their data were extracted manually into a database. The authors concluded that although there is a large amount of survey, observational, cohort/panel, and anecdotal evidence of phr benefits and satisfaction for patients, more research is needed to evaluate the results of phr implementations. Their in-depth analysis of the literature signalled that there is little solid evidence from randomized controlled trials or other studies through the use of phr s. Hence, they suggested that more research is needed that addresses the current lack of understanding of optimal functionality and usability of these systems, and how they can play a beneficial role in supporting patient self-management ( Archer et al., 2011 ).

9.3.4. Forms of Aggregative Reviews

Healthcare providers, practitioners, and policy-makers are nowadays overwhelmed with large volumes of information, including research-based evidence from numerous clinical trials and evaluation studies, assessing the effectiveness of health information technologies and interventions ( Ammenwerth & de Keizer, 2004 ; Deshazo et al., 2009 ). It is unrealistic to expect that all these disparate actors will have the time, skills, and necessary resources to identify the available evidence in the area of their expertise and consider it when making decisions. Systematic reviews that involve the rigorous application of scientific strategies aimed at limiting subjectivity and bias (i.e., systematic and random errors) can respond to this challenge.

Systematic reviews attempt to aggregate, appraise, and synthesize in a single source all empirical evidence that meet a set of previously specified eligibility criteria in order to answer a clearly formulated and often narrow research question on a particular topic of interest to support evidence-based practice ( Liberati et al., 2009 ). They adhere closely to explicit scientific principles ( Liberati et al., 2009 ) and rigorous methodological guidelines (Higgins & Green, 2008) aimed at reducing random and systematic errors that can lead to deviations from the truth in results or inferences. The use of explicit methods allows systematic reviews to aggregate a large body of research evidence, assess whether effects or relationships are in the same direction and of the same general magnitude, explain possible inconsistencies between study results, and determine the strength of the overall evidence for every outcome of interest based on the quality of included studies and the general consistency among them ( Cook, Mulrow, & Haynes, 1997 ). The main procedures of a systematic review involve:

  • Formulating a review question and developing a search strategy based on explicit inclusion criteria for the identification of eligible studies (usually described in the context of a detailed review protocol).
  • Searching for eligible studies using multiple databases and information sources, including grey literature sources, without any language restrictions.
  • Selecting studies, extracting data, and assessing risk of bias in a duplicate manner using two independent reviewers to avoid random or systematic errors in the process.
  • Analyzing data using quantitative or qualitative methods.
  • Presenting results in summary of findings tables.
  • Interpreting results and drawing conclusions.

Many systematic reviews, but not all, use statistical methods to combine the results of independent studies into a single quantitative estimate or summary effect size. Known as meta-analyses , these reviews use specific data extraction and statistical techniques (e.g., network, frequentist, or Bayesian meta-analyses) to calculate from each study by outcome of interest an effect size along with a confidence interval that reflects the degree of uncertainty behind the point estimate of effect ( Borenstein, Hedges, Higgins, & Rothstein, 2009 ; Deeks, Higgins, & Altman, 2008 ). Subsequently, they use fixed or random-effects analysis models to combine the results of the included studies, assess statistical heterogeneity, and calculate a weighted average of the effect estimates from the different studies, taking into account their sample sizes. The summary effect size is a value that reflects the average magnitude of the intervention effect for a particular outcome of interest or, more generally, the strength of a relationship between two variables across all studies included in the systematic review. By statistically combining data from multiple studies, meta-analyses can create more precise and reliable estimates of intervention effects than those derived from individual studies alone, when these are examined independently as discrete sources of information.

The review by Gurol-Urganci, de Jongh, Vodopivec-Jamsek, Atun, and Car (2013) on the effects of mobile phone messaging reminders for attendance at healthcare appointments is an illustrative example of a high-quality systematic review with meta-analysis. Missed appointments are a major cause of inefficiency in healthcare delivery with substantial monetary costs to health systems. These authors sought to assess whether mobile phone-based appointment reminders delivered through Short Message Service ( sms ) or Multimedia Messaging Service ( mms ) are effective in improving rates of patient attendance and reducing overall costs. To this end, they conducted a comprehensive search on multiple databases using highly sensitive search strategies without language or publication-type restrictions to identify all rct s that are eligible for inclusion. In order to minimize the risk of omitting eligible studies not captured by the original search, they supplemented all electronic searches with manual screening of trial registers and references contained in the included studies. Study selection, data extraction, and risk of bias assessments were performed inde­­pen­dently by two coders using standardized methods to ensure consistency and to eliminate potential errors. Findings from eight rct s involving 6,615 participants were pooled into meta-analyses to calculate the magnitude of effects that mobile text message reminders have on the rate of attendance at healthcare appointments compared to no reminders and phone call reminders.

Meta-analyses are regarded as powerful tools for deriving meaningful conclusions. However, there are situations in which it is neither reasonable nor appropriate to pool studies together using meta-analytic methods simply because there is extensive clinical heterogeneity between the included studies or variation in measurement tools, comparisons, or outcomes of interest. In these cases, systematic reviews can use qualitative synthesis methods such as vote counting, content analysis, classification schemes and tabulations, as an alternative approach to narratively synthesize the results of the independent studies included in the review. This form of review is known as qualitative systematic review.

A rigorous example of one such review in the eHealth domain is presented by Mickan, Atherton, Roberts, Heneghan, and Tilson (2014) on the use of handheld computers by healthcare professionals and their impact on access to information and clinical decision-making. In line with the methodological guide­lines for systematic reviews, these authors: (a) developed and registered with prospero ( www.crd.york.ac.uk/ prospero / ) an a priori review protocol; (b) conducted comprehensive searches for eligible studies using multiple databases and other supplementary strategies (e.g., forward searches); and (c) subsequently carried out study selection, data extraction, and risk of bias assessments in a duplicate manner to eliminate potential errors in the review process. Heterogeneity between the included studies in terms of reported outcomes and measures precluded the use of meta-analytic methods. To this end, the authors resorted to using narrative analysis and synthesis to describe the effectiveness of handheld computers on accessing information for clinical knowledge, adherence to safety and clinical quality guidelines, and diagnostic decision-making.

In recent years, the number of systematic reviews in the field of health informatics has increased considerably. Systematic reviews with discordant findings can cause great confusion and make it difficult for decision-makers to interpret the review-level evidence ( Moher, 2013 ). Therefore, there is a growing need for appraisal and synthesis of prior systematic reviews to ensure that decision-making is constantly informed by the best available accumulated evidence. Umbrella reviews , also known as overviews of systematic reviews, are tertiary types of evidence synthesis that aim to accomplish this; that is, they aim to compare and contrast findings from multiple systematic reviews and meta-analyses ( Becker & Oxman, 2008 ). Umbrella reviews generally adhere to the same principles and rigorous methodological guidelines used in systematic reviews. However, the unit of analysis in umbrella reviews is the systematic review rather than the primary study ( Becker & Oxman, 2008 ). Unlike systematic reviews that have a narrow focus of inquiry, umbrella reviews focus on broader research topics for which there are several potential interventions ( Smith, Devane, Begley, & Clarke, 2011 ). A recent umbrella review on the effects of home telemonitoring interventions for patients with heart failure critically appraised, compared, and synthesized evidence from 15 systematic reviews to investigate which types of home telemonitoring technologies and forms of interventions are more effective in reducing mortality and hospital admissions ( Kitsiou, Paré, & Jaana, 2015 ).

9.3.5. Realist Reviews

Realist reviews are theory-driven interpretative reviews developed to inform, enhance, or supplement conventional systematic reviews by making sense of heterogeneous evidence about complex interventions applied in diverse contexts in a way that informs policy decision-making ( Greenhalgh, Wong, Westhorp, & Pawson, 2011 ). They originated from criticisms of positivist systematic reviews which centre on their “simplistic” underlying assumptions ( Oates, 2011 ). As explained above, systematic reviews seek to identify causation. Such logic is appropriate for fields like medicine and education where findings of randomized controlled trials can be aggregated to see whether a new treatment or intervention does improve outcomes. However, many argue that it is not possible to establish such direct causal links between interventions and outcomes in fields such as social policy, management, and information systems where for any intervention there is unlikely to be a regular or consistent outcome ( Oates, 2011 ; Pawson, 2006 ; Rousseau, Manning, & Denyer, 2008 ).

To circumvent these limitations, Pawson, Greenhalgh, Harvey, and Walshe (2005) have proposed a new approach for synthesizing knowledge that seeks to unpack the mechanism of how “complex interventions” work in particular contexts. The basic research question — what works? — which is usually associated with systematic reviews changes to: what is it about this intervention that works, for whom, in what circumstances, in what respects and why? Realist reviews have no particular preference for either quantitative or qualitative evidence. As a theory-building approach, a realist review usually starts by articulating likely underlying mechanisms and then scrutinizes available evidence to find out whether and where these mechanisms are applicable ( Shepperd et al., 2009 ). Primary studies found in the extant literature are viewed as case studies which can test and modify the initial theories ( Rousseau et al., 2008 ).

The main objective pursued in the realist review conducted by Otte-Trojel, de Bont, Rundall, and van de Klundert (2014) was to examine how patient portals contribute to health service delivery and patient outcomes. The specific goals were to investigate how outcomes are produced and, most importantly, how variations in outcomes can be explained. The research team started with an exploratory review of background documents and research studies to identify ways in which patient portals may contribute to health service delivery and patient outcomes. The authors identified six main ways which represent “educated guesses” to be tested against the data in the evaluation studies. These studies were identified through a formal and systematic search in four databases between 2003 and 2013. Two members of the research team selected the articles using a pre-established list of inclusion and exclusion criteria and following a two-step procedure. The authors then extracted data from the selected articles and created several tables, one for each outcome category. They organized information to bring forward those mechanisms where patient portals contribute to outcomes and the variation in outcomes across different contexts.

9.3.6. Critical Reviews

Lastly, critical reviews aim to provide a critical evaluation and interpretive analysis of existing literature on a particular topic of interest to reveal strengths, weaknesses, contradictions, controversies, inconsistencies, and/or other important issues with respect to theories, hypotheses, research methods or results ( Baumeister & Leary, 1997 ; Kirkevold, 1997 ). Unlike other review types, critical reviews attempt to take a reflective account of the research that has been done in a particular area of interest, and assess its credibility by using appraisal instruments or critical interpretive methods. In this way, critical reviews attempt to constructively inform other scholars about the weaknesses of prior research and strengthen knowledge development by giving focus and direction to studies for further improvement ( Kirkevold, 1997 ).

Kitsiou, Paré, and Jaana (2013) provide an example of a critical review that assessed the methodological quality of prior systematic reviews of home telemonitoring studies for chronic patients. The authors conducted a comprehensive search on multiple databases to identify eligible reviews and subsequently used a validated instrument to conduct an in-depth quality appraisal. Results indicate that the majority of systematic reviews in this particular area suffer from important methodological flaws and biases that impair their internal validity and limit their usefulness for clinical and decision-making purposes. To this end, they provide a number of recommendations to strengthen knowledge development towards improving the design and execution of future reviews on home telemonitoring.

9.4. Summary

Table 9.1 outlines the main types of literature reviews that were described in the previous sub-sections and summarizes the main characteristics that distinguish one review type from another. It also includes key references to methodological guidelines and useful sources that can be used by eHealth scholars and researchers for planning and developing reviews.

Table 9.1. Typology of Literature Reviews (adapted from Paré et al., 2015).

Typology of Literature Reviews (adapted from Paré et al., 2015).

As shown in Table 9.1 , each review type addresses different kinds of research questions or objectives, which subsequently define and dictate the methods and approaches that need to be used to achieve the overarching goal(s) of the review. For example, in the case of narrative reviews, there is greater flexibility in searching and synthesizing articles ( Green et al., 2006 ). Researchers are often relatively free to use a diversity of approaches to search, identify, and select relevant scientific articles, describe their operational characteristics, present how the individual studies fit together, and formulate conclusions. On the other hand, systematic reviews are characterized by their high level of systematicity, rigour, and use of explicit methods, based on an “a priori” review plan that aims to minimize bias in the analysis and synthesis process (Higgins & Green, 2008). Some reviews are exploratory in nature (e.g., scoping/mapping reviews), whereas others may be conducted to discover patterns (e.g., descriptive reviews) or involve a synthesis approach that may include the critical analysis of prior research ( Paré et al., 2015 ). Hence, in order to select the most appropriate type of review, it is critical to know before embarking on a review project, why the research synthesis is conducted and what type of methods are best aligned with the pursued goals.

9.5. Concluding Remarks

In light of the increased use of evidence-based practice and research generating stronger evidence ( Grady et al., 2011 ; Lyden et al., 2013 ), review articles have become essential tools for summarizing, synthesizing, integrating or critically appraising prior knowledge in the eHealth field. As mentioned earlier, when rigorously conducted review articles represent powerful information sources for eHealth scholars and practitioners looking for state-of-the-art evidence. The typology of literature reviews we used herein will allow eHealth researchers, graduate students and practitioners to gain a better understanding of the similarities and differences between review types.

We must stress that this classification scheme does not privilege any specific type of review as being of higher quality than another ( Paré et al., 2015 ). As explained above, each type of review has its own strengths and limitations. Having said that, we realize that the methodological rigour of any review — be it qualitative, quantitative or mixed — is a critical aspect that should be considered seriously by prospective authors. In the present context, the notion of rigour refers to the reliability and validity of the review process described in section 9.2. For one thing, reliability is related to the reproducibility of the review process and steps, which is facilitated by a comprehensive documentation of the literature search process, extraction, coding and analysis performed in the review. Whether the search is comprehensive or not, whether it involves a methodical approach for data extraction and synthesis or not, it is important that the review documents in an explicit and transparent manner the steps and approach that were used in the process of its development. Next, validity characterizes the degree to which the review process was conducted appropriately. It goes beyond documentation and reflects decisions related to the selection of the sources, the search terms used, the period of time covered, the articles selected in the search, and the application of backward and forward searches ( vom Brocke et al., 2009 ). In short, the rigour of any review article is reflected by the explicitness of its methods (i.e., transparency) and the soundness of the approach used. We refer those interested in the concepts of rigour and quality to the work of Templier and Paré (2015) which offers a detailed set of methodological guidelines for conducting and evaluating various types of review articles.

To conclude, our main objective in this chapter was to demystify the various types of literature reviews that are central to the continuous development of the eHealth field. It is our hope that our descriptive account will serve as a valuable source for those conducting, evaluating or using reviews in this important and growing domain.

  • Ammenwerth E., de Keizer N. An inventory of evaluation studies of information technology in health care. Trends in evaluation research, 1982-2002. International Journal of Medical Informatics. 2004; 44 (1):44–56. [ PubMed : 15778794 ]
  • Anderson S., Allen P., Peckham S., Goodwin N. Asking the right questions: scoping studies in the commissioning of research on the organisation and delivery of health services. Health Research Policy and Systems. 2008; 6 (7):1–12. [ PMC free article : PMC2500008 ] [ PubMed : 18613961 ] [ CrossRef ]
  • Archer N., Fevrier-Thomas U., Lokker C., McKibbon K. A., Straus S.E. Personal health records: a scoping review. Journal of American Medical Informatics Association. 2011; 18 (4):515–522. [ PMC free article : PMC3128401 ] [ PubMed : 21672914 ]
  • Arksey H., O’Malley L. Scoping studies: towards a methodological framework. International Journal of Social Research Methodology. 2005; 8 (1):19–32.
  • A systematic, tool-supported method for conducting literature reviews in information systems. Paper presented at the Proceedings of the 19th European Conference on Information Systems ( ecis 2011); June 9 to 11; Helsinki, Finland. 2011.
  • Baumeister R. F., Leary M.R. Writing narrative literature reviews. Review of General Psychology. 1997; 1 (3):311–320.
  • Becker L. A., Oxman A.D. In: Cochrane handbook for systematic reviews of interventions. Higgins J. P. T., Green S., editors. Hoboken, nj : John Wiley & Sons, Ltd; 2008. Overviews of reviews; pp. 607–631.
  • Borenstein M., Hedges L., Higgins J., Rothstein H. Introduction to meta-analysis. Hoboken, nj : John Wiley & Sons Inc; 2009.
  • Cook D. J., Mulrow C. D., Haynes B. Systematic reviews: Synthesis of best evidence for clinical decisions. Annals of Internal Medicine. 1997; 126 (5):376–380. [ PubMed : 9054282 ]
  • Cooper H., Hedges L.V. In: The handbook of research synthesis and meta-analysis. 2nd ed. Cooper H., Hedges L. V., Valentine J. C., editors. New York: Russell Sage Foundation; 2009. Research synthesis as a scientific process; pp. 3–17.
  • Cooper H. M. Organizing knowledge syntheses: A taxonomy of literature reviews. Knowledge in Society. 1988; 1 (1):104–126.
  • Cronin P., Ryan F., Coughlan M. Undertaking a literature review: a step-by-step approach. British Journal of Nursing. 2008; 17 (1):38–43. [ PubMed : 18399395 ]
  • Darlow S., Wen K.Y. Development testing of mobile health interventions for cancer patient self-management: A review. Health Informatics Journal. 2015 (online before print). [ PubMed : 25916831 ] [ CrossRef ]
  • Daudt H. M., van Mossel C., Scott S.J. Enhancing the scoping study methodology: a large, inter-professional team’s experience with Arksey and O’Malley’s framework. bmc Medical Research Methodology. 2013; 13 :48. [ PMC free article : PMC3614526 ] [ PubMed : 23522333 ] [ CrossRef ]
  • Davies P. The relevance of systematic reviews to educational policy and practice. Oxford Review of Education. 2000; 26 (3-4):365–378.
  • Deeks J. J., Higgins J. P. T., Altman D.G. In: Cochrane handbook for systematic reviews of interventions. Higgins J. P. T., Green S., editors. Hoboken, nj : John Wiley & Sons, Ltd; 2008. Analysing data and undertaking meta-analyses; pp. 243–296.
  • Deshazo J. P., Lavallie D. L., Wolf F.M. Publication trends in the medical informatics literature: 20 years of “Medical Informatics” in mesh . bmc Medical Informatics and Decision Making. 2009; 9 :7. [ PMC free article : PMC2652453 ] [ PubMed : 19159472 ] [ CrossRef ]
  • Dixon-Woods M., Agarwal S., Jones D., Young B., Sutton A. Synthesising qualitative and quantitative evidence: a review of possible methods. Journal of Health Services Research and Policy. 2005; 10 (1):45–53. [ PubMed : 15667704 ]
  • Finfgeld-Connett D., Johnson E.D. Literature search strategies for conducting knowledge-building and theory-generating qualitative systematic reviews. Journal of Advanced Nursing. 2013; 69 (1):194–204. [ PMC free article : PMC3424349 ] [ PubMed : 22591030 ]
  • Grady B., Myers K. M., Nelson E. L., Belz N., Bennett L., Carnahan L. … Guidelines Working Group. Evidence-based practice for telemental health. Telemedicine Journal and E Health. 2011; 17 (2):131–148. [ PubMed : 21385026 ]
  • Green B. N., Johnson C. D., Adams A. Writing narrative literature reviews for peer-reviewed journals: secrets of the trade. Journal of Chiropractic Medicine. 2006; 5 (3):101–117. [ PMC free article : PMC2647067 ] [ PubMed : 19674681 ]
  • Greenhalgh T., Wong G., Westhorp G., Pawson R. Protocol–realist and meta-narrative evidence synthesis: evolving standards ( rameses ). bmc Medical Research Methodology. 2011; 11 :115. [ PMC free article : PMC3173389 ] [ PubMed : 21843376 ]
  • Gurol-Urganci I., de Jongh T., Vodopivec-Jamsek V., Atun R., Car J. Mobile phone messaging reminders for attendance at healthcare appointments. Cochrane Database System Review. 2013; 12 cd 007458. [ PMC free article : PMC6485985 ] [ PubMed : 24310741 ] [ CrossRef ]
  • Hart C. Doing a literature review: Releasing the social science research imagination. London: SAGE Publications; 1998.
  • Higgins J. P. T., Green S., editors. Cochrane handbook for systematic reviews of interventions: Cochrane book series. Hoboken, nj : Wiley-Blackwell; 2008.
  • Jesson J., Matheson L., Lacey F.M. Doing your literature review: traditional and systematic techniques. Los Angeles & London: SAGE Publications; 2011.
  • King W. R., He J. Understanding the role and methods of meta-analysis in IS research. Communications of the Association for Information Systems. 2005; 16 :1.
  • Kirkevold M. Integrative nursing research — an important strategy to further the development of nursing science and nursing practice. Journal of Advanced Nursing. 1997; 25 (5):977–984. [ PubMed : 9147203 ]
  • Kitchenham B., Charters S. ebse Technical Report Version 2.3. Keele & Durham. uk : Keele University & University of Durham; 2007. Guidelines for performing systematic literature reviews in software engineering.
  • Kitsiou S., Paré G., Jaana M. Systematic reviews and meta-analyses of home telemonitoring interventions for patients with chronic diseases: a critical assessment of their methodological quality. Journal of Medical Internet Research. 2013; 15 (7):e150. [ PMC free article : PMC3785977 ] [ PubMed : 23880072 ]
  • Kitsiou S., Paré G., Jaana M. Effects of home telemonitoring interventions on patients with chronic heart failure: an overview of systematic reviews. Journal of Medical Internet Research. 2015; 17 (3):e63. [ PMC free article : PMC4376138 ] [ PubMed : 25768664 ]
  • Levac D., Colquhoun H., O’Brien K. K. Scoping studies: advancing the methodology. Implementation Science. 2010; 5 (1):69. [ PMC free article : PMC2954944 ] [ PubMed : 20854677 ]
  • Levy Y., Ellis T.J. A systems approach to conduct an effective literature review in support of information systems research. Informing Science. 2006; 9 :181–211.
  • Liberati A., Altman D. G., Tetzlaff J., Mulrow C., Gøtzsche P. C., Ioannidis J. P. A. et al. Moher D. The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Annals of Internal Medicine. 2009; 151 (4):W-65. [ PubMed : 19622512 ]
  • Lyden J. R., Zickmund S. L., Bhargava T. D., Bryce C. L., Conroy M. B., Fischer G. S. et al. McTigue K. M. Implementing health information technology in a patient-centered manner: Patient experiences with an online evidence-based lifestyle intervention. Journal for Healthcare Quality. 2013; 35 (5):47–57. [ PubMed : 24004039 ]
  • Mickan S., Atherton H., Roberts N. W., Heneghan C., Tilson J.K. Use of handheld computers in clinical practice: a systematic review. bmc Medical Informatics and Decision Making. 2014; 14 :56. [ PMC free article : PMC4099138 ] [ PubMed : 24998515 ]
  • Moher D. The problem of duplicate systematic reviews. British Medical Journal. 2013; 347 (5040) [ PubMed : 23945367 ] [ CrossRef ]
  • Montori V. M., Wilczynski N. L., Morgan D., Haynes R. B., Hedges T. Systematic reviews: a cross-sectional study of location and citation counts. bmc Medicine. 2003; 1 :2. [ PMC free article : PMC281591 ] [ PubMed : 14633274 ]
  • Mulrow C. D. The medical review article: state of the science. Annals of Internal Medicine. 1987; 106 (3):485–488. [ PubMed : 3813259 ] [ CrossRef ]
  • Evidence-based information systems: A decade later. Proceedings of the European Conference on Information Systems ; 2011. Retrieved from http://aisel ​.aisnet.org/cgi/viewcontent ​.cgi?article ​=1221&context ​=ecis2011 .
  • Okoli C., Schabram K. A guide to conducting a systematic literature review of information systems research. ssrn Electronic Journal. 2010
  • Otte-Trojel T., de Bont A., Rundall T. G., van de Klundert J. How outcomes are achieved through patient portals: a realist review. Journal of American Medical Informatics Association. 2014; 21 (4):751–757. [ PMC free article : PMC4078283 ] [ PubMed : 24503882 ]
  • Paré G., Trudel M.-C., Jaana M., Kitsiou S. Synthesizing information systems knowledge: A typology of literature reviews. Information & Management. 2015; 52 (2):183–199.
  • Patsopoulos N. A., Analatos A. A., Ioannidis J.P. A. Relative citation impact of various study designs in the health sciences. Journal of the American Medical Association. 2005; 293 (19):2362–2366. [ PubMed : 15900006 ]
  • Paul M. M., Greene C. M., Newton-Dame R., Thorpe L. E., Perlman S. E., McVeigh K. H., Gourevitch M.N. The state of population health surveillance using electronic health records: A narrative review. Population Health Management. 2015; 18 (3):209–216. [ PubMed : 25608033 ]
  • Pawson R. Evidence-based policy: a realist perspective. London: SAGE Publications; 2006.
  • Pawson R., Greenhalgh T., Harvey G., Walshe K. Realist review—a new method of systematic review designed for complex policy interventions. Journal of Health Services Research & Policy. 2005; 10 (Suppl 1):21–34. [ PubMed : 16053581 ]
  • Petersen K., Vakkalanka S., Kuzniarz L. Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology. 2015; 64 :1–18.
  • Petticrew M., Roberts H. Systematic reviews in the social sciences: A practical guide. Malden, ma : Blackwell Publishing Co; 2006.
  • Rousseau D. M., Manning J., Denyer D. Evidence in management and organizational science: Assembling the field’s full weight of scientific knowledge through syntheses. The Academy of Management Annals. 2008; 2 (1):475–515.
  • Rowe F. What literature review is not: diversity, boundaries and recommendations. European Journal of Information Systems. 2014; 23 (3):241–255.
  • Shea B. J., Hamel C., Wells G. A., Bouter L. M., Kristjansson E., Grimshaw J. et al. Boers M. amstar is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. Journal of Clinical Epidemiology. 2009; 62 (10):1013–1020. [ PubMed : 19230606 ]
  • Shepperd S., Lewin S., Straus S., Clarke M., Eccles M. P., Fitzpatrick R. et al. Sheikh A. Can we systematically review studies that evaluate complex interventions? PLoS Medicine. 2009; 6 (8):e1000086. [ PMC free article : PMC2717209 ] [ PubMed : 19668360 ]
  • Silva B. M., Rodrigues J. J., de la Torre Díez I., López-Coronado M., Saleem K. Mobile-health: A review of current state in 2015. Journal of Biomedical Informatics. 2015; 56 :265–272. [ PubMed : 26071682 ]
  • Smith V., Devane D., Begley C., Clarke M. Methodology in conducting a systematic review of systematic reviews of healthcare interventions. bmc Medical Research Methodology. 2011; 11 (1):15. [ PMC free article : PMC3039637 ] [ PubMed : 21291558 ]
  • Sylvester A., Tate M., Johnstone D. Beyond synthesis: re-presenting heterogeneous research literature. Behaviour & Information Technology. 2013; 32 (12):1199–1215.
  • Templier M., Paré G. A framework for guiding and evaluating literature reviews. Communications of the Association for Information Systems. 2015; 37 (6):112–137.
  • Thomas J., Harden A. Methods for the thematic synthesis of qualitative research in systematic reviews. bmc Medical Research Methodology. 2008; 8 (1):45. [ PMC free article : PMC2478656 ] [ PubMed : 18616818 ]
  • Reconstructing the giant: on the importance of rigour in documenting the literature search process. Paper presented at the Proceedings of the 17th European Conference on Information Systems ( ecis 2009); Verona, Italy. 2009.
  • Webster J., Watson R.T. Analyzing the past to prepare for the future: Writing a literature review. Management Information Systems Quarterly. 2002; 26 (2):11.
  • Whitlock E. P., Lin J. S., Chou R., Shekelle P., Robinson K.A. Using existing systematic reviews in complex systematic reviews. Annals of Internal Medicine. 2008; 148 (10):776–782. [ PubMed : 18490690 ]

This publication is licensed under a Creative Commons License, Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0): see https://creativecommons.org/licenses/by-nc/4.0/

  • Cite this Page Paré G, Kitsiou S. Chapter 9 Methods for Literature Reviews. In: Lau F, Kuziemsky C, editors. Handbook of eHealth Evaluation: An Evidence-based Approach [Internet]. Victoria (BC): University of Victoria; 2017 Feb 27.
  • PDF version of this title (4.5M)
  • Disable Glossary Links

In this Page

  • Introduction
  • Overview of the Literature Review Process and Steps
  • Types of Review Articles and Brief Illustrations
  • Concluding Remarks

Related information

  • PMC PubMed Central citations
  • PubMed Links to PubMed

Recent Activity

  • Chapter 9 Methods for Literature Reviews - Handbook of eHealth Evaluation: An Ev... Chapter 9 Methods for Literature Reviews - Handbook of eHealth Evaluation: An Evidence-based Approach

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

  • Open access
  • Published: 09 May 2024

Machine learning models for abstract screening task - A systematic literature review application for health economics and outcome research

  • Jingcheng Du 1 ,
  • Ekin Soysal 1 , 3 ,
  • Dong Wang 2 ,
  • Long He 1 ,
  • Bin Lin 1 ,
  • Jingqi Wang 1 ,
  • Frank J. Manion 1 ,
  • Yeran Li 2 ,
  • Elise Wu 2 &
  • Lixia Yao 2  

BMC Medical Research Methodology volume  24 , Article number:  108 ( 2024 ) Cite this article

Metrics details

Systematic literature reviews (SLRs) are critical for life-science research. However, the manual selection and retrieval of relevant publications can be a time-consuming process. This study aims to (1) develop two disease-specific annotated corpora, one for human papillomavirus (HPV) associated diseases and the other for pneumococcal-associated pediatric diseases (PAPD), and (2) optimize machine- and deep-learning models to facilitate automation of the SLR abstract screening.

This study constructed two disease-specific SLR screening corpora for HPV and PAPD, which contained citation metadata and corresponding abstracts. Performance was evaluated using precision, recall, accuracy, and F1-score of multiple combinations of machine- and deep-learning algorithms and features such as keywords and MeSH terms.

Results and conclusions

The HPV corpus contained 1697 entries, with 538 relevant and 1159 irrelevant articles. The PAPD corpus included 2865 entries, with 711 relevant and 2154 irrelevant articles. Adding additional features beyond title and abstract improved the performance (measured in Accuracy) of machine learning models by 3% for HPV corpus and 2% for PAPD corpus. Transformer-based deep learning models that consistently outperformed conventional machine learning algorithms, highlighting the strength of domain-specific pre-trained language models for SLR abstract screening. This study provides a foundation for the development of more intelligent SLR systems.

Peer Review reports

Introduction

Systematic literature reviews (SLRs) are an essential tool in many areas of health sciences, enabling researchers to understand the current knowledge around a topic and identify future research and development directions. In the field of health economics and outcomes research (HEOR), SLRs play a crucial role in synthesizing evidence around unmet medical needs, comparing treatment options, and preparing the design and execution of future real-world evidence studies. SLRs provide a comprehensive and transparent analysis of available evidence, allowing researchers to make informed decisions and improve patient outcomes.

Conducting a SLR involves synthesizing high-quality evidence from biomedical literature in a transparent and reproducible manner, and seeks to include all available evidence on a given research question, and provides some assessment regarding quality of the evidence [ 1 , 2 ]. To conduct an SLR one or more bibliographic databases are queried based on a given research question and a corresponding set of inclusion and exclusion criteria, resulting in the selection of a relevant set of abstracts. The abstracts are reviewed, further refining the set of articles that are used to address the research question. Finally, appropriate data is systematically extracted from the articles and summarized [ 1 , 3 ].

The current approach to conducting a SLR is through manual review, with data collection, and summary done by domain experts against pre-specified eligibility criteria. This is time-consuming, labor-intensive, expensive, and non-scalable given the current more-than linear growth of the biomedical literature [ 4 ]. Michelson and Reuter estimate that each SLR costs approximately $141,194.80 and that on average major pharmaceutical companies conduct 23.36 SLRs, and major academic centers 177.32 SLRs per year, though the cost may vary based on the scope of different reviews [ 4 ]. Clearly automated methods are needed, both from a cost/time savings perspective, and for the ability to effectively scan and identify increasing amounts of literature, thereby allowing the domain experts to spend more time analyzing the data and gleaning the insights.

One major task of SLR project that involves large amounts of manual effort, is the abstract screening task. For this task, selection criteria are developed and the citation metadata and abstract for articles tentatively meeting these criteria are retrieved from one or more bibliographic databases (e.g., PubMed). The abstracts are then examined in more detail to determine if they are relevant to the research question(s) and should be included or excluded from further consideration. Consequently, the task of determining whether articles are relevant or not based on their titles, abstracts and metadata can be treated as a binary classification task, which can be addressed by natural language processing (NLP). NLP involves recognizing entities and relationships expressed in text and leverages machine-learning (ML) and deep-learning (DL) algorithms together with computational semantics to extract information. The past decade has witnessed significant advances in these areas for biomedical literature mining. A comprehensive review on how NLP techniques in particular are being applied for automatic mining and knowledge extraction from biomedical literature can be found in Zhao et al. [ 5 ].

Materials and methods

The aims of this study were to: (1) identify and develop two disease-specific corpora, one for human papillomavirus (HPV) associated diseases and the other for pneumococcal-associated pediatric diseases suitable for training the ML and DL models underlying the necessary NLP functions; (2) investigate and optimize the performance of the ML and DL models using different sets of features (e.g., keywords, Medical Subject Heading (MeSH) terms [ 6 ]) to facilitate automation of the abstract screening tasks necessary to construct a SLR. Note that these screening corpora can be used as training data to build different NLP models. We intend to freely share these two corpora with the entire scientific community so they can serve as benchmark corpora for future NLP model development in this area.

SLR corpora preparation

Two completed disease-specific SLR studies by Merck & Co., Inc., Rahway, NJ, USA were used as the basis to construct corpora for abstract-level screening. The two SLR studies were both relevant to health economics and outcome research, including one for human papillomavirus (HPV) associated diseases (referred to as the HPV corpus), and one for pneumococcal-associated pediatric diseases (which we refer to as the PAPD corpus). Both of the original SLR studies contained literature from PubMed/MEDLINE and EMBASE. Since we intended for the screening corpora to be released to the community, we only kept citations found from PubMed/MEDLINE in the finalized corpora. Because the original SLR studies did not contain the PubMed ID (PMID) for each article, we matched each article’s citation information (if available) against PubMed and then collected meta-data such as authors, journals, keywords, MeSH terms, publication types, etc., using PubMed Entrez Programming Utilities (E-utilities) Application Programming Interface (API). The detailed description of the two corpora can be seen in Table  1 . Both of the resulting corpora are publicly available at [ https://github.com/Merck/NLP-SLR-corpora ].

Machine learning algorithms

Although deep learning algorithms have demonstrated superior performance on many NLP tasks, conventional machine learning algorithms have certain advantages, such as low computation costs and faster training and prediction speed.

We evaluated four traditional ML-based document classification algorithms, XGBoost [ 7 ], Support Vector Machines (SVM) [ 8 ], Logistic regression (LR) [ 9 ], and Random Forest [ 10 ] on the binary inclusion/exclusion classification task for abstract screening. Salient characteristics of these models are as follows:

XGBoost: Short for “eXtreme Gradient Boosting”, XGBoost is a boosting-based ensemble of algorithms that turn weak learners into strong learners by focusing on where the individual models went wrong. In Gradient Boosting, individual weak models train upon the difference between the prediction and the actual results [ 7 ]. We set max_depth at 3, n_estimators at 150 and learning rate at 0.7.

Support vector machine (SVM): SVM is one of the most robust prediction methods based on statistical learning frameworks. It aims to find a hyperplane in an N-dimensional space (where N = the number of features) that distinctly classifies the data points [ 8 ]. We set C at 100, gamma at 0.005 and kernel as radial basis function.

Logistic regression (LR): LR is a classic statistical model that in its basic form uses a logistic function to model a binary dependent variable [ 9 ]. We set C at 5 and penalty as l2.

Random forest (RF): RF is a machine learning technique that utilizes ensemble learning to combine many decision trees classifiers through bagging or bootstrap aggregating [ 10 ]. We set n_estimators at 100 and max_depth at 14.

These four algorithms were trained for both the HPV screening task and the PAPD screening task using the corresponding training corpus.

For each of the four algorithms, we examined performance using (1) only the baseline feature criteria (title and abstract of each article), and (2) with five additional meta-data features (MeSH, Authors, Keywords, Journal, Publication types.) retrieved from each article using the PubMed E-utilities API. Conventionally, title and abstract are the first information a human reviewer would depend on when making a judgment for inclusion or exclusion of an article. Consequently, we used title and abstract as the baseline features to classify whether an abstract should be included at the abstract screening stage. We further evaluated the performance with additional features that can be retrieved by PubMed E-utilities API, including MeSH terms, authors, journal, keywords and publication type. For baseline evaluation, we concatenated the titles and abstracts and extracted the TF-IDF (term frequency-inverse document frequency) vector for the corpus. TF-IDF evaluates how relevant a word is to a document in a collection of documents. For additional features, we extracted TF-IDF vector using each feature respectively and then concatenated the extracted vectors with title and abstract vector. XGBoost was selected for the feature evaluation process, due to its relatively quick computational running time and robust performance.

Deep learning algorithms

Conventional ML methods rely heavily on manually designed features and suffer from the challenges of data sparsity and poor transportability when applied to new use cases. Deep learning (DL) is a set of machine learning algorithms based on deep neural networks that has advanced performance of text classification along with many other NLP tasks. Transformer-based deep learning models, such as BERT (Bidirectional encoder representations from transformers), have achieved state-of-the-art performance in many NLP tasks [ 11 ]. A Transformer is an emerging architecture of deep learning models designed to handle sequential input data such as natural language by adopting the mechanisms of attention to differentially weigh the significance of each part of the input data [ 12 ]. The BERT model and its variants (which use Transformer as a basic unit) leverage the power of transfer learning by first pre-training the models over 100’s of millions of parameters using large volumes of unlabeled textual data. The resulting model is then fine-tuned for a particular downstream NLP application, such as text classification, named entity recognition, relation extraction, etc. The following three BERT models were evaluated against both the HPV and Pediatric pneumococcal corpus using two sets of features (title and abstract versus adding all additional features into the text). For all BERT models, we used Adam optimizer with weight decay. We set learning rate at 1e-5, batch size at 8 and number of epochs at 20.

BERT base: this is the original BERT model released by Google. The BERT base model was pre-trained on textual data in the general domain, i.e., BooksCorpus (800 M words) and English Wikipedia (2500 M words) [ 11 ].

BioBERT base: as the biomedical language is different from general language, the BERT models trained on general textual data may not work well on biomedical NLP tasks. BioBERT was further pre-trained (based on original BERT models) in the large-scale biomedical corpora, including PubMed abstracts (4.5B words) and PubMed Central Full-text articles (13.5B words) [ 13 ].

PubMedBERT: PubMedBERT was pre-trained from scratch using abstracts from PubMed. This model has achieved state-of-the-art performance on several biomedical NLP tasks on Biomedical Language Understanding and Reasoning Benchmark [ 14 ].

Text pre-processing and libraries that were used

We have removed special characters and common English words as a part of text pre-processing. Default tokenizer from scikit-learn was adopted for tokenization. Scikit-learn was also used for TF-IDF feature extraction and machine learning algorithms implementation. Transformers libraries from Hugging Face were used for deep learning algorithms implementation.

Evaluation datasets were constructed from the HPV and Pediatric pneumococcal corpora and were split into training, validation and testing sets with a ratio of 8:1:1 for the two evaluation tasks: (1) ML algorithms performance assessment; and (2) DL algorithms performance assessment. Models were fitted on the training sets, and model hyperparameters were optimized on the validation sets and the performance were evaluated on the testing sets. The following major metrics are expressed by the noted calculations:

Where True positive is an outcome where the model correctly predicts the positive (e.g., “included” in our tasks) class. Similarly, a True negative is an outcome where the model correctly predicts the negative class (e.g., “excluded” in our tasks). False positive is an outcome where the model incorrectly predicts the positive class, and a False negative is an outcome where the model incorrectly predicts the negative class. We have repeated all experiments five times and reported the mean scores with standard deviation.

Table  2 shows the baseline comparison using different feature combinations for the SLR text classification tasks using XGBoost. As noted, adding additional features in addition to title and abstract was effective in further improving the classification accuracy. Specifically, using all available features for the HPV classification increased accuracy by ? ∼  3% and F1 score by ? ∼  3%; using all available features for Pediatric pneumococcal classification increased accuracy by ? ∼  2% and F1 score by ? ∼  4%. As observed, adding additional features provided a stronger boost in precision, which contributed to the overall performance improvement.

The comparison of the article inclusion/exclusion classification task for four machine learning algorithms with all features is shown in Table  3 . XGBoost achieved the highest accuracy and F-1 scores in both tasks. Table  4 shows the comparison between XGBoost and deep learning algorithms on the classification tasks for each disease. Both XGBoost and deep learning models consistently have achieved higher accuracy scores when using all features as input. Among all models, BioBERT has achieved the highest accuracy at 0.88, compared with XGBoost at 0.86. XGBoost has the highest F1 score at 0.8 and the highest recall score at 0.9 for inclusion prediction.

Discussions and conclusions

Abstract screening is a crucial step in conducting a systematic literature review (SLR), as it helps to identify relevant citations and reduces the effort required for full-text screening and data element extraction. However, screening thousands of abstracts can be a time-consuming and burdensome task for scientific reviewers. In this study, we systematically investigated the use of various machine learning and deep learning algorithms, using different sets of features, to automate abstract screening tasks. We evaluated these algorithms using disease-focused SLR corpora, including one for human papillomavirus (HPV) associated diseases and another for pneumococcal-associated pediatric diseases (PADA). The publicly available corpora used in this study can be used by the scientific community for advanced algorithm development and evaluation. Our findings suggest that machine learning and deep learning algorithms can effectively automate abstract screening tasks, saving valuable time and effort in the SLR process.

Although machine learning and deep learning algorithms trained on the two SLR corpora showed some variations in performance, there were also some consistencies. Firstly, adding additional citation features significantly improved the performance of conventional machine learning algorithms, although the improvement was not as strong in transformer-based deep learning models. This may be because transformer models were mostly pre-trained on abstracts, which do not include additional citation information like MeSH terms, keywords, and journal names. Secondly, when using only title and abstract as input, transformer models consistently outperformed conventional machine learning algorithms, highlighting the strength of subject domain-specific pre-trained language models. When all citation features were combined as input, conventional machine learning algorithms showed comparable performance to deep learning models. Given the much lower computation costs and faster training and prediction time, XGBoost or support vector machines with all citation features could be an excellent choice for developing an abstract screening system.

Some limitations remain for this study. Although we’ve evaluated cutting-edge machine learning and deep learning algorithms on two SLR corpora, we did not conduct much task-specific customization to the learning algorithms, including task-specific feature engineering and rule-based post-processing, which could offer additional benefits to the performance. As the focus of this study is to provide generalizable strategies for employing machine learning to abstract screening tasks, we leave the task-specific customization to future improvement. The corpora we evaluated in this study mainly focus on health economics and outcome research, the generalizability of learning algorithms to another domain will benefit from formal examination.

Extensive studies have shown the superiority of transformer-based deep learning models for many NLP tasks [ 11 , 13 , 14 , 15 , 16 ]. Based on our experiments, however, adding features to the pre-trained language models that have not seen these features before may not significantly boost their performance. It would be interesting to find a better way of encoding additional features to these pre-trained language models to maximize their performance. In addition, transfer learning has proven to be an effective technique to improve the performance on a target task by leveraging annotation data from a source task [ 17 , 18 , 19 ]. Thus, for a new SLR abstract screening task, it would be worthwhile to investigate the use of transfer learning by adapting our (publicly available) corpora to the new target task.

When labeled data is available, supervised machine learning algorithms can be very effective and efficient for article screening. However, as there is increasing need for explainability and transparency in NLP-assisted SLR workflow, supervised machine learning algorithms are facing challenges in explaining why certain papers fail to fulfill the criteria. The recent advances in large language models (LLMs), such as ChatGPT [ 20 ] and Gemini [ 21 ], show remarkable performance on NLP tasks and good potentials in explainablity. Although there are some concerns on the bias and hallucinations that LLMs could bring, it would be worthwhile to evaluate further how LLMs could be applied to SLR tasks and understand the performance of using LLMs to take free-text article screening criteria as the input and provide explainanation for article screening decisions.

Data availability

The annotated corpora underlying this article are available at https://github.com/Merck/NLP-SLR-corpora .

Bullers K, Howard AM, Hanson A, et al. It takes longer than you think: librarian time spent on systematic review tasks. J Med Libr Assoc. 2018;106:198–207. https://doi.org/10.5195/jmla.2018.323 .

Article   PubMed   PubMed Central   Google Scholar  

Carver JC, Hassler E, Hernandes E et al. Identifying Barriers to the Systematic Literature Review Process. In: 2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement . 2013. 203–12. https://doi.org/10.1109/ESEM.2013.28 .

Lame G. Systematic literature reviews: an introduction. Proc Des Society: Int Conf Eng Des. 2019;1:1633–42. https://doi.org/10.1017/dsi.2019.169 .

Article   Google Scholar  

Michelson M, Reuter K. The significant cost of systematic reviews and meta-analyses: a call for greater involvement of machine learning to assess the promise of clinical trials. Contemp Clin Trials Commun. 2019;16:100443. https://doi.org/10.1016/j.conctc.2019.100443 .

Recent advances in. biomedical literature mining | Briefings in Bioinformatics | Oxford Academic. https://academic.oup.com/bib/article/22/3/bbaa057/5838460?login=true (accessed 30 May 2022).

Medical Subject Headings - Home Page. https://www.nlm.nih.gov/mesh/meshhome.html (accessed 30 May 2022).

Chen T, Guestrin C, XGBoost:. A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York, NY, USA: Association for Computing Machinery 2016. 785–94. https://doi.org/10.1145/2939672.2939785 .

Noble WS. What is a support vector machine? Nat Biotechnol. 2006;24:1565–7. https://doi.org/10.1038/nbt1206-1565 .

Article   CAS   PubMed   Google Scholar  

Logistic Regression . https://doi.org/10.1007/978-1-4419-1742-3 (accessed 30 May 2022).

Random forest classifier for remote sensing classification. International Journal of Remote Sensing: Vol 26, No 1. https://www.tandfonline.com/doi/abs/10.1080/01431160412331269698 (accessed 30 May 2022).

Devlin J, Chang M-W, Lee K, et al. BERT: pre-training of Deep Bidirectional transformers for Language understanding. arXiv. 2019. https://doi.org/10.48550/arXiv.1810.04805 .

Vaswani A, Shazeer N, Parmar N et al. Attention is All you Need. In: Advances in Neural Information Processing Systems . Curran Associates, Inc. 2017. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html (accessed 30 May 2022).

BioBERT. a pre-trained biomedical language representation model for biomedical text mining | Bioinformatics | Oxford Academic. https://academic.oup.com/bioinformatics/article/36/4/1234/5566506 (accessed 3 Jun 2020).

Gu Y, Tinn R, Cheng H, et al. Domain-specific Language Model Pretraining for Biomedical Natural Language Processing. ACM Trans Comput Healthc. 2021;3(2):1–2. https://doi.org/10.1145/3458754 .

Article   CAS   Google Scholar  

Chen Q, Du J, Allot A, et al. LitMC-BERT: transformer-based multi-label classification of biomedical literature with an application on COVID-19 literature curation. arXiv. 2022. https://doi.org/10.48550/arXiv.2204.08649 .

Chen Q, Allot A, Leaman R, et al. Multi-label classification for biomedical literature: an overview of the BioCreative VII LitCovid Track for COVID-19 literature topic annotations. arXiv. 2022. https://doi.org/10.48550/arXiv.2204.09781 .

Kermany DS, Goldbaum M, Cai W, et al. Identifying Medical diagnoses and Treatable diseases by Image-based deep learning. Cell. 2018;172:1122–e11319. https://doi.org/10.1016/j.cell.2018.02.010 .

Howard J, Ruder S. Universal Language Model fine-tuning for text classification. arXiv. 2018. https://doi.org/10.48550/arXiv.1801.06146 .

Do CB, Ng AY. Transfer learning for text classification. In: Advances in Neural Information Processing Systems . MIT Press. 2005. https://proceedings.neurips.cc/paper/2005/hash/bf2fb7d1825a1df3ca308ad0bf48591e-Abstract.html (accessed 30 May 2022).

Achiam J et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023).

https:// gemini.google.com/app/a4dcd2e2d7672354 . (accessed 01 Feb 2024).

Download references

Acknowledgements

We thank Dr. Majid Rastegar-Mojarad for conducting some additional experiments during revision.

This research was supported by Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.

Author information

Authors and affiliations.

Intelligent Medical Objects, Houston, TX, USA

Jingcheng Du, Ekin Soysal, Long He, Bin Lin, Jingqi Wang & Frank J. Manion

Merck & Co., Inc, Rahway, NJ, USA

Dong Wang, Yeran Li, Elise Wu & Lixia Yao

McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA

Ekin Soysal

You can also search for this author in PubMed   Google Scholar

Contributions

Study concept and design: JD and LY Corpus preparation: DW, YL and LY Experiments: JD and ES Draft of the manuscript: JD, DW, FJM and LY Acquisition, analysis, or interpretation of data: JD, ES, DW and LY Critical revision of the manuscript for important intellectual content: JD, ES, DW, LH, BL, JW, FJM, YL, EW, LY Study supervision: LY.

Corresponding author

Correspondence to Lixia Yao .

Ethics declarations

Disclaimers.

The content is the sole responsibility of the authors and does not necessarily represent the official views of Merck & Co., Inc., Rahway, NJ, USA or Intelligent Medical Objects.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Competing interests.

DW is an employee of Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA. EW, YL, and LY were employees of Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA for this work. JD, LH, JW, and FJM are employees of Intelligent Medical Objects. ES was an employee of Intelligent Medical Objects during his contributions, and is currently an employee of EBSCO Information Services. All the other authors declare no competing interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Du, J., Soysal, E., Wang, D. et al. Machine learning models for abstract screening task - A systematic literature review application for health economics and outcome research. BMC Med Res Methodol 24 , 108 (2024). https://doi.org/10.1186/s12874-024-02224-3

Download citation

Received : 19 May 2023

Accepted : 18 April 2024

Published : 09 May 2024

DOI : https://doi.org/10.1186/s12874-024-02224-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Machine learning
  • Deep learning
  • Text classification
  • Article screening
  • Systematic literature review

BMC Medical Research Methodology

ISSN: 1471-2288

literature study research method

  • Open access
  • Published: 01 May 2024

Hospital performance evaluation indicators: a scoping review

  • Shirin Alsadat Hadian   ORCID: orcid.org/0000-0002-1443-1990 1 ,
  • Reza Rezayatmand   ORCID: orcid.org/0000-0002-9907-3597 2 ,
  • Nasrin Shaarbafchizadeh   ORCID: orcid.org/0000-0001-7104-2214 3 ,
  • Saeedeh Ketabi   ORCID: orcid.org/0000-0002-6778-5645 4 &
  • Ahmad Reza Pourghaderi   ORCID: orcid.org/0000-0003-2682-2160 5  

BMC Health Services Research volume  24 , Article number:  561 ( 2024 ) Cite this article

238 Accesses

Metrics details

Hospitals are the biggest consumers of health system budgets and hence measuring hospital performance by quantitative or qualitative accessible and reliable indicators is crucial. This review aimed to categorize and present a set of indicators for evaluating overall hospital performance.

We conducted a literature search across three databases, i.e., PubMed, Scopus, and Web of Science, using possible keyword combinations. We included studies that explored hospital performance evaluation indicators from different dimensions.

We included 91 English language studies published in the past 10 years. In total, 1161 indicators were extracted from the included studies. We classified the extracted indicators into 3 categories, 14 subcategories, 21 performance dimensions, and 110 main indicators. Finally, we presented a comprehensive set of indicators with regard to different performance dimensions and classified them based on what they indicate in the production process, i.e., input, process, output, outcome and impact.

The findings provide a comprehensive set of indicators at different levels that can be used for hospital performance evaluation. Future studies can be conducted to validate and apply these indicators in different contexts. It seems that, depending on the specific conditions of each country, an appropriate set of indicators can be selected from this comprehensive list of indicators for use in the performance evaluation of hospitals in different settings.

Peer Review reports

Healthcare is complex [ 1 ] and a key sector [ 2 ] that is now globally faced with problems of rising costs, lack of service efficiency, competition, and equity as well as responsiveness to users [ 3 ]. One estimate by the WHO has shown a yearly waste of approximately 20–40% of total healthcare resources because of inefficiency [ 4 ]. European countries have spent on average 9.6% of their gross domestic product (GDP) on healthcare in 2017 and 9.92% in 2019. Germany, France, and Sweden reported the highest healthcare expenditures in Europe in 2018 (between 10.9% and 11.5% of GDP) [ 5 ]. In the U.S., healthcare spending consumes 18% of the GDP, which is likely to eclipse $6 trillion by 2027 [ 6 ].

Hospitals, as the biggest consumers of health system budgets [ 7 ], are the major part of the health system [ 8 ]. In many countries 50–80% of the health sector budget is dedicated to hospitals [ 8 , 9 ]. As a result, hospital performance analysis is becoming a routine task for every hospital manager. On the one hand, hospital managers worldwide are faced with difficult decisions regarding cost reduction, increasing service efficiency, and equity [ 10 ]. On the other hand, measuring hospital efficiency is an issue of interest among researchers because patients demand high-quality care at lower expenses [ 11 ].

To address the above mentioned need to measure hospital performance, implementing an appropriate hospital performance evaluation system is crucial in any hospital. In doing so, hospital administrators use various tools to analyse and monitor hospital activities [ 1 ], which need well-defined objectives, standards and quantitative indicators [ 12 ]. The latter are used to evaluate care provided to patients both quantitatively and qualitatively and are often related to input, output, processes, and outcomes. These indicators can be used for continuous quality improvement by monitoring, benchmarking, and prioritizing activities [ 13 ]. These parameters are developed to improve health outcomes and to provide comparative information for monitoring and managing and formulating policy objectives within and across health services [ 12 ]. Studies thus far have used their own set of indicators while evaluating hospital performance, which could be context dependent. In addition, those studies have mostly used a limited set of indicators that focus on few dimensions (2–6 dimensions) of hospital performance [ 14 , 15 , 16 , 17 , 18 ].

Therefore, comprehensive knowledge of potential indicators that can be used for hospital performance evaluation is necessary. It would help choose appropriate indicators when evaluating hospital performance in different contexts. It would also help researchers extend the range of analysis to evaluate performance from a wider perspective by considering more dimensions of performance. Although performance is a very commonly used term, it has several definitions [ 19 , 20 ], yet, it is often misunderstood [ 21 ]. Therefore, some researchers have expressed confusion about the related terms and considered them interchangeable. These terms are effectiveness, efficiency, productivity, quality, flexibility, creativity, sustainability, evaluation, and piloting [ 21 , 22 , 23 ]. Thus, this scoping review aimed to categorize and present a comprehensive set of indicators that can be used as a suitable set for hospital performance evaluation at any needed level of analysis, i.e., clinical, para-clinical, logistical, or departmental, and relate those indicators to the appropriate performance dimensions. The uniqueness of this paper is that it provides its readers with a comprehensive collection of indicators that have been used in different performance analysis studies.

Materials and methods

We conducted a scoping review of a body of literature. The scoping review can be of particular use when the topic has not yet been extensively reviewed or has a complex or heterogeneous nature. This type of review is commonly undertaken to examine the extent, range, and nature of research activity in a topic area; determine the value and potential scope and cost of undertaking a full systematic review; summarize and disseminate research findings; and identify research gaps in the existing literature. As a scoping review provides a rigorous and transparent method for mapping areas of research, it can be used as a standalone project or as a preliminary step to a systematic review [ 24 ]. While a systematic review (qualitative or quantitative) usually addresses a narrow topic/scope and is a method for integrating or comparing findings from previous studies [ 25 ].

In our study, we used the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist following the methods outlined by Arksey and O’Malley [ 26 ] and Tricco [ 27 ]. A systematic search for published and English-language literature on hospital performance evaluation models was conducted, using three databases, i.e., PubMed, Scopus, and Web of Science, from 2013 to January 2023. Initially, the identified keywords were refined and validated by a team of experts. Then, a combination of vocabularies was identified by the authors through a brainstorming process. The search strategy was formulated using Boolean operators. The title and abstract of the formulas were searched in the online databases. The search query for each database is presented in Table  1 .

In the screening process, relevant references related to hospital performance evaluation were screened and abstracted into researcher-developed Microsoft® Excel forms by dual independent reviewers and conflicting information was provided by other reviewers.

The inclusion criteria were as follows: focused only on the hospital setting, available full text and written in English. We excluded studies that focused on health organization indicators, not specifically on hospital indicators; articles without appropriate data (only focused on models and not indicators; or qualitative checklist questionnaires); and articles that focused only on clinical or disease-related indicators, not hospital performance dimensions, and provided very general items as indicators, not the domains of the indicators themselves. Then, a PRISMA-ScR Checklist was used to improve transparency in our review [ 28 ].

To extract the data, researcher-developed Microsoft® Excel forms (data tables) were designed. The following data were subsequently extracted into Microsoft®Excel for synthesis and evaluation: title, author, article year, country, indicator category, study environment (number of hospitals studied), study time frame, indicator name, number of indicators, indicator level (hospital level, department level), evaluation perspective (performance, productivity, efficiency, effectiveness, quality, cost, safety, satisfaction, etc. ) , study type (quantitative or qualitative), indicator subtype (input (structure), process, output (result), outcome and impact), and other explanations. To create a descriptive summary of the results that address the objectives of this scoping review, numerical summarization was also used.

The purpose of creating the main category and the evaluation perspective section was to develop them and create new categories, which focused on the type of indicators related to the performance term. For example, in the “Category” section, the names of the departments or wards of the hospital (such as hospital laboratories, pharmacies, clinical departments, and warehouses) and in the “Evaluation perspective” section, various terms related to the evaluation of hospital performance were extracted. These two types were used after extracting their information under the title “performance dimension”.

The indicators’ levels were collected to determine the level of performance evaluation with the relevant index. Some indicators were used to evaluate the performance of the entire hospital, some were used to evaluate the performance of hospital departments, and some were used to evaluate the performance at the level of a specific project. For example, several indicators (such as bed occupancy ratio, length of stay, and waiting time) were used to evaluate the performance of the entire hospital, and other indicators (such as laboratory department indicators, energy consumption indicators, and neonatal department indicators) were used only to measure the performance of specific departments. This sections were used under the title “category”. The “category” and “indicator’s name” sections were defined according to the results of the “subcategory” section.

The subtypes of indicators (input (structure), process, output(result), outcome and impact) were defined based on the chain model, and each of the selected indicators was linked to it (Appendix 1 ). As a result of the chain model, inputs were used to carry out activities, activities led to the delivery of services or products (outputs). The outputs started to bring about change (outcomes), and eventually, this (hopefully) contributed to the impact [ 29 ]. The classification of the set of input, process, output, outcome and impact indicators was such that readers could access these categories if necessary according to their chosen evaluation models. The term was used under the title “Indicators by types”.

The type of study was considered quantitative or qualitative for determining whether an indicator was able to perform calculations. In this way, readers can choose articles that use quantitative or qualitative indicators to evaluate hospital performance.

We included 91 full-text studies (out of 7475) in English published between 2013 and January 2023 (Fig.  1 ), approximately 40% of which were published between 2020 and 2023. More than 20% of the retrieved studies were conducted in Iran and USA.

figure 1

Study selection and data abstraction

Study characteristic

As shown in Table  2 , in 85% of the reviewed studies, a number of hospitals (1 to 3828 hospitals, 13,221 hospitals in total) were evaluated. More than 90% of the studies used a quantitative approach. In more than 70% of the studies, hospital evaluation occurred at the department level, which can also be divided into three levels: administrative, clinical ward, and paramedical department. In addition, the administrative departments consist of 13 departments, including financial management [ 48 , 55 , 61 , 67 , 68 , 80 , 83 , 109 , 113 ], supply chain management and warehouse [ 15 , 43 , 84 ], value-based purchasing [ 33 , 85 ], human resource management [ 97 , 101 ], medical equipment [ 32 , 87 ], health information management department [ 90 ], information systems [ 106 ], nutritional assessment [ 93 ], energy management [ 30 , 45 , 92 ], facility management [ 52 , 53 ], building sustainability and resilience [ 35 ], research activities [ 44 ], and education [ 107 ].

The clinical wards consisted of 8 wards, namely, emergency departments (EDs) [ 16 , 39 , 56 , 57 , 69 , 70 , 89 ], surgery departments [ 58 , 62 , 63 , 91 , 102 ], intensive care units (ICUs) [ 47 , 64 , 65 ], operating rooms (ORs) [ 38 , 88 , 108 ], surgical intensive care units (SICUs) [ 111 ], obstetrics and gynecology department [ 59 ], neonatal intensive care units (NICUs) [ 74 , 103 ] and quality of care [ 18 , 31 , 40 , 50 , 72 , 92 , 95 , 112 ] indicators. The paramedical departments consisted of 3 departments, pharmacy [ 60 , 76 , 98 ], laboratory and blood bank [ 37 , 42 , 43 , 49 ], and outpatient assessment [ 86 ] indicators.

With regard to data categorization, firstly, a total of 1204 indicators in 91 studies were extracted and after detailed examination, 43 indices (such as hospital ownership, level of care, admission process, and personal discipline) were removed due to their generality and impossibility of calculation in the hospital environment. Then, 1161 performance indicators were entered in this research and were categorized based on the performance criteria (more details about the indicators can be found in Appendix 1 ). Secondly, 145 functional dimensions, including divisions based on different departments and units of the hospital, were defined according to several focus group discussions with 5 health experts. Then, re-categorization and functional summarization were performed, after which 21 performance dimensions were finalized.

As shown in Table  4 , the 21 performance dimensions were divided into three parts: category, subcategory, and related indicators. Additionally, according to the hospital levels, there were three categories: ‘organizational management’, ‘clinical management’, and ‘administrative management’. Then, according to the type of indicators, fifteen subcategories were defined for the 110 selected main indicators.

Performance dimensions

The ‘productivity’ dimension focuses on indicators reflecting the macro-performance of the hospital, considering that this index is more effective and efficient. The ‘efficiency’ dimension focuses on general performance indicators for the optimal use of resources to create optimal output in the hospital. The ‘effectiveness’ dimension is a general performance indicator with an outcome view. The ‘speed’ dimension focuses on the indicators that show attention to the service delivery time and the speed of the procedures. The ‘development’ dimension focuses on matters related to employees’ and students’ training and related training courses. In terms of ‘safety’ dimension, there were issues related to patient safety, unwanted and harmful events, and hospital infections.

The “quality of work life” dimension emphasizes matters related to personnel volume and work conditions. The ‘quality’ dimension is related to the quality of service provided in different parts of the hospital and possible complications in improving the quality of services. The ‘satisfaction’ dimension focuses on the satisfaction of patients, employees, and their complaints. The ‘innovation’ dimension relates to the research process and its output. The ‘appropriateness’ dimension involves proper service from clinical departments, pharmaceutical services, and patient treatment. The ‘evaluation’ dimension focuses on the indicators related to the assessment scores of the para-clinical departments of the hospital.

The ‘profitability’ dimension focuses on the overall output indicators for income and profitability. The ‘cost’ dimension focuses on indicators related to general expenditures and the average cost per bed and patient and budgeting. The ‘economy’ dimension is related to financial rates and their indicators. The ‘coherence’ dimension emphasizes the indicators related to the continuity of the service delivery process. The ‘patient-centeredness’ dimension focuses on the indicators related to the patient’s experience of the facility, environment, treatment processes, communications, and relevant support for the patient. The ‘equity’ dimension studies indicators related to social and financial justice and life expectancy. The ‘relationship’ dimension evaluates the process of consultations and discussions required during the patients’ care provided by the treatment team. The ‘sustainability’ dimension focuses on indicators related to energy standards. The ‘flexibility’ dimension focuses on the hospital’s response to the crisis.

According to Table  4 , most studies focused on ‘efficiency’, ‘productivity’, ‘safety’ and ‘effectiveness’ as performance dimensions in 54, 53, 38 and 37 studies, respectively (40–70% of studies). In the ‘efficiency’ subcategory, resource management, supportive unit assessment, and human resource management indicators were the first to third most common indicators used in 26, 23 and 22 studies, respectively (approximately 25% of the studies).

In addition, for the ‘efficiency’ dimension, ‘medical staff numbers’, ‘emergency department bed numbers’, and ‘nonmedical staff numbers’ were reported in 16, 13, and 11 studies, respectively (between 20 and 30% of the studies). For the ‘productivity’ subcategory, ‘bed utilization rate’ and ‘service delivery and treatment’ were reported in 50% and 20% of the studies, respectively (46 and 19 out of 91).

Additionally, for the ‘productivity’ dimension, the ‘length of stay’ indicator was used more than others and reported in approximately 80% of the studies (43 out of 53), followed by the ‘bed occupancy rate’ in approximately 40% of the studies (21 out of 53). The ‘bed turnover ratio’ and ‘hospitalization rate’ were also reported in 12 studies. Furthermore, for ‘safety’ dimensions, all indicators were in the ‘patient safety’ subcategory, which has been reported in 38 studies, and ‘complications’, ‘accidents or adverse events’, and ‘incidents or errors rates’ were the most concentrated indicators by researchers in 13, 12, and 11 studies, respectively. The performance dimension of ‘effectiveness’ was presented in 37 studies (40%), with only two indicators, ‘mortality rate’ in 29 studies and ‘readmission rate’ in 23 studies.

Performance categories

Considering the three categories shown in Table  4 , ‘organizational management’ indicators were more commonly used among the other two categories (‘clinical’ and ‘administrative’) and were present in more than 85% of the studies (78 out of 91). Two categories, ‘clinical management’ and ‘administrative management’, were reported in 62 and 51 studies, respectively.

Performance subcategories

Considering the 14 subcategories shown in Table  4 , both the ‘bed utilization rate’ and ‘patient safety’ indicators were mentioned in 46 studies and were more common among the other subcategories. The second most common indicator of the ‘financial management’ subcategory was reported in 38 studies. At the third level, both the ‘human resource management’ and ‘time management’ indicators were presented in 31 studies. The ‘paramedical’ subcategory indicators were presented in less than 10% of the studies [ 60 , 96 , 97 , 98 , 106 , 113 ].

Performance indicators

According to the indicator columns in Table  3 , the most used indicators in reviewed studies were the length of stay, mortality rate, and readmission rate in 47%, 32%, and 25% of studies, respectively. Bed occupancy rate and non-personnel costs were reported in 23% of studies. Additionally, among the 110 indicators, 16 indicators, namely, the lab cancellation rate, exam-physician ratios, number of coded diagnoses, number of medical records, laboratory sample/report intervals, medical information request time, safety standards in the archives, nutritional risk screening, imaging quality control failures, errors in medical reports, average impact factor, nutritional measures, laboratory scoring, imaging inspection, discharge process and emergency response rate, were reported in less than 1% of the studies.

The classification of the indicators in Table  4 was performed based on the chain model, which included the input, process, output, outcome and impact. The assignment of the indicators to each category was performed according to the experts’ opinions. For instance, the number of publications by academic member of an academic hospital and the average impact factor of those publications were considered outcome indicators. As depicted in the Table  4 , most studies (80%) focused more on output indicators. Additionally, fifteen studies focused on introducing and extracting some of the input, process, output, outcome and impact indicators; among those, only one study [ 96 ] has examined the input, process, output and impact indicators simultaneously.

Additionally, in approximately 42% (36 out of 91) of the studies, the indicators’ definitions, formulas, or descriptions have been illustrated, while less than 10% of the studies have defined measuring units, standard or benchmark units for all studied indicators [ 15 , 43 , 45 , 51 , 52 , 57 , 67 ].

Overall, nine studies related to hospital performance evaluation were conducted using systematic review methodologies (five systematic reviews [ 16 , 29 , 30 , 56 , 113 ], two literature reviews [ 79 , 80 ], one narrative review [ 98 ] and one brief review [ 92 ]). Most of these studies focused on extracting performance indicators from one or more hospital departments (e.g., the emergency department) [ 16 , 56 ], hospital laboratory and radiology information systems [ 106 ], supply chain performance [ 29 ], resources and financial results and activity [ 113 ], hospital water consumption [ 30 ], and the pharmaceutical sector [ 98 ]. Other reviews included a three-step process to review, evaluate and rank these hospital indicators in a systematic approach [ 16 ], or to evaluate performance indicator models to create an interactive network and visualize the causal relationships between performance indicators [ 79 ]; moreover, some have focused on the importance of indicators to ensure adequate coverage of the relevant areas of health care services to be evaluated [ 92 ].

Only one scoping review aimed to identify current assessments of hospital performance and compared quality measures from each method in the context of the six qualitative domains of STEEEP (safety, timeliness, effectiveness, efficiency, equity, and patient-centeredness) of the Institute of Medicine (IOM) in accordance with Donabedian’s framework and formulating policy recommendations [ 115 ].

In addition, 21 studies divided performance indicators into 2 to 6 dimensions of performance. Also, the reviewed studies included 2–40 indicators in zero [ 29 , 30 , 98 ] to 6 domains [ 34 ]. Moreover, none of the studies have tried to comprehensively summarize and categorize the performance indicators in several categories, focusing on all the indicators reflecting the performance of the entire hospital organization, or the indicators of administrative units or clinical departments.

In this scoping review, a unique set of hospital performance evaluation indicators related to the various performance dimensions was categorized from 91 studies over the past ten years.

Similarly, in a study, 19 performance dimensions, 32 sub-dimensions, and 138 indicators were extracted from only six studies. Those dimensions were described by all studies included in the review, but only three studies specified the relevant indicators, and the list provided for all possible indicators was not comprehensive. Also, despite current review, there was no classification of indicators based on the hospital levels: managerial, clinical, or organizational levels [ 116 ]. Another study has similarly investigated the performance evaluation indicators of the hospital in such a way that among 42 studies, 111 indicators were presented in the four categories: input, output, outcome, and impact. But, there was no classification of indicators based on performance dimensions and hospital levels [ 117 ].

In this study, the importance of categorized indicators, for the first time to our knowledge, was determined based on their frequency of use in the published literature (Appendix 2 ). The ‘Organizational management’ indicators were the most common compared with the other two categories (‘clinical’ and ‘administrative’). It could be because of the fact that the indicators such as ‘bed occupancy rate’, ‘average length of stay’, ‘mortality rate’, ‘hospital infection rate’, and ‘patient safety’ are easier to be registered in hospital software compared to other indicators, and also they better reflect the overall performance of hospital. Thus, researchers are more interested in using these indicators.

Considering 14 subcategories, indicators related to three subcategories i.e. bed utilization, patient safety and financial management are the most frequent used indicators for hospital performance evaluation. It reflects the need of hospital managers to increase the profitability of hospital in one hand, and to control cost on the other hand. As a results, researchers have paid special attention to ‘cost income’, ‘profitability’, ‘economic’, etc., as indicators for evaluating hospital performance.

When considering indicators by type, more studies have focused on output indicators, while input indicators were the least common used. This might be because of the fact that at hospital level, it is difficult for managers to change those inputs such as ‘beds’, ‘human resources’, ‘equipment and facilities’. In addition, due to the complexity of interdepartmental relationships in hospitals, process indicators seemed to provide more variety for analysis than input indicators, so they were more often used. As mentioned above, output indicators were the most used indicators for hospital performance evaluation due to their ease of calculation and interpretation.

The main purpose of this paper was to identify a comprehensive set of indicators that can be used to evaluate hospital performance in various hospital settings by being distilled into a smaller and more related set of indicators for every hospital or department setting. future studies could be designed to validate each set of indicators in any specific context. In addition, they could investigate the relationship between the indicators and their outcomes of interest and the performance dimension each could address. This will enable hospital managers to build their own set of indicators for performance evaluation both at organization or at department level. Also it should be mentioned that.

Although some previous studies have provided definitions for each indicator and determined the standard criteria for them, this was not done in this study because the focus of this study was to provide a collection of all the indicators used in hospital performance evaluation, which resulted in the identification of more than a thousand indicators without limiting to specific country or context. So while preparing a smaller set of indicators, specific conditions of each country, such as the type of health system and its policy, the type of financing system, and the structure of services, should be taken into account to select appropriate indicators.

In addition, although it is important to examine the scope of each article to compare the list of indicators and the relationships between the dimensions of the hospital in terms of size and type and between the number and type of selected indicators, this was considered beyond the scope of this review due to the high number of indicators, which made the abovementioned investigations impossible. Future studies could do that while working with a smaller set of indicators.

This review aimed to categorize and present a comprehensive set of indicators for evaluating overall hospital performance in a systematic way. 1161 hospital performance indicators were drawn from 91 studies over the past ten years. They then were summarized into 110 main indicators, and categorized into three categories: 14 subcategories, and 21 performance dimensions This scoping review also highlighted the most frequent used indicators in performance evaluation studies which could reflect their importance for that purpose. The results of this review help hospital managers to build their own set of indicators for performance evaluation both at organization or at department level with regard to various performance dimensions.

As the results of this review was not limited to any specific country or context, specific conditions of each country, such as the type of health system and its policy, the type of financing system, and the structure of services, should be taken into account while selecting appropriate indicators as a smaller set of indicators for hospital performance evaluation in specific context.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

Gross domestic product

Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews

Emergency departments

Intensive care unit

Operating room

Surgical intensive care unit

Neonatal intensive care unit

Readmission rate

Quality Control

Medication use evaluation

safety, timeliness, effectiveness, efficiency, equity, and patient-centeredness

Institute of Medicine

Abdullah A, Ahmad S, Athar MA, Rajpoot N, Talib F. Healthcare performance management using integrated FUCOM-MARCOS approach: the case of India. Int J Health Plann Manage. 2022;37(5):2635–68.

Article   PubMed   Google Scholar  

Pestana M, Pereira R, Moro S. Improving health care management in hospitals through a productivity dashboard. J Med Syst. 2020;44(4):87.

Amos D. A practical framework for performance measurement of facilities management services in developing countries’ public hospitals. J Facil Manag. 2022;20(5):713–31.

Article   Google Scholar  

Ahmed S, Hasan MZ, MacLennan M, Dorin F, Ahmed MW, Hasan MM, et al. Measuring the efficiency of health systems in Asia: a data envelopment analysis. BMJ Open. 2019;9(3):e022155.

Article   PubMed   PubMed Central   Google Scholar  

Mitkova Z, Doneva M, Gerasimov N, Tachkov K, Dimitrova M, Kamusheva M, et al. Analysis of healthcare expenditures in Bulgaria. Healthc. 2022;10(2):274.

Patrinely JR, Walker SH, Glassman GE, Davis MJ, Abu-Ghname A, Khan U, et al. The importance of financial metrics in physician funding and performance evaluation. Plast Reconstr Surg. 2021;147:1213–8.

Article   CAS   PubMed   Google Scholar  

Buathong S, Bangchokdee S. The use of the performance measures in Thai public hospitals. ASIAN Rev Acc. 2017;25(4):472–85.

Google Scholar  

Imani A, Alibabayee R, Golestani M, Dalal K. Key indicators affecting hospital efficiency: a systematic review. Front Public Heal. 2022;10:830102.

Mahdiyan S, Dehghani A, Tafti AD, Pakdaman M, Askari R. Hospitals’ efficiency in Iran: a systematic review and meta-analysis. J Educ Health Promot. 2019;8(1):126.

PubMed   PubMed Central   Google Scholar  

Amos D, Musa ZN, Au-Yong CP. Performance measurement of facilities management services in Ghana’s public hospitals. Build Res Inf. 2020;48(2):218–38.

Feibert DC, Andersen B, Jacobsen P. Benchmarking healthcare logistics processes–a comparative case study of Danish and US hospitals. Total Qual Manag Bus Excell. 2019;30(1–2):108–34.

Gün I, Yilmaz F, Şenel IK. Efficiency analysis of health systems in world bank countries. Arch Heal Sci Res. 2021;8(2):147–52.

Breyer JZ, Giacomazzi J, Kuhmmer R, Lima KM, Hammes LS, Ribeiro RA, et al. Hospital quality indicators: a systematic review. Int J Health Care Qual Assur. 2019;32(2):474–87.

Regragui H, Sefiani N, Azzouzi H. Improving performance through measurement: the application of BSC and AHP in healthcare organization. In: Equipe De Recherche, Ingénierie, Innovation Et Management Des Systèmes Industriels, Université Abdelmalek Saadi. Tanger, Morocco: Institute of Electrical and Electronics Engineers Inc; 2018. p. 51–6.

Ghozali MT, Latifah DN, Darayani A. Analysis of Drug Supply Management of the Pharmacy Warehouse of Prof. Dr. Soerojo Mental Health Hospital, Magelang, Indonesia. Clin Schizophr Relat Psychoses. 2021;15:1–6.

Etu EE, Monplaisir L, Aguwa C, Arslanturk S, Masoud S, Markevych I, et al. Identifying indicators influencing emergency department performance during a medical surge: a consensus-based modified fuzzy Delphi approach. PLoS ONE. 2022;17(4 April):e0265101.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Lin C-Y, Shih F-C, Ho Y-H. Applying the balanced scorecard to build service performance measurements of medical institutions: An AHP-DEMATEL approach. Int J Environ Res Public Health. 2023;20(2):1022.

Backman C, Vanderloo S, Forster AJ. Measuring and improving quality in university hospitals in Canada: the collaborative for excellence in healthcare quality. Health Policy (New York). 2016;120(9):982–6.

Ghalem Â, Okar C, Chroqui R, Semma E. Performance: A concept to define. In: Performance: A concept to define. LOGISTIQUA 2016; 2016. p. 1–13.

Sonnentag S, Frese M. Performance Concepts and Performance Theory. In 2005. p. 1–25.

Tangen S. Demystifying productivity and performance. Int J Prod Perform Manag. 2005;54:34–46.

Elena-Iuliana I, Maria C. Organizational Performance – A Concept That Self-Seeks To Find Itself. Ann - Econ Ser Constantin Brancusi Univ Fac Econ. 2016;4(4):179–83.

Riratanaphong C, Van der Voordt T, Sarasoja A. Performance Measurement in the context of CREM and FM. In: Per Anker Jensen, Theo Van der Voordt CC, editor. The added value of facilities management: concepts, findings and perspectives. Lyngby Denmark: Polyteknisk Forlag; 2012. p. 1–21.

Pham M, Rajić A, Greig J, Sargeant J, Papadopoulos A, Mcewen S. A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Res Synth Methods. 2014;5:371–85.

Chaney M. So you want to write a narrative review article? J Cardiothorac Vasc Anesth. 2021;35:3045–9.

Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32.

Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med. 2018;169(7):467–73.

Tricco A, Lillie E, Zarin W, O’Brien K, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med. 2018;169(7):467–73.

Dolatabad AH, Mahdiraji HA, Babgohari AZ, Garza-Reyes JA, Ai A. Analyzing the key performance indicators of circular supply chains by hybrid fuzzy cognitive mapping and Fuzzy DEMATEL: evidence from healthcare sector. Environ Dev Sustain. 2022;1–27.

Batista KJM, da Silva SR, Rabbani ERK, Zlatar T. Systematic review of indicators for the assessment of water consumption rates at hospitals. Water Supply. 2020;20(2):373–82.

Beta G, Role D, Berloviene D, Balkena Z. PATIENTS’ SATISFICATION AS THE QUALITY INDICATOR OF NURSING. In: Lubkina V, Kaupuzs A, Znotina D, editors. SOCIETY INTEGRATION EDUCATION, VOL VI: PUBLIC HEALTH AND SPORT, RESEARCHES IN ECONOMICS AND MANAGEMENT FOR SUSTAINABLE EDUCATION. 2020. p. 79–88.

Bhardwaj P, Joshi NK, Singh P, Suthar P, Joshi V, Jain YK, et al. Competence-based assessment of biomedical equipment management and maintenance system (e-Upkaran) using benefit evaluation framework. CUREUS J Med Sci. 2022;14(10):e30579.

Cheon O, Song M, Mccrea AM, Meier KJ. Health care in America: the relationship between subjective and objective assessments of hospitals. Int PUBLIC Manag J. 2021;24(5):596–622.

Craig KJT, McKillop MM, Huang HT, George J, Punwani ES, Rhee KB. US hospital performance methodologies: a scoping review to identify opportunities for crossing the quality chasm. BMC Health Serv Res. 2020;20(1):640.

Cristiano S, Ulgiati S, Gonella F. Systemic sustainability and resilience assessment of health systems, addressing global societal priorities: Learnings from a top nonprofit hospital in a bioclimatic building in Africa. Renew Sustain ENERGY Rev. 2021;141:110765.

Dadi D, Introna V, Santolamazza A, Salvio M, Martini C, Pastura T, et al. Private Hospital Energy Performance Benchmarking Using Energy Audit Data: An Italian Case Study. Energies. 2022;15(3):1–16.

Dawande PP, Wankhade RS, Akhtar FI, Noman O. Turnaround time: an efficacy measure for medical laboratories. CUREUS J Med Sci. 2022;14(9):e28824.

De Sousa LR, Mazzo A, De Almeida ACF, Tonello C, Lourençone LFM. Evaluation of quality indicators in the management of an operating room at a tertiary-level hospital. Med. 2022;55(1):1–8.

Drynda S, Schindler W, Slagman A, Pollmanns J, Horenkamp-Sonntag D, Schirrmeister W, et al. Evaluation of outcome relevance of quality indicators in the emergency department (ENQuIRE): study protocol for a prospective multicentre cohort study. BMJ Open. 2020;10(9):e038776.

Fekri O, Manukyan E, Klazinga N. Appropriateness, effectiveness and safety of care delivered in Canadian hospitals: a longitudinal assessment on the utility of publicly reported performance trend data between 2012–2013 and 2016–2017. BMJ Open. 2020;10(6):e035447.

Galloa AJO, Ramírez CA. Evaluating Colombian public hospitals productivity during 2004–2015. A luenberger-indicator approach. Rev Gerenc Y Polit Salud. 2020;19:1–23.

Gebreyes M, Sisay A, Tegen D, Asnake A, Wolde M. Evaluation of laboratory performance, associated factors and staff awareness towards achieving turnaround time in tertiary hospitals, Ethiopia. Ethiop J Health Sci. 2020;30(5):767–76.

Gnanaraj J, Kulkarni RG, Sahoo D, Abhishekh B. Assessment of the Key Performance Indicator Proposed by NABH in the Blood Centre of a Tertiary Health Care Hospital in Southern India. Indian J Hematol Blood Transfus. 2022;39:308–16.

Horenberg F, Lungu DA, Nuti S. Measuring research in the big data era: the evolution of performance measurement systems in the Italian teaching hospitals. Health Policy (New York). 2020;124(12):1387–94.

Hwang DK, Cho J, Moon J. Feasibility study on energy audit and data driven analysis procedure for building energy efficiency: bench-marking in Korean hospital buildings. Energies. 2019;14(15):3006.

Jaskova D. Efficiency of management, processes in a private hospital. Entrep Sustain Issues. 2021;9(1):436–46.

Jebraeily M, Valizadeh MA, Rahimi B, Saeidi S. The development of a clinical dashboard for monitoring of key performance indicators in ICU. J Iran Med Counc. 2022;5(2):308–17.

Kang Y, Kim M, Jung K. The equity of health care spending in South Korea: testing the impact of publicness. Int J Environ Res Public Health. 2020;17(5):1775.

Abou Tarieh RR, Zayyat R, Naoufal RN, Samaha HR. A case study exploring the impact of JCI standards implementation on staff productivity and motivation at the laboratory and blood bank. Heal Sci Rep. 2022;5(1):e497.

Kadoic N, Simic D, Mesaric J, Redep NB. Measuring quality of public hospitals in croatia using a multi-criteria Approach. Int J Environ Res Public Health. 2021;18:19.

Khalilabad T, Amir N, Asl P, Raeissi Shali M, Niknam N. Assessment of clinical and paraclinical departments of military hospitals based on the Pabon Lasso Model. J Educ Health Promot. 2020;9:1–6.

Lai JHK, Hou H, Edwards DJ, Yuen PL. An analytic network process model for hospital facilities management performance evaluation. Facilities. 2022;40(5–6):333–52.

Lai J, Yuen PL. Identification, classification and shortlisting of performance indicators for hospital facilities management. Facilities. 2021;39(1–2):4–18.

Lin CS, Chiu CM, Huang YC, Lang HC, Chen MS. Evaluating the operational efficiency and quality of Tertiary hospitals in Taiwan: the application of the EBITDA Indicator to the DEA Method and TOBIT Regression. Healthcare. 2022;10(1):58.

Matos R, Ferreira D, Pedro MI. Economic analysis of portuguese public hospitals through the construction of quality, efficiency, access, and financial related composite indicators. Soc Indic Res. 2021;157(1):361–92.

Morisod K, Luta X, Marti J, Spycher J, Malebranche M, Bodenmann P. Measuring health equity in emergency care using routinely collected data: a systematic review. Heal Equity. 2021;5(1):801–17.

Nik Hisamuddin R, Tuan Hairulnizam TK. Developing key performance indicators for emergency department of teaching hospitals: a mixed fuzzy Delphi and nominal group technique approach. Malays J Med Sci. 2022;29(2):114–25.

Ramírez Calazans A, Paredes Esteban RM, Grijalva Estrada OB, Ibarra Rodríguez MR. Assessment of quality indicators in pediatric major outpatient surgery. Influence of the COVID-19 pandemic. Cir Pediatr. 2023;36(1):17–21.

PubMed   Google Scholar  

Shaqura II, Gholami M, Akbari Sari A. Assessment of public hospitals performance in Gaza governorates using the Pabón Lasso Model. Int J Health Plann Manage. 2021;36(4):1223–35.

Al-Jazairi AS, Alnakhli AO. Quantifying clinical pharmacist activities in a tertiary care hospital using key performance indicators. Hosp Pharm. 2021;56(4):321–7.

Aloh HE, Onwujekwe OE, Aloh OG, Nweke CJ. Is bed turnover rate a good metric for hospital scale efficiency? A measure of resource utilization rate for hospitals in Southeast Nigeria. Cost Eff Resour Alloc. 2020;18(1):1–8.

Bari S, Incorvia J, Ahearn O, Dara L, Sharma S, Varallo J, et al. Building safe surgery knowledge and capacity in Cambodia: a mixed-methods evaluation of an innovative training and mentorship intervention. Glob Health Action. 2021;14(1):1998996.

Bari S, Incorvia J, Iverson KR, Bekele A, Garringer K, Ahearn O, et al. Surgical data strengthening in Ethiopia: results of a Kirkpatrick framework evaluation of a data quality intervention. Glob Health Action. 2021;14(1):1–11.

Bastos LSL, Hamacher S, Zampieri FG, Cavalcanti AB, Salluh JIF, Bozza FA. Structure and process associated with the efficiency of intensive care units in low-resource settings: an analysis of the CHECKLIST-ICU trial database. J Crit Care. 2020;59:118–23.

Bastos LSL, Wortel SA, de Keizer NF, Bakhshi-Raiez F, Salluh JIF, Dongelmans DA, et al. Comparing continuous versus categorical measures to assess and benchmark intensive care unit performance. J Crit Care. 2022;70:154063.

Kocisova K, Hass-Symotiuk M, Kludacz-Alessandri M. Use of the dea method to verify the performance model for hospitals. E M Ekon A Manag. 2018;21(4):125–40.

Lee D, Yu S, Yoon SN. Analysis of hospital management based on the characteristics of hospitals: focusing on financial indicators. Glob Bus Financ Rev. 2019;24(3):1–13.

Mirzaei A, Tabibi SJ, Nasiripour AA, Riahi L. Evaluating the feasibility of financial variables of health: A hospital administrator’s viewpoint. Galen Med J. 2016;5(1):25–30.

Middleton S, Gardner G, Gardner A, Considine J, FitzGerald G, Christofis L, et al. Are service and patient indicators different in the presence or absence of nurse practitioners? The EDPRAC cohort study of Australian emergency departments. BMJ Open. 2019;9(7):e024529.

Nobakht S, Jahangiri K, Hajinabi K. Correlation of performance indicators and productivity: A cross sectional study of emergency departments in Tehran, Iran during year 2016. Trauma Mon. 2018;23(5):1–6.

Nuti S, Grillo Ruggieri T, Podetti S. Do university hospitals perform better than general hospitals? A comparative analysis among Italian regions. BMJ Open. 2016;6(8):e011426.

Petrovic GM, Vukovic M, Vranes AJ. The impact of accreditation on health care quality in hospitals. Vojnosanit Pregl. 2018;75(8):803–8.

Pirani N, Zahiri M, Engali KA, Torabipour A. Hospital efficiency measurement before and after health sector evolution plan in Southwest of Iran: a DEA-panel data study. Acta Inf Med. 2018;26(2):106–10.

Profit J, Gould JB, Bennett M, Goldstein BA, Draper D, Phibbs CS, et al. The association of level of care with NICU quality. Pediatrics. 2016;137(3):44–51.

Rahimi H, Bahmaei J, Shojaei P, Kavosi Z, Khavasi M. Developing a strategy map to improve public hospitals performance with balanced scorecard and dematel approach. Shiraz E Med J. 2018;19(7):1–12.

Ahmed S, Hasan MZ, Laokri S, Jannat Z, Ahmed MW, Dorin F, et al. Technical efficiency of public district hospitals in Bangladesh: a data envelopment analysis. COST Eff Resour Alloc. 2019;17:17.

Rahman MH, Tumpa TJ, Ali SM, Paul SK. A grey approach to predicting healthcare performance. Meas J Int Meas Confed. 2019;134:307–25.

Sajadi HS, Sajadi ZS, Sajadi FA, Hadi M, Zahmatkesh M. The comparison of hospitals’ performance indicators before and after the Iran’s hospital care transformations plan. J Educ Health Promot. 2017;6:89.

Si S-L, You X-Y, Liu H-C, Huang J. Identifying key performance indicators for holistic hospital management with a modified DEMATEL approach. Int J Environ Res Public Health. 2017;14(8): 934.

Váchová L, Hajdíková T. Evaluation of Czech hospitals performance using MCDM methods. In: A SI, G WS, C D, editors. Department of exact methods, faculty of management, university of economics, Prague, Jarošovská 1117, Jindřichuv Hradec, vol. 37701. Czech Republic: Newswood Limited; 2017. p. 732–5.

Xenos P, Yfantopoulos J, Nektarios M, Polyzos N, Tinios P, Constantopoulos A. Efficiency and productivity assessment of public hospitals in Greece during the crisis period 2009–2012. Cost Eff Resour Alloc. 2017;15(1):6.

Zhang L, Liu R, Jiang S, Luo G, Liu H-C. Identification of key performance indicators for hospital management using an extended hesitant linguistic DEMATEL Approach. Healthc (Basel Switzerland). 2019;8(1):7.

Aksezer CS. A nonparametric approach for optimal reliability allocation in health services. Int J Qual Reliab Manag. 2016;33(2):284–94.

Cagliano AC, Grimaldi S, Rafele C. Assessing warehouse centralization and outsourcing in the healthcare sector: an Italian case study. In: Department of Management and Production Engineering, Politecnico Di Torino, Corso Duca Degli Abruzzi 24, Torino, 10129. Italy: AIDI - Italian Association of Industrial Operations Professors; 2017. p. 244–50.

Cefalu MS, Elliott MN, Setodji CM, Cleary PD, Hays RD. Hospital quality indicators are not unidimensional: a reanalysis of Lieberthal and Comer. Health Serv Res. 2019;54(2):502–8.

Gao H, Chen H, Feng J, Qin X, Wang X, Liang S, et al. Balanced scorecard-based performance evaluation of Chinese county hospitals in underdeveloped areas. J Int Med Res. 2018;46(5):1947–62.

Gonnelli V, Satta F, Frosini F, Iadanza E. Evidence-based approach to medical equipment maintenance monitoring. In: V HEO, V J, editors. University of Florence, Dept. of Information Engineering. Florence, Italy: Springer; 2017. p. 258–61.

Helkio P, Aantaa R, Virolainen P, Tuominen R. Productivity benchmarks for operative service units. ACTA Anaesthesiol Scand. 2016;60(4):450–6.

Khalifa M, Zabani I. Developing emergency room key performance indicators: What to measure and why should we measure it? J. M, A. H, P. G, A. K, M.S. H, editors. Vol. 226. King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia: IOS Press BV; 2016. p. 179–182.

Ajami S, Ebadsichani A, Tofighi S, Tavakoli N. Medical records department and balanced scorecard approach. J Educ Health Promot. 2013;2:7.

Bosse G, Mtatifikolo F, Abels W, Strosing C, Breuer J-P, Spies C. Immediate outcome indicators in perioperative care: a controlled intervention study on quality improvement in hospitals in Tanzania. PLoS One. 2013;8(6):e65428.

Hung K-Y, Jerng J-S. Time to have a paradigm shift in health care quality measurement. J Formos Med Assoc. 2014;113(10):673–9.

Jeejeebhoy KN, Keller H, Gramlich L, Allard JP, Laporte M, Duerksen DR, et al. Nutritional assessment: comparison of clinical assessment and objective variables for the prediction of length of hospital stay and readmission. Am J Clin Nutr. 2015;101(5):956–65.

Kittelsen SAC, Anthun KS, Goude F, Huitfeldt IMS, Häkkinen U, Kruse M, et al. Costs and quality at the hospital level in the nordic countries. Heal Econ (United Kingdom). 2015;24:140–63.

Koné Péfoyo AJ, Wodchis WP. Organizational performance impacting patient satisfaction in Ontario hospitals: a multilevel analysis. BMC Res Notes. 2013;6: 509.

Li CH, Yu CH. Performance evaluation of public non-profit hospitals using a BP Artificial neural network: the case of Hubei Province in China. Int J Environ Res Public Health. 2013;10(8):3619–33.

Liu K, Jain S, Shi J. Physician performance assessment using a composite quality index. Stat Med. 2013;32(15):2661–80.

Lloyd GF, Bajorek B, Barclay P, Goh S. Narrative review: Status of key performance indicators in contemporary hospital pharmacy practice. J Pharm Pract Res. 2015;45(4):396–403.

Mehrtak M, Yusefzadeh H, Jaafaripooyan E. Pabon Lasso and data envelopment analysis: a complementary approach to hospital performance measurement. Glob J Health Sci. 2014;6(4):107–16.

Mohammadi M, Ziapoor A, Mahboubi M, Faroukhi A, Amani N, Pour FH, et al. Performance evaluation of hospitals under supervision of Kermanshah medical sciences using pabonlasoty diagram of a five-year period (2008–2012). Life Sci J. 2014;11:77–81 ( 1 SPECL. ISSUE) ).

Niaksu O, Zaptorius J. Applying operational research and data mining to performance based medical personnel motivation system. In: Vilnius University, Institute of Mathematics and Informatics. Lithuania: IOS; 2014. p. 63–70.

Córdoba S, Caballero I, Navalón R, Martínez-Sánchez D, Martínez-Morán C, Borbujo J. Analysis of the surgical activity in the dermatology department of Fuenlabrada University Hospital, Madrid, Spain, between 2005 and 2010: determination of the standard operating times. Actas Dermosifiliogr. 2013;104(2):141–7.

Profit J, Kowalkowski MA, Zupancic JAF, Pietz K, Richardson P, Draper D, et al. Baby-MONITOR: a composite indicator of NICU Quality. Pediatrics. 2014;134(1):74–82.

Rabar D, Pap N. Evaluation of crotia’s regional hospital effiency: an application of data envelopment analysis . Bacher U, Barkovic D, Dernoscheg KH, LamzaMaronic M, Matic B, Runzheimer B, editors. Interdisciplinary Management Research IX. 2013;9:649–59.

Ramos MCA, da Cruz LP, Kishima VC, Pollara WM, de Lira ACO, Couttolenc BF. Performance evaluation of hospitals that provide care in the public health system, Brazil. Rev Saude Publica. 2015;49:1–9.

Schuers M, Joulakian MB, Griffon N, Pachéco J, Périgard C, Lepage E, et al. In: S IN, de PM AM, editors. Quality indicators from laboratory and radiology information systems. A. G. Volume 216. France: IOS; 2015. pp. 212–6. Department of Biomedical Informatics, Rouen University Hospital, Rouen Cedex, 76031,.

Tabrizi JS, Saadati M, Sadeghi-Bazargani H, Ebadi A, Golzari SEJ. Developing indicators to improve educational governance in hospitals. Clin Gov. 2014;19(2):117–25.

Costa A Jr, aS., Leão LE, Novais MA, Zucchi P. An assessment of the quality indicators of operative and non-operative times in a public university hospital. Einstein (Sao Paulo). 2015;13(4):594–9.

Coyne JS, Helton J. How prepared are US hospitals for the affordable care act? A financial condition analysis of US hospitals in 2011. J Health Care Finance. 2015;41(3).

Davis P, Milne B, Parker K, Hider P, Lay-Yee R, Cumming J, et al. Efficiency, effectiveness, equity (E-3). Evaluating hospital performance in three dimensions. Health Policy (New York). 2013;112(1–2):19–27.

Flatow VH, Ibragimova N, Divino CM, Eshak DSA, Twohig BC, Bassily-Marcus AM, et al. Quality outcomes in the surgical intensive care unit after electronic health record implementation. Appl Clin Inf. 2015;6(4):611–8.

Article   CAS   Google Scholar  

Fonseca JRS, Ramos RMP, Santos AMP, Fonseca APSS. Policy effects on the quality of public health care: evaluating Portuguese public hospitals’ quality through customers’ views. Cent Eur J Public Policy. 2015;9(2):122–40.

Hadji B, Meyer R, Melikeche S, Escalon S, Degoulet P. Assessing the Relationships Between Hospital Resources and Activities: A Systematic Review. J Med Syst. 2014;38(10):1–21.

Hajduová Z, Herbrik G, Beslerová S. Application of DEA in the environment of Slovak hospitals. Invest Manag Financ Innov. 2015;12(4):148–53.

Thomas Craig KJ, McKillop MM, Huang HT, George J, Punwani ES, Rhee KB. U.S. hospital performance methodologies: a scoping review to identify opportunities for crossing the quality chasm. BMC Health Serv Res. 2020;20(1):640.

Carini E, Gabutti I, Frisicale EM, Di Pilla A, Pezzullo AM, de Waure C, et al. Assessing hospital performance indicators. What dimensions? Evidence from an umbrella review. BMC Health Serv Res. 2020;20(1):1038.

Rasi V, Delgoshaee B, Maleki M. Identification of common indicators of hospital performance evaluation models: a scoping review. J Educ Health Promot. 2020;9(1):63.

Xenos P, Yfantopoulos J, Nektarios M, Polyzos N, Tinios P, Constantopoulos A. Efficiency and productivity assessment of public hospitals in Greece during the crisis period 2009–2012. COST Eff Resour Alloc. 2017;15:15.

Shaqura II, Gholami M, Sari AA. Evaluation of performance at Palestinian public hospitals using Pabon Lasso model. Int J Health Plann Manage. 2021;36(3):896–910.

Li J, Seale H, Ray P, Wang Q, Yang P, Li S, et al. E-Health preparedness assessment in the context of an influenza pandemic: a qualitative study in China. BMJ Open. 2013;3(3):e002293.

Huang C-Y, Lai C-H. Effects of internal branding management in a hospital context. Serv Ind J. 2021;41(15–16):985–1006.

Download references

Acknowledgements

The authors are grateful for the support of the Vice Chancellor for Research of Isfahan University of Medical Sciences.

The present article is part of the result of a doctoral thesis approved by Isfahan University of Medical Sciences with code 55657 (IR.MUI.NUREMA.REC.1401.005), without financial source.

Author information

Authors and affiliations.

Student Research Committee, School of Management and Medical Information Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

Shirin Alsadat Hadian

Health Management and Economics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

Reza Rezayatmand

Hospital Management Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran

Nasrin Shaarbafchizadeh

Department of Management, Faculty of Administrative Sciences and Economics, University of Isfahan, Isfahan, Iran

Saeedeh Ketabi

School of Public Health and Preventive Medicine, Monash University, Victoria, Australia

Ahmad Reza Pourghaderi

You can also search for this author in PubMed   Google Scholar

Contributions

Shirin Alsadat Hadian and Reza Rezayatmans and Saeedeh Ketabi: Study conceptualization and design. Acquisition of data: Shirin Alsadat Hadian, Reza Rezayatmand. Analysis and interpretation of data: Shirin Alsadat Hadian, Reza Rezayatmand, Nasrin Shaarbafchizadeh, Saeedeh Ketabi. Drafting of the manuscript: Shirin Alsadat Hadian, Reza Rezayatmand. Critical revision of the manuscript for important intellectual content: Reza Rezayatmand, Nasrin Shaarbafchizadeh, Saeedeh Ketabi, Ahmad Reza Pourghaderi.

Corresponding author

Correspondence to Reza Rezayatmand .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary material 1., supplementary material 2., supplementary material 3., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Hadian, S.A., Rezayatmand, R., Shaarbafchizadeh, N. et al. Hospital performance evaluation indicators: a scoping review. BMC Health Serv Res 24 , 561 (2024). https://doi.org/10.1186/s12913-024-10940-1

Download citation

Received : 03 January 2024

Accepted : 02 April 2024

Published : 01 May 2024

DOI : https://doi.org/10.1186/s12913-024-10940-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Performance evaluation

BMC Health Services Research

ISSN: 1472-6963

literature study research method

COMMENTS

  1. Literature review as a research methodology: An ...

    This is why the literature review as a research method is more relevant than ever. Traditional literature reviews often lack thoroughness and rigor and are conducted ad hoc, rather than following a specific methodology. Therefore, questions can be raised about the quality and trustworthiness of these types of reviews.

  2. How to Write a Literature Review

    Examples of literature reviews. Step 1 - Search for relevant literature. Step 2 - Evaluate and select sources. Step 3 - Identify themes, debates, and gaps. Step 4 - Outline your literature review's structure. Step 5 - Write your literature review.

  3. (PDF) Literature Review as a Research Methodology: An overview and

    This paper draws input from a study that employed a systematic literature review as its main source of data. A systematic review can be explained as a research method and process for identifying ...

  4. Research Methods

    Most commonly used undergraduate research methods: Scholarship Methods: Studies the body of scholarship written about a particular author, literary work, historical period, literary movement, genre, theme, theory, or method. Textual Analysis Methods: Used for close readings of literary texts, these methods also rely on literary theory and ...

  5. Guidance on Conducting a Systematic Literature Review

    This article is organized as follows: The next section presents the methodology adopted by this research, followed by a section that discusses the typology of literature reviews and provides empirical examples; the subsequent section summarizes the process of literature review; and the last section concludes the paper with suggestions on how to improve the quality and rigor of literature ...

  6. Literature Review Research

    Literature Review is a comprehensive survey of the works published in a particular field of study or line of research, usually over a specific period of time, in the form of an in-depth, critical bibliographic essay or annotated list in which attention is drawn to the most significant works. Also, we can define a literature review as the ...

  7. Methodological Approaches to Literature Review

    The literature review can serve various functions in the contexts of education and research. It aids in identifying knowledge gaps, informing research methodology, and developing a theoretical framework during the planning stages of a research study or project, as well as reporting of review findings in the context of the existing literature.

  8. (PDF) Literature review as a research methodology: An overview and

    This. paper discusses literature review as a methodology for conducting research and o ffers an overview of different. types of reviews, as well as some guidelines to how to both conduct and ...

  9. Literature Review (Chapter 4)

    A literature review is a survey of scholarly sources that establishes familiarity with and an understanding of current research in a particular field. It includes a critical analysis of the relationship among different works, seeking a synthesis and an explanation of gaps, while relating findings to the project at hand.

  10. Reviewing the research methods literature: principles and strategies

    The conventional focus of rigorous literature reviews (i.e., review types for which systematic methods have been codified, including the various approaches to quantitative systematic reviews [2-4], and the numerous forms of qualitative and mixed methods literature synthesis [5-10]) is to synthesize empirical research findings from multiple ...

  11. PDF METHODOLOGY OF THE LITERATURE REVIEW

    In the field of research, the term method represents the specific approaches and procedures that the researcher systematically utilizes that are manifested in the research design, sampling design, data collec-tion, data analysis, data interpretation, and so forth. The literature review represents a method because the literature reviewer chooses ...

  12. Writing a literature review

    Writing a literature review requires a range of skills to gather, sort, evaluate and summarise peer-reviewed published data into a relevant and informative unbiased narrative. Digital access to research papers, academic texts, review articles, reference databases and public data sets are all sources of information that are available to enrich ...

  13. Method Article How-to conduct a systematic literature review: A quick

    Method details Overview. A Systematic Literature Review (SLR) is a research methodology to collect, identify, and critically analyze the available research studies (e.g., articles, conference proceedings, books, dissertations) through a systematic procedure [12].An SLR updates the reader with current literature about a subject [6].The goal is to review critical points of current knowledge on a ...

  14. 5. The Literature Review

    A literature review may consist of simply a summary of key sources, but in the social sciences, a literature review usually has an organizational pattern and combines both summary and synthesis, often within specific conceptual categories.A summary is a recap of the important information of the source, but a synthesis is a re-organization, or a reshuffling, of that information in a way that ...

  15. Approaching literature review for academic purposes: The Literature

    A sophisticated literature review (LR) can result in a robust dissertation/thesis by scrutinizing the main problem examined by the academic study; anticipating research hypotheses, methods and results; and maintaining the interest of the audience in how the dissertation/thesis will provide solutions for the current gaps in a particular field.

  16. Steps in Conducting a Literature Review

    A literature review is an integrated analysis-- not just a summary-- of scholarly writings and other relevant evidence related directly to your research question.That is, it represents a synthesis of the evidence that provides background information on your topic and shows a association between the evidence and your research question.

  17. Literature Review

    A literature review is a discussion of the literature (aka. the "research" or "scholarship") surrounding a certain topic. A good literature review doesn't simply summarize the existing material, but provides thoughtful synthesis and analysis. The purpose of a literature review is to orient your own work within an existing body of knowledge.

  18. Reviewing literature for research: Doing it the right way

    Literature search. Fink has defined research literature review as a "systematic, explicit and reproducible method for identifying, evaluating, and synthesizing the existing body of completed and recorded work produced by researchers, scholars and practitioners."[]Review of research literature can be summarized into a seven step process: (i) Selecting research questions/purpose of the ...

  19. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  20. PDF Higher Education Research Methodology-Literature Method

    1. Literature methodology Literature research methodology is to read through, analyze and sort literatures in order to identify the essential attribute of materials. Its significant difference from other methodologies is that it does not directly deal with the object under study, but to indirectly access to information from a variety of ...

  21. Research Methods: Literature Reviews

    Research: locate literature related to your topic to identify the gap(s) that can be addressed; Read: read the articles or other sources of information; Analyze: assess the findings for relevancy; Evaluating: determine how the article are relevant to your research and what are the key findings

  22. Research Methods

    Most commonly used undergraduate research methods: Scholarship Methods: Studies the body of published scholarship written about a particular author, literary work, historical period, literary movement, genre, theme, theory, or method. Textual Analysis Methods: Used for close readings of literary texts, these methods also rely on literary theory ...

  23. How Literature Review Influences Research Methodology

    A literature review serves as a map for navigating the complex terrain of scholarly research. By examining previous studies, theories, and frameworks, you gain a comprehensive understanding of the ...

  24. A systematic literature review on coping mechanisms and food ...

    Research methodology is the systematic approach researchers use to design, conduct, and analyze their studies. ... This study conducted a literature review on food security and coping mechanisms during the COVID-19 pandemic. Most studies relied on quantitative methods for data collection, with limited use of qualitative or mixed methods. ...

  25. Chapter 9 Methods for Literature Reviews

    9.3. Types of Review Articles and Brief Illustrations. EHealth researchers have at their disposal a number of approaches and methods for making sense out of existing literature, all with the purpose of casting current research findings into historical contexts or explaining contradictions that might exist among a set of primary research studies conducted on a particular topic.

  26. The effect of proximity on risk perception: A systematic literature

    The use of geospatial analytical tools has recently advanced risk perception research, with growing interest in spatial dimension. Available reviews of risk perception studies usually focus on specific types of risk or look at various socio-psychological, cognitive and cultural factors, and there are no systematic reviews of empirical research analysing the effect of proximity on risk perception.

  27. Machine learning models for abstract screening task

    Systematic literature reviews (SLRs) are critical for life-science research. However, the manual selection and retrieval of relevant publications can be a time-consuming process. This study aims to (1) develop two disease-specific annotated corpora, one for human papillomavirus (HPV) associated diseases and the other for pneumococcal-associated pediatric diseases (PAPD), and (2) optimize ...

  28. Hospital performance evaluation indicators: a scoping review

    Background Hospitals are the biggest consumers of health system budgets and hence measuring hospital performance by quantitative or qualitative accessible and reliable indicators is crucial. This review aimed to categorize and present a set of indicators for evaluating overall hospital performance. Methods We conducted a literature search across three databases, i.e., PubMed, Scopus, and Web ...

  29. Vaccines

    Study design approaches were primarily cross-sectional, utilizing web-based survey distribution methods. HPV vaccination status and HPV screening behaviors were primarily measured through participant self-report. ... This scoping review highlights a gap in the literature and an opportunity for research focused on a specific population that is ...

  30. Full article: Firefighters or deputy lead learners? Organizational

    ABSTRACT. There is a dearth of research examining secondary school deputy principals' in situ educational leadership practices. This study explores deputies' educational leadership and engagement with the Australian Professional Standards for Teachers (benchmarking standards). Interviews with seven system and policy leaders from regulatory and jurisdictional organizations provided ...