Assignment Problem: Meaning, Methods and Variations | Operations Research

dummy row in assignment problem

After reading this article you will learn about:- 1. Meaning of Assignment Problem 2. Definition of Assignment Problem 3. Mathematical Formulation 4. Hungarian Method 5. Variations.

Meaning of Assignment Problem:

An assignment problem is a particular case of transportation problem where the objective is to assign a number of resources to an equal number of activities so as to minimise total cost or maximize total profit of allocation.

The problem of assignment arises because available resources such as men, machines etc. have varying degrees of efficiency for performing different activities, therefore, cost, profit or loss of performing the different activities is different.

Thus, the problem is “How should the assignments be made so as to optimize the given objective”. Some of the problem where the assignment technique may be useful are assignment of workers to machines, salesman to different sales areas.

Definition of Assignment Problem:

ADVERTISEMENTS:

Suppose there are n jobs to be performed and n persons are available for doing these jobs. Assume that each person can do each job at a term, though with varying degree of efficiency, let c ij be the cost if the i-th person is assigned to the j-th job. The problem is to find an assignment (which job should be assigned to which person one on-one basis) So that the total cost of performing all jobs is minimum, problem of this kind are known as assignment problem.

The assignment problem can be stated in the form of n x n cost matrix C real members as given in the following table:

dummy row in assignment problem

Step :4 If each row and each column contains exactly one assignment, then the solution is optimal.

Example 10.7

Solve the following assignment problem. Cell values represent cost of assigning job A, B, C and D to the machines I, II, III and IV.

dummy row in assignment problem

Here the number of rows and columns are equal.

∴ The given assignment problem is balanced. Now let us find the solution.

Step 1: Select a smallest element in each row and subtract this from all the elements in its row.

dummy row in assignment problem

Look for atleast one zero in each row and each column.Otherwise go to step 2.

Step 2: Select the smallest element in each column and subtract this from all the elements in its column.

dummy row in assignment problem

Since each row and column contains atleast one zero, assignments can be made.

Step 3 (Assignment):

dummy row in assignment problem

Thus all the four assignments have been made. The optimal assignment schedule and total cost is

dummy row in assignment problem

The optimal assignment (minimum) cost

Example 10.8

Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows. Determine the optimum assignment schedule.

dummy row in assignment problem

∴ The given assignment problem is balanced.

Now let us find the solution.

The cost matrix of the given assignment problem is

dummy row in assignment problem

Column 3 contains no zero. Go to Step 2.

dummy row in assignment problem

Thus all the five assignments have been made. The Optimal assignment schedule and total cost is

dummy row in assignment problem

The optimal assignment (minimum) cost = ` 9

Example 10.9

Solve the following assignment problem.

dummy row in assignment problem

Since the number of columns is less than the number of rows, given assignment problem is unbalanced one. To balance it , introduce a dummy column with all the entries zero. The revised assignment problem is

dummy row in assignment problem

Here only 3 tasks can be assigned to 3 men.

Step 1: is not necessary, since each row contains zero entry. Go to Step 2.

dummy row in assignment problem

Step 3 (Assignment) :

dummy row in assignment problem

Since each row and each columncontains exactly one assignment,all the three men have been assigned a task. But task S is not assigned to any Man. The optimal assignment schedule and total cost is

dummy row in assignment problem

The optimal assignment (minimum) cost = ₹ 35

Related Topics

Privacy Policy , Terms and Conditions , DMCA Policy and Compliant

Copyright © 2018-2024 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.

Algorithms: The Assignment Problem

One of the interesting things about studying optimization is that the techniques show up in a lot of different areas. The “assignment problem” is one that can be solved using simple techniques, at least for small problem sizes, and is easy to see how it could be applied to the real world.

Assignment Problem

Pretend for a moment that you are writing software for a famous ride sharing application. In a crowded environment, you might have multiple prospective customers that are requesting service at the same time, and nearby you have multiple drivers that can take them where they need to go. You want to assign the drivers to the customers in a way that minimizes customer wait time (so you keep the customers happy) and driver empty time (so you keep the drivers happy).

The assignment problem is designed for exactly this purpose. We start with m agents and n tasks. We make the rule that every agent has to be assigned to a task. For each agent-task pair, we figure out a cost associated to have that agent perform that task. We then figure out which assignment of agents to tasks minimizes the total cost.

Of course, it may be true that m != n , but that’s OK. If there are too many tasks, we can make up a “dummy” agent that is more expensive than any of the others. This will ensure that the least desirable task will be left to the dummy agent, and we can remove that from the solution. Or, if there are too many agents, we can make up a “dummy” task that is free for any agent. This will ensure that the agent with the highest true cost will get the dummy task, and will be idle.

If that last paragraph was a little dense, don’t worry; there’s an example coming that will help show how it works.

There are special algorithms for solving assignment problems, but one thing that’s nice about them is that a general-purpose solver can handle them too. Below is an example, but first it will help to cover a few concepts that we’ll be using.

Optimization Problems

Up above, we talked about making “rules” and minimizing costs. The usual name for this is optimization. An optimization problem is one where we have an “objective function” (which tells us what our goals are) and one or more “constraint functions” (which tell us what the rules are). The classic example is a factory that can make both “widgets” and “gadgets”. Each “widget” and “gadget” earns a certain amount of profit, but it also uses up raw material and time on the factory’s machines. The optimization problem is to determine exactly how many “widgets” and how many “gadgets” to make to maximize profit (the objective) while fitting within the material and time available (the constraints).

If we were to write this simple optimization problem out, it might look like this:

In this case, we have two variables: g for the number of gadgets we make and w for the number of widgets we make. We also have three constraints that we have to meet. Note that they are inequalities; we might not use all the available material or time in our optimal solution.

Just to unpack this a little: in English, the above is saying that we make 45 dollars / euros / quatloos per gadget we make. However, to make a gadget needs 120 lbs of raw material 1, 80 lbs of raw material 2, and 3.8 hours of machine time. So there is a limit on how many gadgets we can make, and it might be a better use of resources to balance gadgets with widgets.

Of course, real optimization problems have many more than two variables and many constraint functions, making them much harder to solve. The easiest kind of optimization problem to solve is linear, and fortunately, the assignment problem is linear.

Linear Programming

A linear program is a kind of optimization problem where both the objective function and the constraint functions are linear. (OK, that definition was a little self-referential.) We can have as many variables as we want, and as many constraint functions as we want, but none of the variables can have exponents in any of the functions. This limitation allows us to apply very efficient mathematical approaches to solve the problem, even for very large problems.

We can state the assignment problem as a linear programming problem. First, we choose to make “i” represent each of our agents (drivers) and “j” to represent each of our tasks (customers). Now, to write a problem like this, we need variables. The best approach is to use “indicator” variables, where xij = 1 means “driver i picks up customer j” and xij = 0 means “driver i does not pick up customer j”.

We wind up with:

This is a compact mathematical way to describe the problem, so again let me put it in English.

First, we need to figure out the cost of having each driver pick up each customer. Then, we can calculate the total cost for any scenario by just adding up the costs for the assignments we pick. For any assignment we don’t pick, xij will equal zero, so that term will just drop out of the sum.

Of course, the way we set up the objective function, the cheapest solution is for no drivers to pick up any customers. That’s not a very good business model. So we need a constraint to show that we want to have a driver assigned to every customer. At the same time, we can’t have a driver assigned to mutiple customers. So we need a constraint for that too. That leads us to the two constraints in the problem. The first just says, if you add up all the assignments for a given driver, you want the total number of assignments for that driver to be exactly one. The second constraint says, if you add up all the assignments to a given customer, you want the total number of drivers assigned to the customer to be one. If you have both of these, then each driver is assigned to exactly one customer, and the customers and drivers are happy. If you do it in a way that minimizes costs, then the business is happy too.

Solving with Octave and GLPK

The GNU Linear Programming Kit is a library that solves exactly these kinds of problems. It’s easy to set up the objective and constraints using GNU Octave and pass these over to GLPK for a solution.

Given some made-up sample data, the program looks like this:

Start with the definition of “c”, the cost information. For this example, I chose to have four drivers and three customers. There are sixteen numbers there; the first four are the cost of each driver to get the first customer, the next four are for the second customer, and the next four are for the third customer. Because we have an extra driver, we add a “dummy” customer at the end that is zero cost. This represents one of the drivers being idle.

The next definition is “b”, the right-hand side of our constraints. There are eight constraints, one for each of the drivers, and one for each of the customers (including the dummy). For each constraint, the right-hand side is 1.

The big block in the middle defines our constraint matrix “a”. This is the most challenging part of taking the mathematical definition and putting it into a form that is usable by GLPK; we have to expand out each constraint. Fortunately, in these kinds of cases, we tend to get pretty patterns that help us know we’re on the right track.

The first line in “a” says that the first customer needs a driver. To see why, remember that in our cost information, the first four numbers are the cost for each driver to get the first customer. With this constraint, we are requiring that one of those four costs be included and therefore that a driver is “selected” for the first customer. The other lines in “a” work similarly; the last four ensure that each driver has an assignment.

Note that the number of rows in “a” matches the number of items in “b”, and the number of columns in “a” matches the number of items in “c”. This is important; GLPK won’t run if this is not true (and our problem isn’t stated right in any case).

Compared to the above, the last few lines are easy.

  • “lb” gives the lower bound for each variable.
  • “ub” gives the upper bound.
  • “ctype” tells GLPK that each constraint is an equality (“strict” as opposed to providing a lower or upper bound).
  • “vartype” tells GLPK that these variables are all integers (can’t have half a driver showing up).
  • “s” tells GLPK that we want to minimize our costs, not maximize them.

We push all that through a function call to GLPK, and what comes back are two values (along with some other stuff I’ll exclude for clarity):

The first item tells us that our best solution takes 27 minutes, or dollars, or whatever unit we used for cost. The second item tells us the assignments we got. (Note for pedants: I transposed this output to save space.)

This output tells us that customer 1 gets driver 2, customer 2 gets driver 3, customer 3 gets driver 4, and driver 1 is idle. If you look back at the cost data, you can see this makes sense, because driver 1 had some of the most expensive times to the three customers. You can also see that it managed to pick the least expensive pairing for each customer. (Of course, if I had done a better job making up cost data, it might not have picked the least expensive pairing in all cases, because a suboptimal individual pairing might still lead to an overall optimal solution. But this is a toy example.)

Of course, for a real application, we would have to take into consideration many other factors, such as the passage of time. Rather than knowing all of our customers and drivers up front, we would have customers and drivers continually showing up and being assigned. But I hope this simple example has revealed some of the concepts behind optimization and linear programming and the kinds of real-world problems that can be solved.

Assignment Problem: Maximization

There are problems where certain facilities have to be assigned to a number of jobs, so as to maximize the overall performance of the assignment.

The Hungarian Method can also solve such assignment problems , as it is easy to obtain an equivalent minimization problem by converting every number in the matrix to an opportunity loss.

The conversion is accomplished by subtracting all the elements of the given matrix from the highest element. It turns out that minimizing opportunity loss produces the same assignment solution as the original maximization problem.

  • Unbalanced Assignment Problem
  • Multiple Optimal Solutions

Example: Maximization In An Assignment Problem

At the head office of www.universalteacherpublications.com there are five registration counters. Five persons are available for service.

How should the counters be assigned to persons so as to maximize the profit ?

Here, the highest value is 62. So we subtract each value from 62. The conversion is shown in the following table.

On small screens, scroll horizontally to view full calculation

Now the above problem can be easily solved by Hungarian method . After applying steps 1 to 3 of the Hungarian method, we get the following matrix.

Draw the minimum number of vertical and horizontal lines necessary to cover all the zeros in the reduced matrix.

Select the smallest element from all the uncovered elements, i.e., 4. Subtract this element from all the uncovered elements and add it to the elements, which lie at the intersection of two lines. Thus, we obtain another reduced matrix for fresh assignment. Repeating step 3, we obtain a solution which is shown in the following table.

Final Table: Maximization Problem

Use Horizontal Scrollbar to View Full Table Calculation

The total cost of assignment = 1C + 2E + 3A + 4D + 5B

Substituting values from original table: 40 + 36 + 40 + 36 + 62 = 214.

Share This Article

Operations Research Simplified Back Next

Goal programming Linear programming Simplex Method Transportation Problem

dummy row in assignment problem

2. Algorithm & Example-1

dummy row in assignment problem

Hungarian Method

The Hungarian method is a computational optimization technique that addresses the assignment problem in polynomial time and foreshadows following primal-dual alternatives. In 1955, Harold Kuhn used the term “Hungarian method” to honour two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry. Let’s go through the steps of the Hungarian method with the help of a solved example.

Hungarian Method to Solve Assignment Problems

The Hungarian method is a simple way to solve assignment problems. Let us first discuss the assignment problems before moving on to learning the Hungarian method.

What is an Assignment Problem?

A transportation problem is a type of assignment problem. The goal is to allocate an equal amount of resources to the same number of activities. As a result, the overall cost of allocation is minimised or the total profit is maximised.

Because available resources such as workers, machines, and other resources have varying degrees of efficiency for executing different activities, and hence the cost, profit, or loss of conducting such activities varies.

Assume we have ‘n’ jobs to do on ‘m’ machines (i.e., one job to one machine). Our goal is to assign jobs to machines for the least amount of money possible (or maximum profit). Based on the notion that each machine can accomplish each task, but at variable levels of efficiency.

Hungarian Method Steps

Check to see if the number of rows and columns are equal; if they are, the assignment problem is considered to be balanced. Then go to step 1. If it is not balanced, it should be balanced before the algorithm is applied.

Step 1 – In the given cost matrix, subtract the least cost element of each row from all the entries in that row. Make sure that each row has at least one zero.

Step 2 – In the resultant cost matrix produced in step 1, subtract the least cost element in each column from all the components in that column, ensuring that each column contains at least one zero.

Step 3 – Assign zeros

  • Analyse the rows one by one until you find a row with precisely one unmarked zero. Encircle this lonely unmarked zero and assign it a task. All other zeros in the column of this circular zero should be crossed out because they will not be used in any future assignments. Continue in this manner until you’ve gone through all of the rows.
  • Examine the columns one by one until you find one with precisely one unmarked zero. Encircle this single unmarked zero and cross any other zero in its row to make an assignment to it. Continue until you’ve gone through all of the columns.

Step 4 – Perform the Optimal Test

  • The present assignment is optimal if each row and column has exactly one encircled zero.
  • The present assignment is not optimal if at least one row or column is missing an assignment (i.e., if at least one row or column is missing one encircled zero). Continue to step 5. Subtract the least cost element from all the entries in each column of the final cost matrix created in step 1 and ensure that each column has at least one zero.

Step 5 – Draw the least number of straight lines to cover all of the zeros as follows:

(a) Highlight the rows that aren’t assigned.

(b) Label the columns with zeros in marked rows (if they haven’t already been marked).

(c) Highlight the rows that have assignments in indicated columns (if they haven’t previously been marked).

(d) Continue with (b) and (c) until no further marking is needed.

(f) Simply draw the lines through all rows and columns that are not marked. If the number of these lines equals the order of the matrix, then the solution is optimal; otherwise, it is not.

Step 6 – Find the lowest cost factor that is not covered by the straight lines. Subtract this least-cost component from all the uncovered elements and add it to all the elements that are at the intersection of these straight lines, but leave the rest of the elements alone.

Step 7 – Continue with steps 1 – 6 until you’ve found the highest suitable assignment.

Hungarian Method Example

Use the Hungarian method to solve the given assignment problem stated in the table. The entries in the matrix represent each man’s processing time in hours.

\(\begin{array}{l}\begin{bmatrix} & I & II & III & IV & V \\1 & 20 & 15 & 18 & 20 & 25 \\2 & 18 & 20 & 12 & 14 & 15 \\3 & 21 & 23 & 25 & 27 & 25 \\4 & 17 & 18 & 21 & 23 & 20 \\5 & 18 & 18 & 16 & 19 & 20 \\\end{bmatrix}\end{array} \)

With 5 jobs and 5 men, the stated problem is balanced.

\(\begin{array}{l}A = \begin{bmatrix}20 & 15 & 18 & 20 & 25 \\18 & 20 & 12 & 14 & 15 \\21 & 23 & 25 & 27 & 25 \\17 & 18 & 21 & 23 & 20 \\18 & 18 & 16 & 19 & 20 \\\end{bmatrix}\end{array} \)

Subtract the lowest cost element in each row from all of the elements in the given cost matrix’s row. Make sure that each row has at least one zero.

\(\begin{array}{l}A = \begin{bmatrix}5 & 0 & 3 & 5 & 10 \\6 & 8 & 0 & 2 & 3 \\0 & 2 & 4 & 6 & 4 \\0 & 1 & 4 & 6 & 3 \\2 & 2 & 0 & 3 & 4 \\\end{bmatrix}\end{array} \)

Subtract the least cost element in each Column from all of the components in the given cost matrix’s Column. Check to see if each column has at least one zero.

\(\begin{array}{l}A = \begin{bmatrix}5 & 0 & 3 & 3 & 7 \\6 & 8 & 0 & 0 & 0 \\0 & 2 & 4 & 4 & 1 \\0 & 1 & 4 & 4 & 0 \\2 & 2 & 0 & 1 & 1 \\\end{bmatrix}\end{array} \)

When the zeros are assigned, we get the following:

Hungarian Method

The present assignment is optimal because each row and column contain precisely one encircled zero.

Where 1 to II, 2 to IV, 3 to I, 4 to V, and 5 to III are the best assignments.

Hence, z = 15 + 14 + 21 + 20 + 16 = 86 hours is the optimal time.

Practice Question on Hungarian Method

Use the Hungarian method to solve the following assignment problem shown in table. The matrix entries represent the time it takes for each job to be processed by each machine in hours.

\(\begin{array}{l}\begin{bmatrix}J/M & I & II & III & IV & V \\1 & 9 & 22 & 58 & 11 & 19 \\2 & 43 & 78 & 72 & 50 & 63 \\3 & 41 & 28 & 91 & 37 & 45 \\4 & 74 & 42 & 27 & 49 & 39 \\5 & 36 & 11 & 57 & 22 & 25 \\\end{bmatrix}\end{array} \)

Stay tuned to BYJU’S – The Learning App and download the app to explore all Maths-related topics.

Frequently Asked Questions on Hungarian Method

What is hungarian method.

The Hungarian method is defined as a combinatorial optimization technique that solves the assignment problems in polynomial time and foreshadowed subsequent primal–dual approaches.

What are the steps involved in Hungarian method?

The following is a quick overview of the Hungarian method: Step 1: Subtract the row minima. Step 2: Subtract the column minimums. Step 3: Use a limited number of lines to cover all zeros. Step 4: Add some more zeros to the equation.

What is the purpose of the Hungarian method?

When workers are assigned to certain activities based on cost, the Hungarian method is beneficial for identifying minimum costs.

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

dummy row in assignment problem

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

the intact one

Read MBA, BBA, B.COM Notes

Unbalanced Assignment Problems

Whenever the cost matrix of an assignment problem is not a square matrix, that is, whenever the number of sources is not equal to the number of destinations, the assignment problem is called an unbalanced assignment problem. In such problems, dummy rows (or columns) are added in the matrix so as to complete it to form a square matrix. The dummy rows or columns will contain all costs elements as zeroes. The Hungarian method may be used to solve the problem.

Example :  A company has five machines that are used for four jobs. Each job can be assigned to one and only one machine. The cost of each job on each machine is given in the following Table.

Unbalanced Maximization Assignment problem example

Assignment Problem

topic 5.1.png

Solution:  Convert the 4 × 5 matrix into a square matrix by adding a dummy row D5.

Dummy Row D5 Added

topic 5.2.png

Row-wise Reduction of the Matrix

topic 5.3.png

Column-wise reduction is not necessary since all columns contain a single zero. Now, draw minimum number of lines to cover all the zeros, as shown in Table.

All Zeros in the Matrix Covered

topic 5.4.png

Number of lines drawn ≠ Order of matrix. Hence not optimal.

Select the least uncovered element, i.e., 1, subtract it from other uncovered elements, add to the elements at intersection of lines and leave the elements that are covered with single line unchanged as shown in Table.

Subtracted or Added to Elements

topic 5.5.png

Again Added or Subtracted 1 from Elements

topic 5.6

Number of lines drawn = Order of matrix. Hence optimality is reached. Now assign the jobs to machines, as shown in Table.

Assigning Jobs to Machines

topic 5.7.png

Example :  In a plant layout, four different machines M1, M2, M3 and M4 are to be erected in a machine shop. There are five vacant areas A, B, C, D and E. Because of limited space, Machine M2 cannot be erected at area C and Machine M4 cannot be erected at area A. The cost of erection of machines is given in the Table.

topic 5.9.png

Find the optimal assignment plan.

Solution:  As the given matrix is not balanced, add a dummy row D5 with zero cost values. Assign a high cost H for (M2, C) and (M4, A). While selecting the lowest cost element neglect the high cost assigned H, as shown in Table below.

topic 5.10

– Row-wise reduction of the matrix is shown in Table.

Matrix Reduced Row-wise

topic 5.11.png

Note:  Column-wise reduction is not necessary, as each column has at least one single zero. Now, draw minimum number of lines to cover all the zeros, see Table.

Lines Drawn to Cover all Zeros

topic 5.12.png

Number of lines drawn ≠ Order of matrix. Hence not Optimal. Select the smallest uncovered element, in this case 1. Subtract 1 from all other uncovered element and add 1 with the elements at the intersection. The element covered by single line remains unchanged. These changes are shown in Table. Now try to draw minimum number of lines to cover all the zeros.

Added or Subtracted 1 from Elements

topic 5.13.png

Now number of lines drawn = Order of matrix, hence optimality is reached. Optimal assignment of machines to areas are shown in Table.

Optimal Assignment

topic 5.14.png

Hence, the optimal solution is:

topic 5.15.png

Share this:

You might also like, human development index, virtualization security recommendations, nature and scope of hrm, 2 thoughts on “ unbalanced assignment problems ”.

  • Pingback: GGSIPU(NEW DELHI) QUANTITATIVE TECHNIQUE – 2ND SEMESTER – STUDY MBA & BBA NOTES
  • Pingback: CCSU(BBA) 406 Operation Research – Home | Management

Leave a Reply Cancel reply

examveda.com

The purpose of a dummy row or column in an assignment...

Examveda

The purpose of a dummy row or column in an assignment problem is to.

A. Obtain balance between total activities & total resources

B. Prevent a solution from becoming degenerate

C. Provide a means of representing a dummy problem

D. None of the above

Answer: Option A

Solution(By Examveda Team)

This Question Belongs to Management >> Operations Research

Join The Discussion

Related Questions on Operations Research

The use of decision models.

A. Is possible when the variables value is known

B. Reduces the scope of judgement & intuition known with certainty in decision-making

C. Require the use of computer software

Every mathematical model.

A. Must be deterministic

B. Requires computer aid for its solution

C. Represents data in numerical form

D. All of the above

A physical model is example of.

A. An iconic model

B. An analogue model

C. A verbal model

D. A mathematical model

The qualitative approach to decision analysis relies on.

A. Experience

B. Judgement

C. Intuition

More Related Questions on Operations Research

Read More: MCQ Type Questions and Answers

  •   Arithmetic Ability
  •   Competitive Reasoning
  •   Competitive English
  •   Data Interpretation
  •   General Knowledge
  •   State GK
  •   History
  •   Geography
  •   Current Affairs
  •   Banking Awareness
  •   Computer Fundamentals
  •   Networking
  •   C Program
  •   Java Program
  •   Database
  •   HTML
  •   Javascript
  •   Computer Science
  •   Electronics and Communications Engineering
  •   Electrical Engineering
  •   Mechanical Engineering
  •   Civil Engineering
  •   Chemical Engineering
  •   Automobile Engineering
  •   Biotechnology Engineering
  •   Mining Engineering
  •   Commerce
  •   Management
  •   Philosophy
  •   Agriculture
  •   Sociology
  •   Political Science
  •   Pharmacy

Mcqmate logo

View all MCQs in

No comments yet

Related MCQs

  • To proceed with the MODI algorithm for solving an assignment problem, the number of dummy allocations need to be added are
  • In applying Vogel's approximation method to a profit maximization problem, row and column penalties are determined by:
  • An assignment problem is considered as a particular case of a transportation problem because
  • Maximization assignment problem is transformed into a minimization problem by
  • An assignment problem is a special case of transportation problem, where
  • The dummy source or destination in a transportation problem is added to
  • Which of the following is used to come up with a solution to the assignment problem?
  • Which method usually gives a very good solution to the assignment problem?
  • In the general linear programming model of the assignment problem,
  • Which of the following is not true regarding an LP model of the assignment problem? ]

IMAGES

  1. How to solve assignment problem(part 2) using diagonal, dummy rows and

    dummy row in assignment problem

  2. Assignment problem with dummy row or column

    dummy row in assignment problem

  3. Assignment problem method

    dummy row in assignment problem

  4. In Class Problems

    dummy row in assignment problem

  5. Assignment Problem in Excel (In Easy Steps)

    dummy row in assignment problem

  6. Assignment problem

    dummy row in assignment problem

VIDEO

  1. September 16, 2021 Assignment problem| Part 2

  2. Assignment Problem 03

  3. Assignment problem (unbalanced) (dummy)

  4. p. 18 Lightly Row

  5. launa anderson death row

  6. (L7, V4) Creating dummy variables in R and StatCrunch, MATH5130

COMMENTS

  1. Assignment Problem: Meaning, Methods and Variations

    The Hungarian method can be summarized in the following steps: Step 1: Develop the Cost Table from the given Problem: ADVERTISEMENTS: If the no of rows are not equal to the no of columns and vice versa, a dummy row or dummy column must be added. The assignment cost for dummy cells are always zero.

  2. PDF Chapter8 ASSIGNMENT PROBLEM

    Chapter 8 Assignment Problem 8.1 Introduction An assignment problem is a particular case of transportation problem in which a number of operations are to be assigned to an equal number of operators, where ... number of dummy rows (or columns) with zero cost elements. 2. Subtract the minimum element of each row from every element of that row. 3

  3. Assignment model, Part-5 : Unbalanced assignment problems

    Before applying Hungarian method, form a balanced / square matrix..Add dummy rows ..Add dummy columns ..

  4. Solution of assignment problems (Hungarian Method)

    Solve the following assignment problem. Solution: Since the number of columns is less than the number of rows, given assignment problem is unbalanced one. To balance it , introduce a dummy column with all the entries zero. The revised assignment problem is. Here only 3 tasks can be assigned to 3 men.

  5. PDF Module 4: Transportation Problem and Assignment problem

    transportation problem. In this type of problem, either a dummy row or a dummy column is added according to the requirement to make it a balanced problem. Then it can be solved similar to the balanced problem. Methods to Solve: To find the initial basic feasible solution there are three methods: 1. NorthWest Corner Cell Method. 2. Least Call ...

  6. PDF The Assignment Problem and the Hungarian Method

    theorem to a given n × n cost matrix to find an optimal assignment. Step 1. Subtract the smallest entry in each row from all the entries of its row. Step 2. Subtract the smallest entry in each column from all the entries of its column. Step 3. Draw lines through appropriate rows and columns so that all the

  7. PDF UNIT -2 Chapter: II ASSIGNMENT PROBLEM

    Assignment Problem is a special type of linear programming problem where the objective is to ... then adds a dummy row or column to make the problem a balanced one by allotting zero value to each cell of the dummy row or column, as the case may be. Step 2:

  8. Algorithms: The Assignment Problem

    We wind up with: minimize sum(i,j) Cij * xij for all i,j. subject to. sum(j) xij = 1 for all i in A. sum(i) xij = 1 for all j in T. xij >= 0. This is a compact mathematical way to describe the problem, so again let me put it in English. First, we need to figure out the cost of having each driver pick up each customer.

  9. PDF UNIT 5 ASSIGNMENT PROBLEMS

    Assignment Problems 7 Hungarian Method of Solving an Assignment Problem The steps for obtaining an optimal solution of an assignment problem are as follows: 1. Check whether the given matrix is square. If not, make it square by adding a suitable number of dummy rows (or columns) with 0 cost/time elements. 2.

  10. Assignment Problem, Maximization Example, Hungarian Method

    The Hungarian Method can also solve such assignment problems, as it is easy to obtain an equivalent minimization problem by converting every number in the matrix to an opportunity loss. The conversion is accomplished by subtracting all the elements of the given matrix from the highest element. It turns out that minimizing opportunity loss ...

  11. Solutions for Chapter 7: Assignment Problem and Sequencing

    Available here are Chapter 7 - Assignment Problem and Sequencing Exercises Questions with Solutions and detail explanation for your practice before the examination. Maharashtra State Board HSC Commerce (English Medium) 12th Standard Board Exam ... A dummy row(s) or column(s) with the cost elements as _____ is added to the matrix of an ...

  12. Using the Hungarian Algorithm to Solve Assignment Problems

    This is an example of an assignment problem that we can use the Hungarian Algorithm to solve. ... Now take out any dummy rows or columns that you added. The zeros in the final matrix correspond to ...

  13. Assignment problem using Hungarian method Algorithm & Example-1

    Algorithm & Example-1. Algorithm. Hungarian Method Steps (Rule) Step-1: If number of rows is not equal to number of columns, then add dummy rows or columns with cost 0, to make it a square matrix. Step-2: a. Identify the minimum element in each row and subtract it from each element of that row.

  14. Hungarian Method

    The Hungarian method is a computational optimization technique that addresses the assignment problem in polynomial time and foreshadows following primal-dual alternatives. In 1955, Harold Kuhn used the term "Hungarian method" to honour two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry. Let's go through the steps of the Hungarian method with the help of a solved example.

  15. Unbalanced Assignment Problems

    10 Feb 2019. Whenever the cost matrix of an assignment problem is not a square matrix, that is, whenever the number of sources is not equal to the number of destinations, the assignment problem is called an unbalanced assignment problem. In such problems, dummy rows (or columns) are added in the matrix so as to complete it to form a square matrix.

  16. ch.9-transportation and assignment models Flashcards

    an assignment problem in which the number of rows is equal to the number of columns. balanced transportation problem. the condition under which total demand (at all destinations) is equal to total supply (at all sources). degeneracy. a condition that occurs when the number of occupied squares in any solution is less than the number of rows plus ...

  17. The purpose of a dummy row or column in an assignment problem is to

    The purpose of a dummy row or column in an assignment problem is to _____ (a) prevent a solution from becoming degenerate (b) the balance between total activities and total resources (c) provide a means of representing a dummy problem (d) none of the above. operations research;

  18. An Alternative Approach Assignment Problems for

    tasks. Such problems can be termed as unbalanced assignment problem. The effectiveness matrix in this case will not be a square matrix. In such problems, dummy row(s) or dummy column(s) are added in the matrix so as to complete it to form a square matrix. In traditional approach, costs in

  19. Solved Which of these statements is best? In the

    In the assignment problem, the costs for a dummy row will be equal to the lowest cost of the column for each respective cell in that row. Assignment problems involve determining the most efficient assignment of people to projects, salesmen to territories, contracts to bidders, and so on. The objective of an assignment problem solution most ...

  20. The purpose of a dummy row or column in an assignment

    None of the above. The purpose of a dummy row or column in an assignment problem is to obtain balance between total activities & total resources. Dummy rows (or columns) are added in the matrix so as to complete it to form a square matrix. The dummy rows or columns will contain all costs elements as zeroes. The Hungarian method may be used to ...

  21. The purpose of a dummy row or column in an assignment problem ...

    The purpose of a dummy row or column in an assignment problem is to. A. Obtain balance between total activities & total resources. B. Prevent a solution from becoming degenerate. C. Provide a means of representing a dummy problem. D. None of the above.

  22. MCQ Assignment

    Identify the correct statement. a. an assignment problem may require the introduction of both dummy row and dummy column. b. an assignment problem with m rows and n columns will involves a total of m x n possible assignments. c. an unbalanced assignment is one where the number of rows is more than, or less than,the number of columns. d.

  23. Samacheer Kalvi 12th Business Maths Solutions Chapter 10 Operations

    The purpose of a dummy row or column in an assignment problem is to _____ (a) prevent a solution from becoming degenerate (b) the balance between total activities and total resources ... In an assignment problem involving four workers and three jobs, total numbers of assignments possible are _____ (a) 4 (b) 3 (c) 7 (d) 12 Answer: (b) 3.