• Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

55 Brilliant Research Topics For STEM Students

Research Topics For STEM Students

Primarily, STEM is an acronym for Science, Technology, Engineering, and Mathematics. It’s a study program that weaves all four disciplines for cross-disciplinary knowledge to solve scientific problems. STEM touches across a broad array of subjects as STEM students are required to gain mastery of four disciplines.

As a project-based discipline, STEM has different stages of learning. The program operates like other disciplines, and as such, STEM students embrace knowledge depending on their level. Since it’s a discipline centered around innovation, students undertake projects regularly. As a STEM student, your project could either be to build or write on a subject. Your first plan of action is choosing a topic if it’s written. After selecting a topic, you’ll need to determine how long a thesis statement should be .

Given that topic is essential to writing any project, this article focuses on research topics for STEM students. So, if you’re writing a STEM research paper or write my research paper , below are some of the best research topics for STEM students.

List of Research Topics For STEM Students

Quantitative research topics for stem students, qualitative research topics for stem students, what are the best experimental research topics for stem students, non-experimental research topics for stem students, capstone research topics for stem students, correlational research topics for stem students, scientific research topics for stem students, simple research topics for stem students, top 10 research topics for stem students, experimental research topics for stem students about plants, research topics for grade 11 stem students, research topics for grade 12 stem students, quantitative research topics for stem high school students, survey research topics for stem students, interesting and informative research topics for senior high school stem students.

Several research topics can be formulated in this field. They cut across STEM science, engineering, technology, and math. Here is a list of good research topics for STEM students.

  • The effectiveness of online learning over physical learning
  • The rise of metabolic diseases and their relationship to increased consumption
  • How immunotherapy can improve prognosis in Covid-19 progression

For your quantitative research in STEM, you’ll need to learn how to cite a thesis MLA for the topic you’re choosing. Below are some of the best quantitative research topics for STEM students.

  • A study of the effect of digital technology on millennials
  • A futuristic study of a world ruled by robotics
  • A critical evaluation of the future demand in artificial intelligence

There are several practical research topics for STEM students. However, if you’re looking for qualitative research topics for STEM students, here are topics to explore.

  • An exploration into how microbial factories result in the cause shortage in raw metals
  • An experimental study on the possibility of older-aged men passing genetic abnormalities to children
  • A critical evaluation of how genetics could be used to help humans live healthier and longer.
Experimental research in STEM is a scientific research methodology that uses two sets of variables. They are dependent and independent variables that are studied under experimental research. Experimental research topics in STEM look into areas of science that use data to derive results.

Below are easy experimental research topics for STEM students.

  • A study of nuclear fusion and fission
  • An evaluation of the major drawbacks of Biotechnology in the pharmaceutical industry
  • A study of single-cell organisms and how they’re capable of becoming an intermediary host for diseases causing bacteria

Unlike experimental research, non-experimental research lacks the interference of an independent variable. Non-experimental research instead measures variables as they naturally occur. Below are some non-experimental quantitative research topics for STEM students.

  • Impacts of alcohol addiction on the psychological life of humans
  • The popularity of depression and schizophrenia amongst the pediatric population
  • The impact of breastfeeding on the child’s health and development

STEM learning and knowledge grow in stages. The older students get, the more stringent requirements are for their STEM research topic. There are several capstone topics for research for STEM students .

Below are some simple quantitative research topics for stem students.

  • How population impacts energy-saving strategies
  • The application of an Excel table processor capabilities for cost calculation
  •  A study of the essence of science as a sphere of human activity

Correlations research is research where the researcher measures two continuous variables. This is done with little or no attempt to control extraneous variables but to assess the relationship. Here are some sample research topics for STEM students to look into bearing in mind how to cite a thesis APA style for your project.

  • Can pancreatic gland transplantation cure diabetes?
  • A study of improved living conditions and obesity
  • An evaluation of the digital currency as a valid form of payment and its impact on banking and economy

There are several science research topics for STEM students. Below are some possible quantitative research topics for STEM students.

  • A study of protease inhibitor and how it operates
  • A study of how men’s exercise impacts DNA traits passed to children
  • A study of the future of commercial space flight

If you’re looking for a simple research topic, below are easy research topics for STEM students.

  • How can the problem of Space junk be solved?
  • Can meteorites change our view of the universe?
  • Can private space flight companies change the future of space exploration?

For your top 10 research topics for STEM students, here are interesting topics for STEM students to consider.

  • A comparative study of social media addiction and adverse depression
  • The human effect of the illegal use of formalin in milk and food preservation
  • An evaluation of the human impact on the biosphere and its results
  • A study of how fungus affects plant growth
  • A comparative study of antiviral drugs and vaccine
  • A study of the ways technology has improved medicine and life science
  • The effectiveness of Vitamin D among older adults for disease prevention
  • What is the possibility of life on other planets?
  • Effects of Hubble Space Telescope on the universe
  • A study of important trends in medicinal chemistry research

Below are possible research topics for STEM students about plants:

  • How do magnetic fields impact plant growth?
  • Do the different colors of light impact the rate of photosynthesis?
  • How can fertilizer extend plant life during a drought?

Below are some examples of quantitative research topics for STEM students in grade 11.

  • A study of how plants conduct electricity
  • How does water salinity affect plant growth?
  • A study of soil pH levels on plants

Here are some of the best qualitative research topics for STEM students in grade 12.

  • An evaluation of artificial gravity and how it impacts seed germination
  • An exploration of the steps taken to develop the Covid-19 vaccine
  • Personalized medicine and the wave of the future

Here are topics to consider for your STEM-related research topics for high school students.

  • A study of stem cell treatment
  • How can molecular biological research of rare genetic disorders help understand cancer?
  • How Covid-19 affects people with digestive problems

Below are some survey topics for qualitative research for stem students.

  • How does Covid-19 impact immune-compromised people?
  • Soil temperature and how it affects root growth
  • Burned soil and how it affects seed germination

Here are some descriptive research topics for STEM students in senior high.

  • The scientific information concept and its role in conducting scientific research
  • The role of mathematical statistics in scientific research
  • A study of the natural resources contained in oceans

Final Words About Research Topics For STEM Students

STEM topics cover areas in various scientific fields, mathematics, engineering, and technology. While it can be tasking, reducing the task starts with choosing a favorable topic. If you require external assistance in writing your STEM research, you can seek professional help from our experts.

Leave a Reply Cancel reply

research paper title for stem students

Journal for STEM Education Research

  • Offers a platform for interdisciplinary research on a broad spectrum of topics in STEM education.
  • Publishes integrative reviews and syntheses of literature relevant to STEM education and research.
  • Promotes research on frontier topics, such as those in the intersection of technology and STEM education.
  • Advances theoretical perspectives and research methodologies in STEM education.
  • Encourages contributions from scholars across diverse subject content and social science fields.

research paper title for stem students

Latest issue

Volume 7, Issue 1

Latest articles

Benefits of work-related experiences and their impact on career competencies for stem students.

  • Karen L. Webber
  • Amy E. Stich
  • Collin Case

research paper title for stem students

Exploring Factors That Support Pre-service Teachers’ Engagement in Learning Artificial Intelligence

  • Musa Adekunle Ayanwale
  • Emmanuel Kwabena Frimpong
  • Ismaila Temitayo Sanusi

research paper title for stem students

Examining Educational and Career Transition Points Among a Diverse, Virtual Mentoring Network

  • Erika L. Thompson
  • Toufeeq Ahmed Syed
  • Jamboor K. Vishwanatha

Computational Thinking During a Short, Authentic, Interdisciplinary STEM Experience for Elementary Students

  • Jessica F. Cantlon
  • Katherine T. Becker
  • Caroline M. DeLong

research paper title for stem students

“I Don’t Back Away from a Fight”: Examining First Year Undergraduate Latinas’ Perseverance in STEM

  • Nicora Placa
  • Christine Nick

Journal updates

Most downloaded and cited articles from 2020 – present.

Check the 5 most downloaded and 5 most cited articles of Journal for STEM Education Research  here!

Book Series ''Advances in STEM Education''

Advances in STEM Education is a book series with a focus on cutting-edge research and knowledge development in science, technology, engineering and mathematics (STEM) education from pre-college through continuing education around the world. More...

Journal information

  • Google Scholar
  • OCLC WorldCat Discovery Service
  • TD Net Discovery Service

Rights and permissions

Editorial policies

© Springer Nature Switzerland AG

  • Find a journal
  • Publish with us
  • Track your research
  • Open access
  • Published: 10 July 2020

Evidence of STEM enactment effectiveness in Asian student learning outcomes

  • Bevo Wahono 1 , 2 ,
  • Pei-Ling Lin 3 &
  • Chun-Yen Chang   ORCID: orcid.org/0000-0003-2373-2004 3  

International Journal of STEM Education volume  7 , Article number:  36 ( 2020 ) Cite this article

86k Accesses

77 Citations

1 Altmetric

Metrics details

This study used a systematic review and meta-analysis as a method to investigate whether STEM enactment in Asia effectively enhances students’ learning outcomes. Verifiable examples of science, technology, engineering, and mathematics (STEM) education, effectively being applied in Asia, are presented in this study. The study involved 4768 students from 54 studies. Learning outcomes focused on the students’ academic learning achievement, higher-order thinking skills (HOTS), and motivation. The analysis results of effect sizes showed that the STEM enactments in Asia were effective at a moderate level (0.69 [0.58, 0.81 of 95% CI]) of improving students’ learning outcomes. Sequentially, the effectiveness of STEM enactment starts from students’ higher-order thinking skills, moves to students’ academic learning achievement, and ends with the motivation. In addition, STEM enactments in Asia were carried out with several variations where STEM integrated with project-based learning was preferred. The recommendations of this study include a combination of the learning approach, learning orientation, and duration of instruction, all of which contribute to the STEM enactment effectiveness and maximize results in STEM education. Some practical implications, such as the central role of the teacher during the STEM enactment, are extensively discussed. This study supports that STEM education is a universally crucial tool which effectively prepares students from various national and cultural backgrounds, across Asia, toward improved learning outcomes.

Introduction

The role of science, technology, engineering, and mathematics (STEM) education in terms of students’ learning outcome is a central topic for the educational field. However, STEM education is a very broad term (Baran, Bilici, Mesutoglu, & Ocak, 2016 ; Bybee, 2013 ; Hsu, Lin, & Yang, 2017 ). Therefore, in this current study, STEM education (enactment) refers to teaching, learning, and integrating the disciplines and skills of science, technology, mathematics, and engineering in STEM topics, with an emphasis on solving real-world problems. Indeed, STEM education focuses on hands-on activity (Cameron & Craig, 2016 ; Yildirim & Turk, 2018 ) to prepare students in facing the developments of a new competitive era. In STEM learning activities, soft skills such as problem-solving, higher-order thinking skills, and collaborative work are the main focuses on which students’ learning is geared toward (Li, Huang, Jiang, & Chang, 2016 ; Meyrick, 2011 ).

STEM activities in the classroom endeavor to improve the quality of the learning process (Meyrick, 2011 ), as well as learning outcomes (Adam, 2004 ; Cedefop, 2017 ). Student-learning outcomes vary in areas, including academic learning achievement, attitude, motivation, and higher-order thinking skills. Moreover, some studies said that the learning process and learning outcomes might differ on many factors, such as the subject of study, learning duration, or even kinds of environmental conditions (Marton, Alba, & Kun, 2014 ; OECD, 2018 ). Furthermore, a strong link between the quality of the learning process and outcomes from STEM education, which originated from the west, constitutes a fundamental reason for educators and policy-makers to apply the same principles in Asian countries (Khaeroningtyas, Permanasari & Hamidah, 2016 ; Yildirim, 2016 ).

Even though the eastern countries (Asia) and western countries (notably, the USA) have many differences such as in teaching and learning characteristics as well as their culture (Di, 2017 ; Hassan & Jamaludin, 2010 ; Lee, Chai, & Hong, 2019 ), both regions have similarities, primarily in terms of problems and challenges faced in the education field. The birth and development of STEM education in the west were motivated by the low interest of the younger generation in work related to the STEM field (Chesky & Wolfmeyer, 2015 ). This low-interest condition was also exacerbated by the increasing competitiveness of workplace and uncertain global world challenges (Chesky & Wolfmeyer, 2015 ). Indeed, this condition is also the same as that faced by most countries in Asia. The problem of low student interest in a subject related to STEM, the lack of interest for young people in STEM-related work, and the highly competitive global challenges of the world, are similar to what happened in the USA (Jayarajah, Saat, Rauf, & Amnah, 2014 ; Kim, Chu, & Lim, 2015 ).

New changes are needed for the teaching and learning process that can address the challenges faced by Asian countries. Therefore, it is not surprising that over the last decade, there has been a good deal of research done by researchers and teachers in Asia, especially related to STEM enactment in classrooms (Lee et al., 2019; Lutfi, Ismail, & Azis, 2018 ; Yildirim, 2016 ; Yıldırım & Altun, 2015 ; Yıldırım & Sevi, 2016 ). Currently, STEM enactments in Asia not only focus on extending STEM-related subjects and students’ interest but also on concerns about students’ twenty-first-century learning outcomes such as real-world problem-solving capacity, academic learning achievement, as well as higher-order thinking skills (Lee et al., 2019). STEM implementation in Asia is often accompanied by a learning approach or model (Suratno, Wahono, Chang, Retnowati, & Yushardi, 2020 ). An evaluation and current status of whether STEM education also has a good impact, specifically in terms of learning outcomes in the Asian region, is logically necessary.

Several extensive works on the effectiveness of STEM education on learning outcomes have been published (Jayarajah et al., 2014 ; Saraç, 2018 ; Yildirim, 2016 ). Research showed that STEM education is effective in improving students’ learning outcomes, such as academic learning achievement, student motivation, attitude, problem-solving skills (Saraç, 2018 ; Yildirim, 2016 ). Further research shows that more than two-thirds of publications in the STEM field come from America (Lee et al., 2019). Lee et al. also state that further research is needed to adjust the STEM education for the conditions faced by Asian countries. The statement indicates that an important consideration is how to redesign curricula in Asia in a way that accommodates STEM education. Another research conducted by Mustafa, Ismail, Tasir, Said, and Haruzuan ( 2016 ) reviewed effective strategies in integrating STEM education globally for many purposes, including student-learning outcomes. Based on this study, project-based learning was the most effective strategy to implement STEM education among Asian countries; especially studies were focused on students in the secondary setting. Furthermore, some studies have recently reviewed the trend of research in STEM education. The studies argued that research in STEM education is increasing in importance globally and being an international field (Li, Froyd, & Wang, 2019 ; Li, Wang, Xiao, & Froyd, 2020 ). However, none of the studies revealed the effectiveness of STEM enactment in the Asian sphere with all the characteristics inherent in said countries. It is crucial to delve into the effectiveness of STEM enactment in Asian countries, which from some aspects, are quite different. However, many problems faced in education have similarities to the western country, the USA, where STEM education originated. Moreover, that is important to know whether STEM education is a fundamental tool in Asia toward improved learning outcomes. Therefore, this current study will have considerable impacts and substantial contributions to the knowledge body of STEM education throughout the world.

Research focus

This study points out a systematic result of the review and a meta-analysis pertinent to how the impact of STEM enactment to Asian students’ learning outcomes. The main focus of learning outcomes under investigation is students’ academic learning achievement, higher-order thinking skills, and motivation. The key questions that guide this study are as follows:

What is the portrait of STEM enactment in Asian countries in terms of region, subject, and education level?

Do the STEM enactments influence students’ academic learning achievement, higher-order thinking skills (HOTS), and motivation in Asian countries?

Under what circumstances and for what learning outcomes are STEM enactments more effective in Asian students?

STEM education and its significant development in Asian regions

STEM education has a very broad meaning. Therefore, many definitions were developed and discovered during the last two decades. Bybee ( 2013 ) states that STEM education can consist of a subject, intradisciplinary, interdisciplinary, or can be a particular discipline. Furthermore, Bybee ( 2013 ) and Sanders ( 2009 ) asserted that STEM education is a spectrum that focuses on solving real problems, which have an interdisciplinary nature at its core. Another opinion states that STEM education is a meta-discipline based on learning standards where teaching has integrated teaching and learning approaches, and where specific content is undivided, contemplating a dynamic and fluid instruction (Merrill & Daugherty, 2009 ). A more modern definition states that STEM education is an interdisciplinary teaching method that integrates science, technology, engineering, mathematics, and other knowledge, skills, and beliefs, in particular, to these disciplines (Baran et al., 2016 ; Koul, Fraser, Maynard, & Tade, 2018 ; Thibaut et al., 2018 ). Thus, STEM education is a term referring to teaching and learning in a STEM subject, which emphasizes problem-solving with real-world problems integrating many disciplines and other skills such as science, technology, mathematics, and engineering.

STEM education has been present for more than two decades (Timms, Moyle, Weldon, & Mitchell, 2018 ). The term STEM started from the term SMET (science, mathematics, engineering, technology), which came into existence in the 1990s (Chesky & Wolfmeyer, 2015 ). Some education experts from western countries (notably, the USA) initiated STEM education. This approach grew in popularity after the US government announced the plan to advance education into STEM education in 2009 (Burke & McNeill, 2011 ). STEM education is highly promoted in the USA to encourage the next generation into training within the fields of STEM. Furthermore, Burke & McNeill argued that another goal was to maintain the enthusiasm of the younger generation in their interest in STEM-related careers. However, the essential goal is that both students and the younger generation can face the competition of the new global world.

The rapid development and functional effects of STEM education programs in western countries have attracted the interest of many researchers and policy-makers from other countries (Sheffield et al., 2018 ; Timms et al., 2018 ), including Asia. Eastern countries face similar problems where there is a lack of interest from the younger generation in careers related to STEM (Jayarajah et al., 2014 ; Kim et al., 2015 ; Sin, Ng, Shiu, & Chung, 2017 ). Furthermore, Jayarajah et al. ( 2014 ) and Shahali, Halim, Rasul, Osman, & Zulkifeli ( 2017 ) exemplify Malaysia consistently registers lower numbers of citizens interested in science, engineering, and technology issues compared to the USA. As for the Malaysian population, it shows that more than one-third of the children clearly expressed a lack of interest in science and technology. Another researcher, Kim et al. ( 2015 ), asserts that in the last two decades, Korea has faced a problem in science and engineering education, which is students’ disinterest in science and math, even though their achievement in science and math is high. Another crucial reason is that STEM education promises as an appropriate tool for students in facing challenges and global competition (Kim et al., 2015 ; Meyrick, 2011 ; Yildirim, 2016 ).

Several parts of Asia, such as Western Asia, Eastern Asia, and Southeastern Asia, are now aggressively implementing and developing STEM education (Chen & Chang, 2018 ; Choi & Hong, 2015 ; Karahan, Bilici & Unal, 2015 ; Park & Yoo, 2013 ). Some countries such as Korea, Thailand, and Malaysia have focused on STEM/ STEAM education as an essential part of their education system (Cho, 2013 ; Hong, 2017 ; Hsiao et al., 2017 ; Kang, Ju, & Jang, 2013 ; Shahali, Ismail, & Halim, 2017 ). While in other countries in Asia, even though STEM education has not become a regular part of the education system, many researchers or teachers have enacted STEM education. Several review studies have pointed out that the trend of research on STEM education in Asia began in 2013. Today, STEM has become a phenomenon that attracts many people (Jayarajah et al., 2014 ; Lee et al., 2019). Therefore, during this booming stage in Asia, it is crucial to know the extent of the impact of STEM enactments, especially concerning the students’ learning outcomes.

The supporting of instructional strategies on STEM education

The implementation of STEM education is carried out in various ways throughout the world, including in Asia. Some learning approaches or learning models are combined and or juxtaposed with the STEM enactment (Chung, Lin, & Lou, 2018 ; Lou, Tsai, Tseng, & Shih, 2014 ). For example, the researchers used project-based learning, problem-based learning, or the 6E learning model in enacting STEM education. This combination is needed to strengthen the expected effect after STEM learning (Mustafa et al., 2016 ). Furthermore, the modification and or combination of STEM with learning approaches or models have a high potential in facilitating implementation and for achieving effective instruction (Martín-Páez, Aguilera, Perales-Palacios, & Vílchez-González, 2019 ; Mustafa et al., 2016 ). However, STEM learning may be implemented with or without other learning approaches (Chung, Lin, & Lou, 2018 ; Martín-Páez et al., 2019 ). Moreover, Jeong and Kim ( 2015 ) proposes that effective instruction occurs when students are given the learning opportunity to demonstrate, adapt, modify, and transform new knowledge to meet the needs of new contexts and situations. Successful implementation of instruction, of course, leads to the accomplishment of predetermined targets, in this case, improved student learning outcomes.

Ample studies suggest using the project-based learning (PjBL) approach to implement STEM education. Mustafa et al. ( 2016 ) investigated the dominant instructional strategies to promote the integration of STEM education at different institutional levels. Mustafa et al. argued that combined with project-based learning was the most effective way to implement STEM education. This assertion is reasonable because PjBL characteristics are quite similar to the integrated STEM approach (Siew, Amir, & Chong, 2015 ). Chiang and Lee ( 2016 ) said that the characteristics of PjBL are encouraging students to work cooperatively, developing students’ thinking skills, allowing them to have creativity, and leading them to access the information on their own and to demonstrate this information. Finally, Çevik ( 2018 ) revealed that a learning environment created with STEM-PjBL is vital for solving the complexity of critical concepts in STEM fields. Thus, the role of several factors, such as learning approaches (e.g., PjBL), learning models, and or modifying STEM itself, become critical elements that must be considered when implementing STEM education.

Students’ learning outcomes estimated on STEM enactment

Learning outcomes are the main target in a learning process, including on STEM enactment. Cedefop ( 2017 ) argued that students’ learning outcomes are all types of results expected during and after the learning process. Another researcher, Adam ( 2004 ), states that learning outcome is a teaching result, which is expected to be obtained by students after a learning process. Further, Adam stated that learning outcomes are usually expressed in the form of knowledge, skills, and or attitude. Slightly different, Gosling and Moon ( 2002 ) state that there is no precise way of defining or writing the meaning of such learning outcomes, but a learning outcome must be measurable. It can be concluded that a learning outcome is a result of the learning process. Consequently, learning outcomes can be various forms, depending on the purpose expected by a teacher.

In this study, the estimated learning outcomes after STEM enactments concentrated on academic learning achievement, higher-order thinking skills (HOTS), and motivation. Theodore ( 1995 ) defined students’ achievement as a measurable behavior in a standardized series of tests. HOTS is the ability to apply skills, knowledge, and values in reasoning as well as in reflection (Pratama & Retnawati, 2018 ; Wahono & Chang, 2019a ). Indeed, such an ability is crucial to making decisions, solve problems, innovate, and create. In terms of practical application, HOTS includes students’ thinking ranked above level three, according to Bloom’s taxonomy (Baharin, Kamarudin, & Manaf, 2018 ). Finally, the students’ learning motivation defines as a process where the learners’ attention becomes focused on meeting their educational objectives (Christophel, 1990 ; Kuo, Tseng, & Yang, 2019 ). Therefore, the educational and developmental fields give strategic reasons for the focus on these particular skills. For instance, these skills have been related to twenty-first-century skills, future educational attainment, and participation in STEM careers later in life (Martín-Páez et al., 2019 ; Wahono & Chang, 2019b ). Furthermore, HOTS can be used in STEM, and research verifies these abilities in STEM fields can be transferred to other learning fields (Lin, Yu, Hsiao, Chang, & Chien, 2018 ; Yıldırım & Sidekli, 2018 ). Moreover, the learning outcomes can be influenced by several external factors, including culture and learner characteristics.

Asian culture and characteristics of teaching and learning

Many factors may influence the effectiveness of learning outcomes in STEM learning. However, Han, Capraro, and Capraro ( 2015 ) explained that the two most important factors were the learning environment and the level of individual students. The learning environment can be either a classroom environment or a cultural environment. Based on the literature review, there are many definitions of culture. However, most general definitions include that culture is a combination of many things such as beliefs, values, and assumptions trusted and understood among society (Rossman, Corbett, & Firestone, 1988 ; Schein, 2010 ). It is widely accepted that the characteristics of a culture affect individuals’ social behavior (Hampden-Turner & Trompenaars, 1997 ; Hofstede, 2005 ). More specifically, when cultural influences are insignificant and less integrated into a learning activity, students will likely experience a misunderstanding that hinders interactions between students and teachers (Popov, Biemans, Brinkman, Kuznetsov, & Mulder, 2013 ; Popov et al., 2019 ). Many studies show that culture, ethnics, geographical position, gender, language proficiency, and/or a combination of these components have a significant influence on students’ learning success (Han et al., 2015 ; Konstantopoulos, 2009 ; Shores, Shannon, & Smith, 2010 ). Rodriguez and Bell ( 2018 ) mentioned that the instruction in the STEM learning should acknowledge some specific contributions of members from diverse cultures. Thus, culture holds a crucial role in the successful process of student learning in class. Therefore, highly probable that the Asian cultural characteristics and habits have a significant impact on students’ performance and learning outcomes by STEM enactment.

In general, in eastern education, students practice remembering concepts; this philosophy focuses mainly on learning and memorization within the teaching and learning process (Lin, 2006 ; Thang, 2004 ). The eastern education system is exam-oriented. Time (duration) is a fundamental factor in teachers’ performance (Tytler, Murcia, Hsiung, & Ramseger, 2017 ) as they must go over textbooks to prepare students for the final tests. As a result, students tend to memorize the facts in textbooks rather than understanding it due to time constraints. Thus, the situation creates positive competition among students and eventually triggers the efforts of students to obtain and understand the knowledge considered pivotal to achieving a good score in their examination. Eastern-culture education is more generally systematic, with a standardized syllabus and timetable, when compared to western-culture education (Hassan & Jamaludin, 2010 ; Tytler et al., 2017 ). However, it is undeniable that this type of character (rote learning, exam-oriented, and curriculum oriented) is one of the reasons many of the Asian countries score inside the top ten, in international tests (Marton et al., 2014 ; OECD, 2018 ). Therefore, in the case of STEM enactment, in-depth investigation, whether the time (duration) has a significant impact on the students’ learning outcome is paramount.

Moreover, Asian countries are very different from western countries, especially in their educational philosophy, which tends to be robustly laden with religious and cultural-centric elements (Hassan & Jamaludin, 2010 ). By contrast, the opinions on such characteristics of the eastern-culture education must be addressed carefully. However, any consequences of those educational characteristics in the implementation of STEM in Asia can be assumed, such as the main target of STEM enactments are not merely to attract student interest in the lesson or higher-order thinking skills, but also more to obtain a higher academic learning achievement. In terms of learning materials and processes, the consequences are seen from many STEM enactments that actively grappled to cultural values, i.e., identify halal products by augmented reality (Majid & Majid, 2018 ; Mustafa et al., 2016 ). We firmly believed that such consequences are unique, which led to the potential impact of STEM enactment outcomes in Asia. Therefore, the current research aims to prove that STEM enactments carried out in the past few years have generated a wide range of impacts, especially in Asia.

Research model

This research applied a quantitative approach. A meta-analysis method was used to determine the effectiveness of STEM education for students’ learning outcomes in the Asian region. The meta-analysis method was operative in this study because it enabled an objective investigation of the effect of the independent variable on the dependent variable that is STEM education toward the student’s learning outcome, respectively. Cohen, Manion, and Morrison ( 2007 ) state that with a meta-analysis, researchers can evaluate, compare, or combine quantitative data obtained from previous experimental research studies to acquire more convincing and comprehensive results. We identified studies to include in the review, coded for potential moderators, and calculated and analyzed effect sizes.

Selection of studies

The data collection in this study was carried out over 3 months, from February to April 2019. In the screening, several databases, including Scopus, ERIC, ScienceDirect, and Google Scholar, were utilized as the primary search references. We collected the data in the form of journal papers, proceeding conferences, books, or dissertations. Conferences, books, and dissertations were also included as data sources, namely to capture and find what is called the “file drawer” for information, which might not be published in journals (Rosenthal, 1979 ). Most of the data sources were in English, but there were also some non-English ones. However, from these data sources, at least the title or abstract were in English. The following keywords were at work upon data collection, including the effect of STEM, the effect of STEM learning, the effect of STEM approach, STEM and learning outcomes, STEM and student achievement, STEM and student motivation, and STEM and higher-order thinking skills. When searching, all the keywords used were in English.

A multilevel screening was carried out by applying several criteria, as shown in Fig. 1 . The first-level screening of the papers was geared to collecting research papers aimed to examine the effectiveness of STEM education, such as the effectiveness of STEM on academic achievement, motivation, and HOTS. The second screening was based on whether the data was collected from Asian countries or not. The third stage of screening was concerned with whether the study was qualitative, quantitative, or mixed-method research. At this stage, we applied quantitative and mixed-methods research. The last step dealt with whether the paper had the minimum quantitative data required for calculating an effect size, such as mean, standard deviation, variance, number of respondents, the value of t , and the value of F . The results obtained from the first stage were more than 283 papers, while those that satisfied the second-stage criteria were 86 pieces. In the third selection, there were 63 articles. Finally, at the ultimate stage, there were 54 studies (see Supplementary Materials for the list of reviewed articles).

figure 1

Process of studies selection

Concerning the quality of studies collected in this review, most of the studies came from research papers published by peer-reviewed journals and conferences. The studies were taken from journal papers (46), conference papers (6), book chapter (1), and a thesis (1). All the studies were carried out in the form of classroom-based research from Asian countries. The total participants involved in this study were 4768 students, or in other words, about 111 students in each study. Those studies included primary school students, secondary school students, or higher-education students. The number of countries involved in this study was ten countries, including Turkey, Israel, Uni Emirate Arab, Taiwan, Korea, China, Hong Kong, Malaysia, Indonesia, and Thailand.

Data coding

Coding in this study was done to make it easier to analyze the obtained data. The coding included several biographical features such as sample size, year of publication, region, topic or subject, education level, and the type of learning outcome. The year of publication in this search ranged from the publications in 2009 to those in 2019. This range allowed for a vast number of studies in the last decade to be investigated. In terms of the region, we divided the Asian region into five regions based on the United Nations. The region included Eastern Asia, Western Asia, Southern Asia, South-Eastern Asia, and Central Asia. The term “subject” here meant a name of discipline or a class where the STEM enactment took place in the data source. In this case, we focused on three groups, particularly science, mathematics, and technology or engineering subjects. For instance, a STEM enactment from Sarican and Akgunduz ( 2018 ) has a topic about force and motion, which is a sort of “science” subject source. Furthermore, we divided educational levels into three groups, namely higher education level, secondary education level, and primary education level.

Finally, we divided learning outcomes into three major groups, namely academic learning achievement (ALA), higher-order thinking skills (HOTS), and students’ motivation (Mo). ALA defined as students’ scores, from either the mean of pretest/posttest or only the mean of the posttest score. ALA was tested to get information regarding students’ content knowledge. Meanwhile, HOTS score was collected from HOTS subset codes such as problem-solving, design thinking, creative thinking, reflective thinking, and includes students’ thinking ranked above level three (level 4–level 6) according to Bloom’s taxonomy. The HOTS studies, in general, performed such as a creativity test (fluency, flexibility, originality, and elaboration), a score of analyzing, evaluating, and creating assessment tests. Then, we recognized the Mo score from the domain, namely student motivation or student interest. In general, students’ motivation was measured in the studies through a questionnaire, including intrinsic motivation, self-determination, self-efficacy, and grade motivation.

In doing so, a description of the measure or process on those variables (ALA, HOTS, Mo) in this current study are discussed. Inevitably, each outcome was measured differently among the studies reviewed. For instance, a HOTS study reported scores of students’ problem-solving abilities, whereas another study of HOTS reported a set score of students’ creative thinking, and even a study of HOTS had reported an effect size of what the article authors called “HOTS scores before and after an intervention.” To deal with this concern, we performed some technical works. For example, initially, as a primary resource, we collected all the existing effect size scores of ALA, HOTS, and Mo studies. In the situation where we could not directly find the effect size scores of the selected studies, we would collect other supporting data. We required the supporting data for calculating the effect size, namely standard deviation, mean score, number of respondents, the value of t , and the value of F . Finally, we computed and standardized the collected data by statistical software (see data analysis).

To address the third research question in this study, we coded three moderator variables that could contribute to the STEM enactment effectiveness, namely, approach or learning model, learning orientation, and duration of instruction. The coding was distilled from the theoretical review framework in the introduction part. For instance, several studies revealed that some learning approaches or learning models are combined and or juxtaposed with the STEM enactment (Chung, Lin, & Lou, 2018 ; Lou, Tsai, Tseng, & Shih, 2014 ). Likewise, the duration of instruction is a fundamental factor in teachers’ performance in Asia (Tytler, Murcia, Hsiung, & Ramseger, 2017 ). Eastern-culture education is more generally systematic, with a standardized syllabus and timetable, when compared to western-culture education (Hassan & Jamaludin, 2010 ; Tytler et al., 2017 ). Moreover, Asian countries tend to be robustly laden with religious and cultural-centric elements (Hassan & Jamaludin, 2010 ).

In terms of the approach or learning model , the authors coded each study, whether it was accompanied by another approach/learning model (present) or only STEM lesson without clearly the presence of other approaches (absent). The authors have coded learning orientation into two types, namely culture centric and universal oriented. The culture centric refers to the study, which much follows the unique characteristics of Asian students, such as strongly curriculum oriented, more systematic with standardized syllabus and timetable, or tends to be robustly laden with religious and local cultural elements. The universal oriented study refers to a freer lesson, the selected studies because the curriculum was not as strict, and or the themes on STEM lesson did not much emphasize unique themes, in particular, Asian countries. Finally, the authors coded the duration of instruction as a short or long period. The long duration refers to STEM enactment that was conducted by more than two-time class periods, and the short was conducted by only one-time class periods (2 h or less).

Publication bias

Another thing that needed to be clarified was how the researchers coded whether a study investigated the STEM enactment or not. In this case, the researchers referred to several works (Bybee, 2013 ; Li, Wang, Xiao, & Froyd, 2020 ; Martín-Páez et al., 2019 ). The researchers point out that there is not a fixed consensus in the literature about under what condition(s) learning was said to be STEM learning. However, in general, they (Bybee & Martin-Paez et al.) say that STEM learning emphasizes problem-solving with real-world problems involving many disciplines and other skills such as science, technology, mathematics, and engineering in integrated ways. Furthermore, this study focused on articles related to such STEM definitions, and/or at least, the authors in the paper mentioned that they used the STEM education approach (an integrated STEM). Moreover, we selected publications from 2009 to 2019, meaning that a vast number of STEM enactments by this time were included in the intended definition.

Concerning publication bias, we have met some difficulties in obtaining unpublished papers, especially in the research area of STEM enactment in Asia, in terms of its impact on learning outcomes. In terms of an alpha level significance (0.05), this current study shows, specifically, that more than 14% of the reported effects were not/less significant. These findings are consistent with the varieties in perspectives concerning the inferiority, superiority, or equivalence of STEM enactment for various learning styles. The condition that only 14% of the study was not a significant effect is not because of the file drawer studies remain unpublished due to the magnitude, significance, or direction of their effects, but rather because of other factors such as written in local language as well as the quality of the studies (McElhaney, Chang, Chiu, & Linn, 2015 ).

Data analysis

The data collected from various references, such as journals, books, proceedings, and dissertations investigating the effect of STEM enactment, were then analyzed using the meta-analysis method. Data were all aimed at accessing the same target, namely students’ learning outcomes (academic learning achievement, motivation, and higher-order thinking skills). The multitude of data was examined using the meta-analysis method for systematic and beneficial analysis. We argued that making quantitative data comparisons of various studies as one of the challenging and vital jobs in the world of research today.

A summary effect size (E.S.) using a random effect model value was the dependent variable in this study, while the independent variable was the STEM enactment in diversified ways and types. A random effect model assumes that the true E.S. varies from one study to the next, and the summary effect is our estimate of the mean of these effects (Pigott, 2012 ). Therefore, in this study, we do not want that overall estimate to be overly influenced by any of them. Meanwhile, in terms of potential moderator variables, a mixed-effect model was used. The mixed-effect model allows us to get a trade-off from the true E.S. In the moderator variable case, the trade-off from the true E.S. is vital due to the comparison between two sub-variables (e.g., short and long of the instruction duration). In doing so, the investigations of effect size and visualization were carried out using the Jeffreys’s amazing statistics program (JASP) version 0.11.1 program, especially by the Hunter-Schmidt method. This method was used due to the ability to estimate the variability of the distribution of effect sizes through a two-step process, namely subtracts to yield a residual variance and boosts by a function of the reliability and range restriction distributions (Hunter & Schmidt, 2004 ). To deal with the effect sizes for some studies reporting only F or t values, or even reported Hedges g , the authors used algebraic techniques (Lipsey & Wilson, 2001 ) as well. In social science, a common practice for overcoming this task is to calculate Cohen’s coefficient (Cohen, 2013 ). In this study, Cohen’s theory was determined by the difference between the average control group and the experimental group (see Eq. 1 ) or the difference between the average posttest score and the pretest score (Eq. 2 ) (Howell, 2016 ).

Let \( \overline{x} \) i , S i , and n i be the sample mean, standard deviation, and size of the group I, while S pooled , S diff , r , and S d be the pooled standard deviation, the differences of standard deviation between pre and post, the correlation between pre- and post-treatment score, and standard deviation of Cohen’s d.

When the calculated magnitude effect size was large, a classification was deployed in this meta-analysis method. In the current study, the authors used the classification level of (Sawilowsky, 2009 ). This classification system was a revised version of Cohen’s work in 1988. Thus, when the effect size was less than 0.20, it was considered very small, while when it ranged from 0.20 to 0.49, it was classified as small. The effect size, which ranged from 0.49 to 0.79, was at a medium level. A large level was evident from 0.80 to 1.19. Between 1.20 and 1.99 was classified at a very large level. A value over 2.0 was regarded to have a huge effect. A d coefficient of one indicates that the difference between two means is equal to the standard deviation (S.D.). If Cohen’s d is larger than one, the difference between two means is larger than one S.D. Anything larger than two means that the difference is larger than two standard deviations. This calculation afforded a uniform scale in expressing all possibilities that show a relationship between variables. Regarding the variability observed in this study, we have standardized the magnitudes between the differences in interventions and outcomes measured. The results of the study were summarized and combined systematically using a commonly termed the standardized effect size, namely the standardized difference in means.

The main objective of this study was to investigate whether STEM education originating and developing from the western countries (the USA) also affected students learning outcomes in the Asian environment. Another aim was to investigate whether there is a specific factor that contributes to the effectiveness of STEM enactment. Finally, another aim was to know more about the development and the enactment of STEM education in Asian countries. As a result, in terms of effect size, this current study found varies or heterogeneity. The value ranged from negative (− 0.19; 95% CI = − 0.78 to 0.40) to positive effect (+ 2.81; 95% CI = 2.01 to 3.61) (see Supplementary Materials for the list of effect sizes, study features, and coding elements).

The general portrait of study

Based on the literature reviewed, the first publications to assess the effect of STEM education on the learning outcome in Asia began in 2013. This time was only 4 years after the advent of STEM by the US government in 2009. Nevertheless, the authors assume that STEM education studies in Asia began to gain traction long before 2013. However, many of those studies were qualitative research, or the studies were not directly related to students’ learning outcomes. Table 1 illustrates the descriptive analysis of STEM educations in Asia, especially those related to the students’ learning outcomes.

In this study, we found that three Asian regions substantially contributed to the implementation and development of STEM education. Table 1 also shows that the Asian countries have conducted most studies on STEM education and its impact on students’ learning outcomes, with East Asia being the biggest contributor (25 studies), followed by West Asia (16 studies) and Southeast Asia (13 studies). However, there were significant differences in results between the three regions (Q .B. = 4.208, p < .05). Furthermore, the difference evinces that STEM education is significantly effective in Southeast Asia, as evidenced by its impact on the learning outcome, greater than that in other regions (E.S. = 1.211). This value is a combination of the value of academic learning achievement, higher-order thinking skills, and motivation.

In terms of the subject or topic guiding the implementation of STEM education in Asia, Science is the most widely researched. Conversely, mathematics is the least popular topic. However, there was no significant difference (Q .B. = 0.638, p > .05) when the effect of STEM education on the learning outcome related to topic or subject matter was investigated. Also, related to the level of education, this study found that the level of secondary education (junior and senior high school) has been widely researched (28 studies). In contrast, the higher education level (college or university level) is the least researched area (10 studies). At the same time, the statistical analysis also showed no significant difference (Q .B. = 2.880, p > .05), the effect of STEM enactment on learning outcomes in terms of education levels. Nevertheless, this difference suggests that STEM education tends to influence at secondary-level education (E.S. = 1.009) compared to the other two levels (primary and higher education level).

The effect of STEM enactment on students’ learning outcomes

In terms of student learning outcome, in line with the second research question, the investigated focused on academic learning achievement, higher-order thinking skills, and motivation. Furthermore, based on the analysis results, the summary effect of the overall effect size is 0.69 [0.58, 0.81 of 95% CI]. According to Sawilowsky ( 2009 ), this value is classified as a medium level of effect. Detailed results between the three types of learning outcomes (learning achievement, higher-order thinking skills, and motivation) can be seen in Figs. 2 , 3 , and 4 .

figure 2

A forest plot of students’ academic learning achievement (ALA)

figure 3

A forest plot of higher-order thinking skills (HOTS)

figure 4

A forest plot of students’ motivation (Mo)

Academic learning achievement

This study assumes that academic learning achievement is crucial in Asian students, even for the students’ parents. The rationale of this statement is related to the culture and characteristics of education, which is embraced in Asian countries (Hassan & Jamaludin, 2010 ; Tytler et al., 2017 ). Thus, one of the objectives of this study was to determine whether the implementation of STEM enactment in Asian countries affected the students’ academic learning achievement. In this study, we analyzed academic learning achievements from 24 studies that met the criteria (see the criteria on the “Selection of studies” section). The results of the analysis and distribution are shown in Fig. 2 . Figure 2 below is a forest plot of students’ academic learning achievement.

The forest plot shows black squares and whisker lines (see Fig. 2 ). The black squares indicate the magnitude of the STEM effect on academic learning achievement, whereas the whisker lines indicate the upper and lower limit of the value of the confidence interval. The vertical dashed line is a line that shows the position of the effect size with a zero value. Thus, the right area of the line is positive values, whereas the left area of the line shows a negative value of effect sizes.

In Fig. 2 , there are 20 studies where the Cohen value of d is below 1.0, while the other four studies have an effect size of more than 1.0. In addition, it is also known that a study seems a different appearance from the others, namely a study from Han, Rosli, Capraro, and Capraro, (2016) with Cohen’s values d 0.28 [0.16, 0.40 of 95% CI]. The black squares with short whisker lines indicate that the study has a very small range of the confidence interval. The minimum value of the confidence interval was due to the huge sample size in the study. Overall, the effect of STEM enactment for students’ academic learning achievement was 0.64 [0.48, 0.79 of 95% CI]. This positive d value indicates that STEM education affects students’ academic learning achievement in Asia. In classifying effect size, the value of .64 belongs to the medium effect category.

Higher-order thinking Skills

The second objective of this research is to find out more about whether STEM education affects students’ higher-order thinking skills (HOTS). To address this question, Fig. 3 below is a forest plot from Cohen d analysis about 16 previous studies that helped provide sufficient details.

Figure 3 illustrates the spread of effect size from 16 studies on students’ higher-order thinking skills (HOTS). The analysis results of the forest plot illustrate ample information. One interesting insight is the summary effect of 1.02 [0.71, 1.32 of 95% CI]. According to Sawilowsky ( 2009 ), this value is classified as a large effect. However, the largest d value in the study is reaching 2.81 [2.01, 3.61]. The value of d (2.81) means that the effect size value is twice the standard deviation value, while the smallest d value is at .06 [− 0.45, 0.57]. At a glance, there is a considerable difference between the largest values, the data distribution pattern, and the summary effect. This state is due to a study, which is Han et al. ( 2016 ) study reports the highest magnitude. The highest magnitude occurred because the study includes the largest sample size (1187 people). A large sample size certainly affects the result of the summary effect.

Another goal to be achieved in this study is to find out whether STEM education is effective in increasing student motivation in Asia. Figure 4 below illustrates the details of the data distribution from 14 previous researchers. The studies measure student motivation distributed across many topics, including science, mathematics, technology, and engineering.

The illustration of Fig. 4 , designated by the forest plot, are normally distributed ( p > .05). However, Cohen’s d value is spread from the smallest (− 0.08) to the largest d value (1.58). Furthermore, the figure indicates the summary effect value is 0.49 [0.32, 0.65 of 95% CI]. The summary effect value of .49 in the Sawilowsky classification is categorized as a medium effect. Therefore, the STEM enactment is Asia has a great impact on students’ motivation as well as two others (academic learning achievement and higher-order thinking skills).

Moderator variable of STEM enactment’s learning outcomes effectiveness

In addition to knowing the extent to which STEM enactment in Asia affects the students’ learning outcome that includes academic learning achievement, higher-order thinking skills, and motivation, this study also answers whether there are specific factors behind that effectiveness. In particular, this section addresses the research question about under what conditions and for what learning outcomes are STEM activities more effective in Asian students. Several potential variable moderators, such as approach or learning model, research design, learning orientation, and duration of instruction, were analyzed to address the research question.

As shown in Table 2 , several moderator variables reveal identical results in terms of student academic learning achievement. STEM enactment has a significant effect on the approach or learning model variable ( p = .037). The presence of an approach or learning model contributes better to the effectiveness of STEM enactment. Other moderator variables that also show significant results are learning orientation ( p = .039). STEM enactment, which tends to be culturally centric, gives a different effect compared to what is only universal oriented. Also, the last moderator variable that addresses significant results is the duration of instruction ( p = .016). In this variable, a longer time provides better effectiveness in terms of student academic learning achievement.

Heterogeneous results in higher-order thinking skills, especially in terms of the potential moderator variable, are shown in Table 3 . The factor, the duration of instruction, shows a significant result ( p = .046). Furthermore, the variable duration of instruction shows that time (long duration) has a crucial role in increasing the higher-order thinking skills of students in STEM enactment. Unlike the case for the duration of instruction, the other two factors (approach or learning model and learning orientation) do not address any significant differences ( p > .05). This condition proves that whether STEM is carried out, with or without another approach or learning model, and whether learning orientation tends to be cultural centric or universal oriented, the higher-order thinking skills of students have relatively the same effectiveness.

The results that are quite different concerning the potential moderator variables affecting the effectiveness of STEM enactment are shown in Table 4 . In Table 4 , the table shows that no moderator variables have the potential to differ rather significantly in the motivation of students in Asia. The three moderator variables, namely approach or learning model, learning orientation, and duration of instruction, show identical results that there is no significant difference ( p > .05). These results mean that whether STEM enactment is accompanied or not by other learning approaches, cultural centric or universal oriented, or done with short or long periods, the effect on students’ motivation tends to be the same.

The overview of STEM enactment in Asia

As a portrait of STEM enactment in Asia, this current study tends to focus on the three variables, namely region, subject, and education level. We found that Eastern Asia was the most contributed to STEM researches, especially those related to the impact on student learning outcomes. On the other hand, the difference evinces that STEM education is significantly effective in Southeast Asia, as evidenced by its impact on the learning outcome higher than that in other regions. The different effects among regions are mostly due to an interaction of some factors, such as the differences regarding the number of published studies and the differences in students’ learning outcomes baseline (Saraç, 2018 ; Yildirim, 2016 ). For instance, the result showed that students’ motivation and HOTS were proven higher than students’ academic learning achievement, which is mostly found in the studies on Southeast Asia (Lestari, Astuti, & Darsono 2018 ; Lestari, Sarwi, & Sumarti, 2018 ; Ismayani, 2016 ; Soros, Ponkham, & Ekkapim, 2018 ; Surya, Abdurrahman, & Wahyudi, 2018 ; Tungsombatsanti, Ponkham, & Somtoa, 2018 ). The baseline of Southeast Asia learning outcome is lower than in other regions due to the low quality of educational practice (OECD, 2018 ). Thus, this study suggests that those students with a lower baseline of higher-order thinking skills will benefit the most from the STEM enactments. In terms of education level, the result showed that most studies were conducted at the secondary education level. The condition of most studies conducted in STEM education from the secondary education level is in line with the resulting study from Saraç ( 2018 ). The only difference from Sarac’s study is that the reviewed subjects came from all over the world and did not focus distinctively on the Asian region. However, in terms of effect size, there was no significant effect appearing in this variable.

Furthermore, STEM education applications on mathematical topics or subjects are small in the number when compared to topics or subjects of science and engineering. This case is in line with the results of research from Saraç ( 2018 ). Sarac has found that the application of STEM education related to the learning outcome is still very limited in mathematics-related topics. The situation reflects that STEM education research on the other focuses, such as students’ attitudes (besides focusing on the learning outcome), is also lacking. This condition is because quite challenging to associate mathematics-related topics and STEM education. Wahono and Chang ( 2019a ) revealed that, when utilizing the STEM education approach, teachers felt challenged in connecting subject matter topics. The characteristic of mathematics, which is fundamentally theoretical and abstract (Acar, Tertemiz, & Tasdemir, 2018 ; Sabag & Trotskovsky, 2013 ), represents a stark contrast to the characteristics of STEM education, which involves activity that is more physical. Thus, it represents a critical reason why STEM enactment of the mathematical topic has a small number. However, there is still a tremendous opportunity to apply STEM education to mathematical-related topics. Examining students’ learning outcomes through particular STEM activities in mathematics is one of the worth for next future research. As evidenced in this study, we found only eight studies in Asia related to mathematics and learning outcomes.

Impacts of STEM enactment on Asian students’ learning outcomes

The results of the meta-analysis in this study suggest that the outline of STEM education of students’ learning outcomes in Asian countries differs among variables. The results showed the effect of STEM enactment by order; those are effect sizes on students’ HOTS at a large level (1.02), meanwhile the academic learning achievement and motivation at a moderate level (0.64 and 0.49). This result is advantageous because HOTS generated more of an effect in Asia when compared to students’ academic learning achievement. As Martín-Páez et al. ( 2019 ) and Chang, Ku, Yu, Wu, and Kuo ( 2015 ) stated that, in general, STEM education has the potential to increase students’ interest and higher-order thinking skills. The more substantial effect of students’ HOTS and interest could be due to the nature of the learning tools and processes of STEM education, which are based on eastern cultures and emphasize hands-on activities (Hassan & Jamaludin, 2010 ). The characteristics of STEM education (real-world problem and problem-solving) represent excellent potential for increasing students’ HOTS. Higher-order thinking skills such as problem-solving, critical thinking, and creative thinking are the leading targets in STEM learning in Asia (Barak & Assal, 2018 ; Lee et al., 2019). Therefore, HOTS is a decisive asset for Asian students in coping with global competition and industrial revolution 4.0.

Moreover, the result of academic learning achievement showed that the highest value of effect size (1.86) is in the Majid and Majid ( 2018 ) study. Based on an advanced analysis (a sample case), the study indicated that the researchers deeply embraced the Asian cultural characteristics of education. The study was devoted to several learning topics, particularly about chemical properties, atomic theory, and periodic tables. This Majid and Majid study also provides an example of the application of augmented reality, which is a topic familiar to students in their daily life, namely, to identify halal products. The result showed that the highest effect size value of students’ motivation is in the study of Ugras ( 2018 ). Based on further analysis, this study indicated that the learning process was influenced by the habits that are commonly faced in that particular place (Turkey/Asia). Most of the themes carried out in the learning process using STEM, such as how to build a strong house to withstand an earthquake or other often-encountered themes from daily life by Asian students. Furthermore, the themes or topics (culture and real-world problems) are the central themes in STEM learning. Such learning conditions certainly could encourage students’ enthusiasm and motivation in learning.

Moreover, a large variation has found naturally in the effect size of the Asian student learning outcomes. This condition is logically influenced by several factors such as learning instruction quality (McElhaney et al., 2015 ) and how effective the learning instruction, in this case, STEM enactment, fits into the Asian culture and characteristics (Hassan & Jamaludin, 2010 ). Indeed, a fit and comfortable the instruction to the learner characteristics (i.e., much grappled to cultural values) has strongly supported gaining a better impact on the STEM enactment outcomes. Furthermore, this moderate effect indicates that STEM education is quite promising to prepare students to face unpredictable global competition in the future. However, of course, there are still numerous efforts required to maximize the impact of implementing STEM education in the Asian region, including trying to find the hidden factor behinds the effectiveness of STEM enactment in terms of students’ learning outcomes.

Potential factors contributing to STEM enactment

Therefore, another exciting result to discuss is the role of the moderator variables on the effectiveness of student learning outcomes. Based on the analysis of the academic learning achievement of learning outcomes, better results would be obtained if the STEM enactment is accompanied by an approach, learning model, or other methods. This result is in line with the research from Lee, Capraro, and Bicer ( 2019 ). They (Lee et al.) investigated the role of companion another approach or learning model, in increasing the effectiveness of STEM lessons in the classroom. Lee et al. found that STEM combined with another approach or method (e.g., project-based learning or 6E learning model) would be more effective when compared to STEM lessons without other combinations.

Furthermore, the integration of STEM enactment with another approach or learning model provides better direction and control in the achievement of learning objectives (Mustafa et al., 2016 ). Besides, the results of the present study also show that STEM enactment, which tends to be culture centric, was more effective than universal oriented. This result is probably because culture-centric learning is more in line with most of the characteristics of Asian students who tend to rote learning, curriculum orientation and exam orientation (Di, 2017 ; Hassan & Jamaludin, 2010 ; Lin, 2006 ; Thang, 2004 ; Tytler et al., 2017 ). Therefore, the characteristics are more helpful in terms of increasing students’ academic learning achievement. In addition, the duration of the instruction factor also shows one of the potential factors in influencing the student’s effectiveness in academic learning achievement. Longer times of STEM enactment show to be more effective than shorter times; this result makes sense because, with sufficient time, students could better absorb and gradually improve their academic learning achievement (Çevik, 2018 ; Sarican & Akgunduz, 2018 ).

On the other hand, different conditions were found at higher-order thinking skills and motivation for learning outcomes. The results of both learning outcomes show that only the duration of instruction is significant, especially at the higher-order thinking of learning outcomes. This result means that a long time has the potential to be more effective in increasing higher-order thinking skills for Asian students. Lestari et al. (2018) and Lin, Hsiao, Chang, Chien, and Wu ( 2018 ) stated that time played a vital role in honing students’ higher-order thinking skills such as problem-solving and creative thinking of a STEM education field. However, the duration of the instruction factor is not significantly different from the motivation of learning outcomes. Whether STEM enactment is done in a short or over a long period, student motivation is equally effective. The same conditions are shown in other factors such as approach or learning model and learning orientation. Furthermore, this condition indicates that whether there are other approaches involved in STEM enactment, and whether it is culture centric or universal oriented, STEM enactment will provide relatively the equivalent effectiveness, especially in higher-order thinking skills and student motivation. That is, higher-order thinking skills and motivation are very closely tied to its STEM enactment, not from the supporting factors. This reason is reinforced by the opinion of Chiang and Lee ( 2016 ) and Ugras ( 2018 ), which states that STEM lessons have a robust character to increase learning motivation and higher-order thinking skills of students.

Conclusion and practical implications

The results of this study indicate a propitious effect of implementing STEM education on students’ learning outcomes in Asia. The effect is evident in the students’ learning achievement, higher-order thinking skills, and motivation. We have also concluded that STEM education in Asia leads to a higher effect on students’ higher-order thinking skills, students’ learning achievement, and finally, motivation. Furthermore, STEM education constitutes the most promising teaching and learning innovation, especially to prepare students honing higher-order thinking skills as well as to attract students’ interest in learning, which is crucial in adapting to the competitive era.

Likewise, based on the results of this study, when implementing STEM teaching and learning within a classroom, several factors must be considered; first, teachers may combine STEM lessons with any teaching approach or learning model. For instance, the teachers can combine STEM teaching with the 6E learning model or project-based learning approach. The combination would give a strong direction for a teacher in realizing the lesson goal. Another suggestion is to involve the local culture in STEM lessons. Such involvement is crucial to academic performance and essential to culturally responsive pedagogy. Local culture can be in the form of the main lesson topics, enrichment material, the way of teaching and learning process, or even the use of localized languages and properties. Lastly, when applying STEM lessons, calculating the amount of time needed, then utilizing a sufficient amount of time toward application is fundamental. The study suggests more than 2 h, spread over two or more class periods, will assist students’ academic learning achievement and higher-order thinking skills. Indeed, these three factors are significant in maximizing STEM effectiveness in Asian student learning outcomes.

While the authors strongly recommend educators, and researchers, apply STEM education as a regular part of learning in Asian countries, a concern is that this study only involves 54 selected studies. We believe there are still other studies that are also related to STEM education and the effectiveness of students’ learning outcomes that were not identified. These limitations can be caused by several things, such as the language used in the title and abstracts written in languages other than English. Another limitation is that this study is more focused on the meta-analysis method that evaluates quantitative research, so we cannot ascertain whether the learning outcome obtained so far has anything to do with teacher attitudes and knowledge of STEM education or not. Also, concerning to calculation of effect size on the potential moderator variables, this current research is still a limited number of studies. A power analysis indicated that the sample size showed relatively weak results to obtain significant and substantial effects for the targeted variables. A larger number of studies are needed to verify result analysis as well as to continue future research. Nevertheless, we believe this research is a comprehensive, valid, and reliable starting point in providing up-to-date information about the conditions of STEM enactment in Asia.

Potential future research based on the results, discussion, and limitations of this study includes investigating Asian teachers’ perceptions (based on their philosophy and belief) and current knowledge concerning STEM education as well as how to apply the approach in different fields. This study serves as an inspiration for researchers to develop or modify STEM lessons, originating from western countries, into diversified STEM types and variances that comply with the cultural background and geographical conditions of each country. Moreover, an attempt to develop, implement, or modify STEM-related curriculum is also a promising future research opportunity.

Availability of data and materials

Not applicable.

Abbreviations

Higher-order thinking skills

Science, technology, engineering, mathematics

STEM-project-based learning

Acar, D., Tertemiz, N., & Taşdemir, A. (2018). The effects of STEM training on the academic achievement of 4th graders in science and mathematics and their views on STEM training. International Electronic Journal of Elementary Education , 10 (4), 505–513. https://doi.org/10.26822/iejee.2018438141 .

Article   Google Scholar  

Adam, S. (2004). Using learning outcomes : A consideration of the nature , role , application and implications for european education of employing “ learning outcomes ” at the local , national and international levels . Paper presented at the Bologna Seminar, Heriot-Watt University, Edinburgh United Kingdom. Retrieved from http://www.aic.lv/ace/ace_disk/Bologna/Bol_semin/Edinburgh/S_Adam_Bacgrerep_presentation.pdf . Accessed on 20 June 2019.

Baharin, N., Kamarudin, N., & Manaf, U. K. A. (2018). Integrating STEM education approach in enhancing higher order thinking skills. International Journal of Academic Research in Business and Social Sciences , 8 (7), 810–822. https://doi.org/10.6007/IJARBSS/v8-i7/4421 .

Barak, M., & Assal, M. (2018). Robotics and STEM learning: Students’ achievements in assignments according to the P3 Task Taxonomy-practice, problem solving, and projects. International Journal of Technology and Design Education , 28 (1), 121–144. https://doi.org/10.1007/s10798-016-9385-9 .

Baran, E., Bilici, S. C., Mesutoglu, C., & Ocak, C. (2016). Moving STEM beyond schools: Students’ perceptions about an out-of-school STEM education program. International Journal of Education in Mathematics Science and Technology , 4 (1), 9–19. https://doi.org/10.18404/ijemst.71338 .

Burke, L. M., & McNeill, J. B. (2011). Educate to innovate: How the Obama plan for STEM education falls short . Retrieved from http://report.heritage.org/bg2504 . Accessed on 23 July 2019.

Bybee, R. W. (2013). The case for STEM education: challenges and opportunities . New York: NSTA press.

Google Scholar  

Cameron, S., & Craig, C. (2016). STEM labs for middle grades, grades 5-8 . Illinois: Mark Twain Media.

Cedefop (2017). Defining, writing and applying learning outcomes: A European handbook . Luxembourg: European Centre for the Development of Vocational Training.

Çevik, M. (2018). Impacts of the project based (PBL) science, technology, engineering and mathematics (STEM) education on academic achievement and career interests of vocational high school students. Pegem Journal of Education and Instruction , 8 (2), 281.

Chang, S.-H., Ku, A. C., Yu, L. C., Wu, T.-C., & Kuo, B. C. (2015). A science, technology, engineering and mathematics course with computer-assisted remedial learning system support for vocational high school students. Journal of Baltic Science Education , 14 (5), 641–654.

Chen, Y., & Chang, C.-C. (2018). The impact of an integrated robotics STEM course with a sailboat topic on high school students’ perceptions of integrative STEM, interest, and career orientation. EURASIA Journal of Mathematics, Science and Technology Education , 14 (12), 1614. https://doi.org/10.29333/ejmste/94314 .

Chesky, N. Z., & Wolfmeyer, M. R. (2015). Philosophy of STEM education: A critical investigation . New York: Palgrave Macmillan.

Chiang, C.-L., & Lee, H. (2016). The effect of project-based learning on learning motivation and problem-solving ability of vocational high school students. International Journal of Information and Education Technology , 6 (9), 709–712. https://doi.org/10.7763/IJIET.2016.V6.779 .

Cho, S.-H. (2013). The effect of robots in education based on STEAM. Journal of Korea robotics society , 8 (1), 58–65. https://doi.org/10.7746/jkros.2013.8.1.058 .

Choi, Y., & Hong, S.-H. (2015). Effects of STEAM lessons using scratch programming regarding small organisms in elementary science-gifted education. Journal of Korean Elementary Science Education , 34 (2), 194–209. https://doi.org/10.15267/keses.2015.34.2.194 .

Christophel, D. M. (1990). The relationships among teacher immediacy behaviors, student motivation, and learning. Communication Education , 39 (4), 323–340.

Chung, C.-C., Lin, C.-L., & Lou, S.-J. (2018). Analysis of the learning effectiveness of the STEAM-6E special course: A case study about the creative design of IoT assistant devices for the elderly. Sustainability , 10 (9), 3040. https://doi.org/10.3390/su10093040 .

Cohen, J. (2013). Statistical power analysis for the behavioral sciences . New York: Routledge.

Cohen, J., Manion, L., & Morrison, K. (2007). Research methods in education , (6th ed., ). New York: Routledge.

Di, X. (2017). Educational philosophy–East, west, and beyond: a reading and discussion of Xueji (學記). Educational Philosophy and Theory , 49 (5), 442–451. https://doi.org/10.1080/00131857.2016.1233092 .

Gosling, D., & Moon, J. (2002). How to use learning outcomes and assessment criteria . Retrieved from https://www.aec-music.eu/userfiles/File/goslingmoon-learningoutcomesassessmentcriteria.pdf . Accessed on 2 September 2019.

Hampden-Turner, C., & Trompenaars, F. (1997). Mastering the infinite game: How east Asian values are transforming business practices . Oxford: Capstone.

Han, S., Capraro, R., & Capraro, M. M. (2015). How science, technology, engineering, and mathematics (STEM) project-based learning (PBL) affects high, middle, and low achievers differently: The impact of student factors on achievement. International Journal of Science and Mathematics Education , 13 (5), 1089–1113. https://doi.org/10.1007/s10763-014-9526-0 .

Han, S., Rosli, R., Capraro, M. M., & Capraro, M. R. (2016). The effect of science, technology, engineering and mathematics (STEM) project based learning (PBL) on students’ achievement in four mathematics topics. Journal of Turkish Science Education , 13 , 3–29.

Hassan, A., & Jamaludin, N. S. (2010). Approaches & values in two gigantic educational philosophies: East and West. Online Educational Research Journal , 1 (2), 1–15.

Hofstede, G. (2005). Culture and organizations, software of the mind, intercultural cooperation and its importance for survival . New York: McGraw-Hill.

Hong, O. (2017). STEAM education in Korea: Current policies and future directions. Science and Technology Trends Policy Trajectories and Initiatives in STEM Education , 8 (2), 92–102.

Howell, D. C. (2016). Fundamental statistics for the behavioral sciences . Boston: Cengage Learning.

Hsiao, H.-S., Yu, K.-C., Chang, Y.-S., Chien, Y.-H., Lin, K.-Y., Lin, C.-Y., . . . Lin, Y.-W. (2017). The study on integrating the design thinking model and STEM activity unit for senior high school living technology course. Paper presented at the 2017 7th World Engineering Education Forum (WEEF).

Hsu, Y.-S., Lin, Y.-H., & Yang, B. (2017). Impact of augmented reality lessons on students’ STEM interest. Research and practice in technology enhanced learning , 12 (1), 2. https://doi.org/10.1186/s41039-016-0039-z .

Hunter, J., & Schmidt, F. (2004). Methods of meta-analysis: corrected error and bias in research findings . California: Sage Publications.

Ismayani, A. (2016). Pengaruh penerapan STEM project-based learning terhadap kreativitas matematis siswa SMK [The effect of STEM-PBL enactment towards students mathematics thinking on the vocational high school]. Indonesian Digital Journal of Mathematics and Education , 3 (4), 264–272.

Jayarajah, K., Saat, R. M., Rauf, A., & Amnah, R. (2014). A review of science, technology, engineering & mathematics (STEM) education research from 1999-2013: A Malaysian perspective. Eurasia Journal of Mathematics, Science & Technology Education, 10 (3). https://doi.org/10.12973/eurasia.2014.1072a .

Jeong, S., & Kim, H. (2015). The effect of a climate change monitoring program on students’ knowledge and perceptions of STEAM education in Korea. Eurasia Journal of Mathematics, Science & Technology Education, 11 (6).

Kang, J., Ju, E. J., & Jang, S. (2013). The effect of science-based STEAM program using a portfolio on elementary students’ formation of science concepts. Journal of Korean Elementary Science Education , 32 (4), 593–606.

Karahan, E., Bilici, S. C., & Ünal, A. (2015). Integration of media design processes in science, technology, engineering, and mathematics (STEM) education. Eurasian Journal of Educational Research , 15 (60), 221–240. https://doi.org/10.14689/ejer.2015.60.15 .

Khaeroningtyas, N., Permanasari, A., & Hamidah, I. (2016). STEM learning in material of temperature and its change to improve scientific literacy of junior high school. Jurnal Pendidikan IPA Indonesia , 5 (1), 94–100. https://doi.org/10.15294/jpii.v5i1.5797 .

Kim, Y., Chu, H. E., & Lim, G. (2015). Science curriculum changes and STEM education in east Asia. In M. S. Khine (Ed.), Science Education in East Asia: Pedagogical Innovations and Research-informed Practices (pp. 149-226). (Science Education in East Asia). Cham, Switzerland: Springer, Springer Nature. https://doi.org/10.1007/978-3-319-16390-1_7 .

Konstantopoulos, S. (2009). Effects of teachers on minority and disadvantaged students’ achievement in the early grades. The Elementary School Journal , 110 (1), 92–113. https://doi.org/10.1086/598845 .

Koul, R. B., Fraser, B. J., Maynard, N., & Tade, M. (2018). Evaluation of engineering and technology activities in primary schools in terms of learning environment, attitudes and understanding. Learning Environments Research , 21 (2), 285–300.

Kuo, H.-C., Tseng, Y.-C., & Yang, Y.-T. C. (2019). Promoting college student’s learning motivation and creativity through a STEM interdisciplinary PBL human-computer interaction system design and development course. Thinking Skills and Creativity , 31 , 1–10. https://doi.org/10.1016/j.tsc.2018.09.001 .

Lee, M.-H., Chai, C. S., & Hong, H.-Y. (2019). STEM education in asia pacific: Challenges and development. Asia-Pacific Education Research , 28 (1), 1–4. https://doi.org/10.1007/s40299-018-0424-z .

Lee, Y., Capraro, R. M., & Bicer, A. (2019). Affective mathematics engagement: A comparison of STEM PBL versus non-STEM PBL instruction , (pp. 1–20). Mathematics and Technology Education : Canadian Journal of Science . https://doi.org/10.1007/s42330-019-00050-0 .

Book   Google Scholar  

Lestari, D. A. B., Astuti, B., & Darsono, T. (2018). Implementasi LKS dengan pendekatan STEM (science, technology, engineering, and mathematics) untuk meningkatkan kemampuan berpikir kritis siswa [The implementation of student’ worksheet with STEM approach to enhance student’ critical thinking abilities]. Jurnal Pendidikan Fisika dan Teknologi , 4 (2), 202–207.

Lestari, T. P., Sarwi, S., & Sumarti, S. S. (2018). STEM-based project based learning model to increase science process and creative thinking skills of 5th grade. Journal of Primary Education , 7 (1), 18–24. https://doi.org/10.15294/JPE.V7I1.21382 .

Li, Y., Froyd, J. E., & Wang, K. (2019). Learning about research and readership development in STEM education: A systematic analysis of the journal’s publications from 2014 to 2018. International Journal of STEM Education , 6 , 19. https://doi.org/10.1186/s40594-019-0176-1 .

Li, Y., Huang, Z., Jiang, M., & Chang, T.-W. (2016). The effect on pupils’ science performance and problem-solving ability through lego: An engineering design-based modeling approach. Journal of Educational Technology & Society , 19 (3).

Li, Y., Wang, K., Xiao, Y., & Froyd, J. E. (2020). Research and trends in STEM education: A systematic review of journal publications. International Journal of STEM Education , 7 , 11. https://doi.org/10.1186/s40594-020-00207-6 .

Lin, J. (2006). The difference between Western and Eastern education: Education system in need of change . Retrieved from http://docshare01.docshare.tips/files/20332/203324596.pdf . Accessed on 22 January 2019.

Lin, K.-Y., Hsiao, H.-S., Chang, Y.-S., Chien, Y.-H., & Wu, Y.-T. (2018). The effectiveness of using 3D printing technology in STEM project-based learning activities. EURASIA Journal of Mathematics, Science and Technology Education , 14 , 12.

Lin, K.-Y., Yu, K.-C., Hsiao, H.-S., Chang, Y.-S., & Chien, Y.-H. (2018). Effects of web-based versus classroom-based STEM learning environments on the development of collaborative problem-solving skills in junior high school students. International Journal of Technology and Design Education , 1-14. https://doi.org/10.1007/s10798-018-9488-6 .

Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis . California: Sage Publications.

Lou, S.-J., Tsai, H.-Y., Tseng, K.-H., & Shih, R.-C. (2014). Effects of implementing STEM-I project-based learning activities for female high school students. International Journal of Distance Education Technologies, 12 (1), 52-73. https://doi.10.4018/978-1-4666-7363-2.ch057

Lutfi, I., & Azis, A. (2018). Effect of project-based learning integrated STEM against science literacy, creativity and learning outcomes on environmental pollution subject. Paper presented at the Prosiding Seminar Nasional Biologi dan Pembelajarannya . Indonesia: Malang.

Majid, N. A. A., & Majid, N. A. (2018). Augmented reality to promote guided discovery learning for STEM learning. International Journal on Advanced Science, Engineering and Information Technology, 8 (4-2), 1494-1500. https://doi.10.18517/ijaseit.8.4-2.6801

Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education , 1-24. https://doi.org/10.1002/sce.21522 .

Marton, F., Alba, G. D., & Kun, T.-L. (2014). Memorizing and understanding: The key to the paradox? In M. Bray, B. Adamson, & M. Mason (Eds.), Comparative Education Research: Approaches and Methods , (pp. 69–83). Switzerland: Springer International Publishing.

McElhaney, K. W., Chang, H.-Y., Chiu, J. L., & Linn, M. C. (2015). Evidence for effective uses of dynamic visualisations in science curriculum materials. Studies in Science Education , 51 (1), 49–85. https://doi.org/10.1080/03057267.2014.984506 .

Merrill, C., & Daugherty, J. (2009). The future of T.E , masters degrees: STEM (). Louisville, Kentucky: Paper presented at the Meeting of the International Technology Education Association.

Meyrick, K. M. (2011). How STEM education improves student learning. Meridian K-12 School Computer Technologies Journal , 14 (1), 1–6.

Mustafa, N., Ismail, Z., Tasir, Z., Said, M., & Haruzuan, M. N. (2016). A meta-analysis on effective strategies for integrated STEM education. Advanced Science Letters , 22 (12), 4225–4228. https://doi.org/10.1166/asl.2016.8111 .

OECD. (2018). PISA 2015 results in focus . Retrieved from https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf . .

Park, S.-J., & Yoo, P. K. (2013). The effects of the learning motive, interest and science process skills using the‘Light’unit on science-based STEAM. Journal of Korean Elementary Science Education , 32 (3), 225–238.

Pigott, T. D. (2012). Advances in meta-analysis . New York: Springer-Verlag.

Popov, V., Biemans, H. J., Brinkman, D., Kuznetsov, A. N., & Mulder, M. (2013). Facilitation of computer-supported collaborative learning in mixed-versus same-culture dyads: Does a collaboration script help? The Internet and Higher Education , 19 , 36–48. https://doi.org/10.1016/j.iheduc.2013.08.002 .

Popov, V., Biemans, H. J., Fortuin, K. P., van Vliet, A. J., Erkens, G., Mulder, M., … Li, Y. (2019). Effects of an interculturally enriched collaboration script on student attitudes, behavior, and learning performance in a CSCL environment. Learning, Culture and Social Interaction , 21 , 100–123. https://doi.org/10.1016/j.lcsi.2019.02.004 .

Pratama, G., & Retnawati, H. (2018). Urgency of higher order thinking skills (HOTS) content analysis in mathematics textbook . Journal of Physics: Conference Series 1097 , 012147. https://doi.10.1088/1742-6596/1097/1/012147

Rodriguez, A. J., & Bell, P. (2018). Why it is crucial to make cultural diversity visible in STEM education . New York, USA: The National Science Foundation.

Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological bulletin , 86 (3), 638.

Rossman, G. B., Corbett, H. D., & Firestone, W. A. (1988). Change and effectiveness in schools: A cultural perspective . New York: SUNY Press.

Sabag, N., & Trotskovsky, E. (2013). Using lab experiments in electric circuits to promote achievements in mathematics. Paper presented at the 2013 IEEE Global Engineering Education Conference (EDUCON), Berlin, Germany.

Sanders, M. E. (2009). Stem, stem education, stemmania. The Technology Teacher , 68 (4), 20–26.

Saraç, H. (2018). The effect of science, technology, engineering and mathematics-STEM educational practices on students’ learning outcomes: a meta-analysis study. Turkish Online Journal of Educational Technology , 17 (2), 125–142.

Sarican, G., & Akgunduz, D. (2018). The impact of integrated STEM education on academic achievement, reflective thinking skills towards problem solving and permanence in learning in science education. Cypriot Journal of Educational Sciences , 13 (1), 94–107. https://doi.org/10.18844/cjes.v13i1.3322 .

Sawilowsky, S. S. (2009). New effect size rules of thumb. Journal of Modern Applied Statistical Methods , 8 (2), 26.

Schein, E. H. (2010). Organizational culture and leadership . San Francisco: Jossey-Bass.

Shahali, E. H. M., Halim, L., Rasul, M. S., Osman, K., & Zulkifeli, M. A. (2017). STEM learning through engineering design: impact on middle secondary students’ interest towards STEM. EURASIA Journal of Mathematics, Science and Technology Education , 13 (5), 1189–1211. https://doi.org/10.12973/eurasia.2017.00667a .

Shahali, E. H. M., Ismail, I., & Halim, L. (2017). STEM education in Malaysia: policy, trajectories and initiatives. Asian Research Policy , 8 (2), 122–133.

Sheffield, R. S., Koul, R., Blackley, S., Fitriani, E., Rahmawati, Y., & Resek, D. (2018). Transnational examination of STEM education. International Journal of Innovation in Science and Mathematics Education , 26 (8), 67–80.

Shores, M. L., Shannon, D. M., & Smith, T. G. (2010). Individual learner variables and their effect on mathematics achievement as students advance from fifth to sixth grade. Journal of Research in Childhood Education , 24 (3), 187–194. https://doi.org/10.1080/02568543.2010.487393 .

Siew, N. M., Amir, N., & Chong, C. L. (2015). The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science. SpringerPlus , 4 (1), 8. https://doi.org/10.1186/2193-1801-4-8 .

Sin, Z. P., Ng, P. H., Shiu, S. C., & Chung, F.-l. (2017). Planetary marching cubes for STEM sandbox game-based learning: Enhancing student interest and performance with simulation realism planet simulating sandbox. Paper presented at the 2017 IEEE Global Engineering Education Conference (EDUCON), Athens, Greece.

Soros, P., Ponkham, K., & Ekkapim, S. (2018). The results of STEM education methods for enhancing critical thinking and problem solving skill in physics the 10th grade level. AIP Conference Proceedings , 1923 , 030045. https://doi.org/10.1063/1.5019536 .

Suratno, Wahono, B., Chang, C-Y., Retnowati, A., & Yushardi. (2020). Exploring a direct relationship between students’ problem-solving abilities and academic achievement: A STEM education at a coffee plantation area. Journal of Turkish Science Education, 17 (2), 211-224. https://doi.org/10.36681/tused.2020.22

Surya, J. P., Abdurrahman, A., & Wahyudi, I. (2018). Implementation of the stem learning to improve the creative thinking skills of high school student in the newton law of gravity material. Journal of Komodo Science Education , 1 (1), 106–116.

Thang, S. M. (2004). Student approaches to studying: Identifying the Malaysian constructs and comparing them with those in other contexts. Journal of Further and Higher Education , 28 (4), 359–371. https://doi.org/10.1080/0309877042000298859 .

Theodore, E. W. J. (1995). Academic achievement in the home school . Lancaster, UK: Gazelle Publication.

Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., … De Cock, M. (2018). Integrated STEM education: a systematic review of instructional practices in secondary education. European Journal of STEM Education , 3 (1), 2. https://doi.org/10.20897/ejsteme/85525 .

Timms, M. J., Moyle, K., Weldon, P. R., & Mitchell, P. (2018). Challenges in STEM learning in Australian schools: Literature and policy review . Victoria: Australian Council for Educational Research.

Tungsombatsanti, A., Ponkham, K., & Somtoa, T. (2018). The results of STEM education methods in physics at the 11th grade level: Light and visual equipment lesson . Paper presented at the AIP Conference Proceedings. https://doi.org/10.1063/1.5019544 .

Tytler, R., Murcia, K., Hsiung, C.-T., & Ramseger, J. (2017). Reasoning through representation. In M. Hackling (Ed.), Quality teaching in primary science education: cross-cultural perspectives , (pp. 149–179). Switzerland: Springer.

Ugras, M. (2018). The effects of STEM activities on STEM attitudes, scientific creativity and motivation beliefs of the students and their views on STEM education. International Online Journal of Educational Sciences , 10 (5), 165–182. https://doi.org/10.15345/iojes.2018.05.012 .

Wahono, B., & Chang, C.-Y. (2019a). Assessing teacher’s attitude, knowledge, and application (AKA) on STEM: An effort to foster the sustainable development of STEM education. Sustainability , 11 (4), 950. https://doi.org/10.3390/su11040950 .

Wahono, B., & Chang, C.-Y. (2019b). Development and validation of a survey instrument (AKA) towards attitude, knowledge and application of STEM. Journal of Baltic Science Education , 18 (1), 63–76. https://doi.org/10.33225/jbse/19.18.63 .

Yildirim, B. (2016). An analyses and meta-synthesis of research on STEM education. Journal of Education and Practice , 7 (34), 23–33.

Yıldırım, B., & Altun, Y. (2015). Investigating the effect of STEM education and engineering applications on science laboratory lectures. El-Cezerî Journal of Science and Engineering , 2 (2), 28–40.

Yıldırım, B., & Sevi, M. (2016). Examination of the effects of STEM education integrated as a part of science, technology, society and environment courses. Journal of Human Sciences , 13 (3), 3684–3695 https://doi.org/10.14687/jhs.v13i3.3876 .

Yıldırım, B., & Sidekli, S. (2018). STEM applications in mathematics education: the effect of STEM applications on different dependent variables. Journal of Baltic Science Education , 17 (2), 200–2014.

Yildirim, B., & Turk, C. (2018). The effectiveness of argumentation-assisted STEM practices. Cypriot Journal of Educational Sciences , 13 (3), 259–274.

Download references

Acknowledgements

The authors would like to express the gratefulness to Terrence from the Science Education Center, NTNU, who have helped in the English editing process. We also would like to say thank you, for having received funding from the Ph.D. Degree Training of the 4 in 1 project of University of Jember, Ministry of Research Technology and Higher Education Indonesia, and Islamic Development Bank (IsDB).

This research is supported in part by the Ministry of Science and Technology (MOST), Taiwan, R.O.C., under the grant number MOST 106-2511-S-003-050-MY3, “STEM for 2TV (science, technology, engineering, and mathematics for Taiwan, Thailand, and Vietnam): A Joint Adventure in Science Education Research and Practice; The “Institute for Research Excellence in Learning Sciences” of National Taiwan Normal University (NTNU) from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan; and National Taiwan Normal University Subsidy for Talent Promotion Program.

Author information

Authors and affiliations.

Faculty of Teacher Training and Education, University of Jember, Jember, Indonesia

Bevo Wahono

Graduate Institute of Science Education, National Taiwan Normal University, Taipei, Taiwan

Science Education Center, National Taiwan Normal University, Taipei, Taiwan

Pei-Ling Lin & Chun-Yen Chang

You can also search for this author in PubMed   Google Scholar

Contributions

All authors contributed to the paper. Data curation, B-W; formal analysis, B-W; funding acquisition, CY-C; investigation, B-W; methodology, B-W, PL-L, and CY-C; project administration, CY-C; resources, CY-C; supervision, CY-C; validation, B-W and PL-L; and writing—original draft, B-W. Finally, CY-C, acted as a corresponding author. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Chun-Yen Chang .

Ethics declarations

Competing interests.

The authors declare no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Additional file 1:..

List of reviewed articles

Additional file 2:.

List of effect sizes, study features, and coding elements

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Wahono, B., Lin, PL. & Chang, CY. Evidence of STEM enactment effectiveness in Asian student learning outcomes. IJ STEM Ed 7 , 36 (2020). https://doi.org/10.1186/s40594-020-00236-1

Download citation

Received : 11 January 2020

Accepted : 02 July 2020

Published : 10 July 2020

DOI : https://doi.org/10.1186/s40594-020-00236-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • STEM education
  • STEM effectiveness
  • Learning outcome

research paper title for stem students

Edueuphoria

200 Quantitative Research Title for Stem Students

Are you a STEM (Science, Technology, Engineering, and Mathematics) student looking for inspiration for your next research project? You’re in the right place! Quantitative research involves gathering numerical data to answer specific questions, and it’s a fundamental part of STEM fields. To help you get started on your research journey, we’ve compiled a list of 200 quantitative research title for stem students. These titles span various STEM disciplines, from biology to computer science. Whether you’re an undergraduate or graduate student, these titles can serve as a springboard for your research ideas.

Table of Contents

Biology and Life Sciences

  • The Impact of pH Levels on Microbial Growth
  • Examining the Impact of Temperature on Enzyme Activity.
  • Investigating the Relationship Between Genetics and Obesity
  • Exploring the Diversity of Microorganisms in Soil Samples
  • Quantifying the Impact of Pesticides on Aquatic Ecosystems
  • Studying the Effect of Light Exposure on Plant Growth
  • Analyzing the Efficiency of Antibiotics on Bacterial Infections
  • Investigating the Relationship Between Blood Type and Disease Susceptibility
  • Evaluating the Effects of Different Diets on Lifespan in Fruit Flies
  • Evaluating the Influence of Air Pollution on Respiratory Health.
  • Determining the Kinetics of Chemical Reactions
  • Investigating the Conductivity of Various Ionic Solutions
  • Analyzing the Effects of Temperature on Gas Solubility
  • Studying the Corrosion Rate of Metals in Different Environments
  • Quantifying the Concentration of Heavy Metals in Water Sources
  • Evaluating the Efficiency of Photocatalytic Materials in Water Purification
  • Examining the Thermodynamics of Electrochemical Cells
  • Investigating the Effect of pH on Acid-Base Titrations
  • Analyzing the Composition of Natural and Synthetic Polymers
  • Assessing the Chemical Properties of Nanoparticles
  • Measuring the Speed of Light Using Interferometry
  • Studying the Behavior of Electromagnetic Waves in Different Media
  • Investigating the Relationship Between Mass and Gravitational Force
  • Analyzing the Efficiency of Solar Cells in Energy Conversion
  • Examining Quantum Entanglement in Photon Pairs
  • Quantifying the Heat Transfer in Different Materials
  • Evaluating the Efficiency of Wind Turbines in Energy Production
  • Studying the Elasticity of Materials Through Stress-Strain Analysis
  • Analyzing the Effects of Magnetic Fields on Particle Motion
  • Investigating the Behavior of Superconductors at Low Temperatures

Mathematics

  • Exploring Patterns in Prime Numbers
  • Analyzing the Distribution of Random Variables
  • Investigating the Properties of Fractals in Geometry
  • Evaluating the Efficiency of Optimization Algorithms
  • Studying the Dynamics of Differential Equations
  • Quantifying the Growth of Cryptocurrency Markets
  • Analyzing Network Theory and its Applications
  • Investigating the Complexity of Sorting Algorithms
  • Assessing the Predictive Power of Machine Learning Models
  • Examining the Distribution of Prime Factors in Large Numbers

Computer Science

  • Evaluating the Performance of Encryption Algorithms
  • Analyzing the Efficiency of Data Compression Techniques
  • Investigating Cybersecurity Threats in IoT Devices
  • Quantifying the Impact of Code Refactoring on Software Quality
  • Studying the Behavior of Neural Networks in Image Recognition
  • Analyzing the Effectiveness of Natural Language Processing Models
  • Investigating the Relationship Between Software Bugs and Development Methods
  • Evaluating the Efficiency of Blockchain Consensus Mechanisms
  • Assessing the Privacy Implications of Social Media Data Mining
  • Studying the Dynamics of Online Social Networks

Engineering

  • Analyzing the Structural Integrity of Bridges Under Load
  • Investigating the Efficiency of Renewable Energy Systems
  • Quantifying the Performance of Water Filtration Systems
  • Evaluating the Durability of 3D-Printed Materials
  • Studying the Aerodynamics of Drone Design
  • Analyzing the Impact of Noise Pollution on Urban Environments
  • Investigating the Efficiency of Heat Exchangers in HVAC Systems
  • Assessing the Safety of Autonomous Vehicles in Real-world Scenarios
  • Exploring the Applications of Artificial Intelligence in Robotics
  • Investigating Material Behavior in Extreme Conditions.

Environmental Science

  • Assessing the Effect of Climate Change on Wildlife Migration.
  • Analyzing the Effect of Deforestation on Carbon Sequestration
  • Investigating the Relationship Between Air Quality and Human Health
  • Quantifying the Rate of Soil Erosion in Different Landscapes
  • Analyzing the Impacts of Ocean Acidification on Coral Reefs.
  • Assessing the Efficiency of Waste-to-Energy Conversion Technologies
  • Analyzing the Impact of Urbanization on Local Microclimates
  • Investigating the Effect of Oil Spills on Aquatic Ecosystems
  • Assessing the Effectiveness of Endangered Species Conservation Initiatives.
  • Studying the Dynamics of Ecological Communities

Astronomy and Space Sciences

  • Measuring the Orbits of Exoplanets Using Transit Photometry
  • Investigating the Formation of Stars in Nebulae
  • Analyzing the Characteristics of Black Holes
  • Exploring the Characteristics of Cosmic Microwave Background Radiation.
  • Quantifying the Distribution of Dark Matter in Galaxies
  • Assessing the Effects of Space Weather on Satellite Communications
  • Evaluating the Potential for Asteroid Mining
  • Investigating the Habitability of Exoplanets in the Goldilocks Zone
  • Analyzing Gravitational Waves from Neutron Star Collisions
  • Investigating the Evolution of Galaxies Across Cosmic Eras.

Health Sciences

  • Evaluating the Impact of Exercise on Cardiovascular Health
  • Analyzing the Relationship Between Diet and Diabetes
  • Investigating the Efficacy of Vaccination Programs
  • Quantifying the Psychological Effects of Social Media Use
  • Studying the Genetics of Neurodegenerative Diseases
  • Analyzing the Effects of Meditation on Stress Reduction
  • Investigating the Correlation Between Sleep Patterns and Mental Health
  • Assessing the Influence of Environmental Factors on Allergies
  • Evaluating the Effectiveness of Telemedicine in Patient Care
  • Studying the Health Disparities Among Different Demographic Groups

Materials Science

  • Analyzing the Properties of Carbon Nanotubes for Nanoelectronics
  • Investigating the Thermal Conductivity of Advanced Ceramics
  • Quantifying the Strength of Composite Materials
  • Studying the Optical Properties of Quantum Dots
  • Evaluating the Biocompatibility of Biomaterials for Implants
  • Investigating the Phase Transitions in Perovskite Materials
  • Analyzing the Mechanical Behavior of Shape Memory Alloys
  • Assessing the Corrosion Resistance of Coatings on Metals
  • Studying the Electrical Conductivity of Polymer Blends
  • Exploring the Superconducting Properties of High-Temperature Superconductors

Earth Sciences

  • Assessing the Influence of Volcanic Eruptions on Climate.
  • Analyzing the Geological Processes Shaping Earth’s Surface
  • Investigating the Seismic Activity in Subduction Zones
  • Quantifying the Rate of Glacial Retreat in Polar Regions
  • Studying the Formation of Earthquakes Along Fault Lines
  • Analyzing the Changes in Ocean Circulation Due to Climate Change
  • Investigating the Effects of Urbanization on Groundwater Quality
  • Assessing the Risk of Landslides in Hilly Terrain
  • Evaluating the Impact of Coastal Erosion on Communities
  • Studying the Behavior of Hurricanes in Different Oceanic Basins

Social Sciences and Economics

  • Analyzing the Economic Impact of Natural Disasters
  • Investigating the Relationship Between Education and Income
  • Quantifying the Effects of Public Health Policies on Disease Spread
  • Studying the Demographic Changes in Aging Populations
  • Evaluating the Effects of Gender Diversity on Corporate Performance
  • Analyzing the Influence of Social Media on Political Behavior
  • Investigating the Correlation Between Happiness and Economic Growth
  • Assessing the Factors Affecting Consumer Buying Behavior
  • Studying the Dynamics of International Trade Flows
  • Exploring the Effects of Income Inequality on Social Mobility

Robotics and Artificial Intelligence

  • Evaluating the Performance of Reinforcement Learning Algorithms in Robotics
  • Analyzing the Efficiency of Autonomous Navigation Systems
  • Investigating Human-Robot Interaction in Collaborative Environments
  • Quantifying the Accuracy of Object Detection Algorithms
  • Studying the Ethics of Autonomous AI Decision-Making
  • Analyzing the Robustness of Machine Learning Models to Adversarial Attacks
  • Investigating the Use of AI in Healthcare Diagnosis
  • Assessing the Impact of AI on Job Markets
  • Evaluating the Efficiency of Natural Language Processing in Chatbots
  • Studying the Potential for AI to Enhance Education

Energy and Sustainability

  • Examining the Environmental Consequences of Renewable Energy Sources.
  • Investigating the Efficiency of Energy Storage Systems
  • Quantifying the Benefits of Green Building Technologies
  • Studying the Effects of Carbon Pricing on Emissions Reduction
  • Examining the Prospect for Carbon Capture and Storage
  • Assessing the Sustainability of Food Production Systems
  • Investigating the Impact of Electric Vehicles on Urban Air Quality
  • Analyzing the Energy Consumption Patterns in Smart Cities
  • Studying the Feasibility of Hydrogen as a Clean Energy Carrier
  • Exploring Sustainable Agriculture Practices for Crop Yield Improvement

Neuroscience and Psychology

  • Evaluating the Cognitive Effects of Video Game Play
  • Analyzing Brain Activity During Decision-Making Processes
  • Investigating the Neural Correlates of Emotional Regulation
  • Quantifying the Impact of Music on Brain Function
  • Analyzing the Outcomes of Mindfulness Meditation on Anxiety
  • Analyzing Sleep Patterns and Memory Consolidation
  • Investigating the Relationship Between Neurotransmitters and Mood
  • Assessing the Neural Basis of Addiction
  • Evaluating the Effects of Trauma on Brain Structure
  • Studying the Brain’s Response to Virtual Reality Environments

Mechanical Engineering

  • Analyzing the Efficiency of Heat Exchangers in Power Plants
  • Investigating the Wear and Tear of Mechanical Bearings
  • Quantifying the Vibrations in Mechanical Systems
  • Studying the Aerodynamics of Wind Turbine Blades
  • Evaluating the Frictional Properties of Lubricants
  • Assessing the Efficiency of Cooling Systems in Electronics
  • Investigating the Performance of Internal Combustion Engines
  • Analyzing the Impact of Additive Manufacturing on Product Development
  • Studying the Dynamics of Fluid Flow in Pipelines
  • Exploring the Behavior of Composite Materials in Aerospace Structures

Biomedical Engineering

  • Evaluating the Biomechanics of Human Joint Replacements
  • Analyzing the Performance of Wearable Health Monitoring Devices
  • Investigating the Biocompatibility of 3D-Printed Medical Implants
  • Quantifying the Drug Release Rates from Biodegradable Polymers
  • Studying the Efficiency of Drug Delivery Systems
  • Assessing the Use of Nanoparticles in Cancer Therapies
  • Investigating the Biomechanics of Tissue Engineering Constructs
  • Analyzing the Effects of Electrical Stimulation on Nerve Regeneration
  • Evaluating the Mechanical Properties of Artificial Heart Valves
  • Studying the Biomechanics of Human Movement

Civil and Environmental Engineering

  • Analyzing the Structural Behavior of Tall Buildings in Seismic Zones
  • Investigating the Efficiency of Stormwater Management Systems
  • Quantifying the Impact of Green Infrastructure on Urban Flooding
  • Studying the Behavior of Soils in Slope Stability Analysis
  • Evaluating the Performance of Water Treatment Plants
  • Assessing the Sustainability of Transportation Systems
  • Investigating the Effects of Climate Change on Infrastructure Resilience
  • Analyzing the Environmental Impact of Construction Materials
  • Studying the Dynamics of River Sediment Transport
  • Exploring the Use of Smart Materials in Civil Engineering Applications

Chemical Engineering

  • Evaluating the Efficiency of Chemical Reactors in Pharmaceutical Production
  • Analyzing the Mass Transfer Rates in Membrane Separation Processes
  • Investigating the Effects of Catalysis on Chemical Reactions
  • Quantifying the Kinetics of Polymerization Reactions
  • Studying the Thermodynamics of Gas-Liquid Absorption Processes
  • Assessing the Efficiency of Adsorption-Based Carbon Capture
  • Investigating the Rheological Properties of Non-Newtonian Fluids
  • Analyzing the Effects of Surfactants on Foam Stability
  • Studying the Mass Transport in Microfluidic Devices
  • Exploring the Synthesis of Nanomaterials for Energy Applications

Electrical and Electronic Engineering

  • Analyzing the Efficiency of Power Electronics in Electric Vehicles
  • Investigating the Performance of Wireless Communication Systems
  • Quantifying the Power Consumption of IoT Devices
  • Studying the Reliability of Printed Circuit Boards
  • Evaluating the Efficiency of Photovoltaic Inverters
  • Assessing the Electromagnetic Compatibility of Electronic Devices
  • Investigating the Behavior of Antenna Arrays in Beamforming
  • Analyzing the Power Quality in Electrical Grids
  • Studying the Security of IoT Networks
  • Exploring the Use of Machine Learning in Signal Processing

These 200 quantitative research titles offer a diverse array of options to inspire your next STEM research endeavor. Always remember to select a subject that truly captivates your interest and curiosity, as your enthusiasm and curiosity will drive your research to new heights. Good luck with your research journey, STEM student!

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

research paper title for stem students

Cultural Relativity and Acceptance of Embryonic Stem Cell Research

Article sidebar.

research paper title for stem students

Main Article Content

There is a debate about the ethical implications of using human embryos in stem cell research, which can be influenced by cultural, moral, and social values. This paper argues for an adaptable framework to accommodate diverse cultural and religious perspectives. By using an adaptive ethics model, research protections can reflect various populations and foster growth in stem cell research possibilities.

INTRODUCTION

Stem cell research combines biology, medicine, and technology, promising to alter health care and the understanding of human development. Yet, ethical contention exists because of individuals’ perceptions of using human embryos based on their various cultural, moral, and social values. While these disagreements concerning policy, use, and general acceptance have prompted the development of an international ethics policy, such a uniform approach can overlook the nuanced ethical landscapes between cultures. With diverse viewpoints in public health, a single global policy, especially one reflecting Western ethics or the ethics prevalent in high-income countries, is impractical. This paper argues for a culturally sensitive, adaptable framework for the use of embryonic stem cells. Stem cell policy should accommodate varying ethical viewpoints and promote an effective global dialogue. With an extension of an ethics model that can adapt to various cultures, we recommend localized guidelines that reflect the moral views of the people those guidelines serve.

Stem cells, characterized by their unique ability to differentiate into various cell types, enable the repair or replacement of damaged tissues. Two primary types of stem cells are somatic stem cells (adult stem cells) and embryonic stem cells. Adult stem cells exist in developed tissues and maintain the body’s repair processes. [1] Embryonic stem cells (ESC) are remarkably pluripotent or versatile, making them valuable in research. [2] However, the use of ESCs has sparked ethics debates. Considering the potential of embryonic stem cells, research guidelines are essential. The International Society for Stem Cell Research (ISSCR) provides international stem cell research guidelines. They call for “public conversations touching on the scientific significance as well as the societal and ethical issues raised by ESC research.” [3] The ISSCR also publishes updates about culturing human embryos 14 days post fertilization, suggesting local policies and regulations should continue to evolve as ESC research develops. [4]  Like the ISSCR, which calls for local law and policy to adapt to developing stem cell research given cultural acceptance, this paper highlights the importance of local social factors such as religion and culture.

I.     Global Cultural Perspective of Embryonic Stem Cells

Views on ESCs vary throughout the world. Some countries readily embrace stem cell research and therapies, while others have stricter regulations due to ethical concerns surrounding embryonic stem cells and when an embryo becomes entitled to moral consideration. The philosophical issue of when the “someone” begins to be a human after fertilization, in the morally relevant sense, [5] impacts when an embryo becomes not just worthy of protection but morally entitled to it. The process of creating embryonic stem cell lines involves the destruction of the embryos for research. [6] Consequently, global engagement in ESC research depends on social-cultural acceptability.

a.     US and Rights-Based Cultures

In the United States, attitudes toward stem cell therapies are diverse. The ethics and social approaches, which value individualism, [7] trigger debates regarding the destruction of human embryos, creating a complex regulatory environment. For example, the 1996 Dickey-Wicker Amendment prohibited federal funding for the creation of embryos for research and the destruction of embryos for “more than allowed for research on fetuses in utero.” [8] Following suit, in 2001, the Bush Administration heavily restricted stem cell lines for research. However, the Stem Cell Research Enhancement Act of 2005 was proposed to help develop ESC research but was ultimately vetoed. [9] Under the Obama administration, in 2009, an executive order lifted restrictions allowing for more development in this field. [10] The flux of research capacity and funding parallels the different cultural perceptions of human dignity of the embryo and how it is socially presented within the country’s research culture. [11]

b.     Ubuntu and Collective Cultures

African bioethics differs from Western individualism because of the different traditions and values. African traditions, as described by individuals from South Africa and supported by some studies in other African countries, including Ghana and Kenya, follow the African moral philosophies of Ubuntu or Botho and Ukama , which “advocates for a form of wholeness that comes through one’s relationship and connectedness with other people in the society,” [12] making autonomy a socially collective concept. In this context, for the community to act autonomously, individuals would come together to decide what is best for the collective. Thus, stem cell research would require examining the value of the research to society as a whole and the use of the embryos as a collective societal resource. If society views the source as part of the collective whole, and opposes using stem cells, compromising the cultural values to pursue research may cause social detachment and stunt research growth. [13] Based on local culture and moral philosophy, the permissibility of stem cell research depends on how embryo, stem cell, and cell line therapies relate to the community as a whole . Ubuntu is the expression of humanness, with the person’s identity drawn from the “’I am because we are’” value. [14] The decision in a collectivistic culture becomes one born of cultural context, and individual decisions give deference to others in the society.

Consent differs in cultures where thought and moral philosophy are based on a collective paradigm. So, applying Western bioethical concepts is unrealistic. For one, Africa is a diverse continent with many countries with different belief systems, access to health care, and reliance on traditional or Western medicines. Where traditional medicine is the primary treatment, the “’restrictive focus on biomedically-related bioethics’” [is] problematic in African contexts because it neglects bioethical issues raised by traditional systems.” [15] No single approach applies in all areas or contexts. Rather than evaluating the permissibility of ESC research according to Western concepts such as the four principles approach, different ethics approaches should prevail.

Another consideration is the socio-economic standing of countries. In parts of South Africa, researchers have not focused heavily on contributing to the stem cell discourse, either because it is not considered health care or a health science priority or because resources are unavailable. [16] Each country’s priorities differ given different social, political, and economic factors. In South Africa, for instance, areas such as maternal mortality, non-communicable diseases, telemedicine, and the strength of health systems need improvement and require more focus. [17] Stem cell research could benefit the population, but it also could divert resources from basic medical care. Researchers in South Africa adhere to the National Health Act and Medicines Control Act in South Africa and international guidelines; however, the Act is not strictly enforced, and there is no clear legislation for research conduct or ethical guidelines. [18]

Some parts of Africa condemn stem cell research. For example, 98.2 percent of the Tunisian population is Muslim. [19] Tunisia does not permit stem cell research because of moral conflict with a Fatwa. Religion heavily saturates the regulation and direction of research. [20] Stem cell use became permissible for reproductive purposes only recently, with tight restrictions preventing cells from being used in any research other than procedures concerning ART/IVF.  Their use is conditioned on consent, and available only to married couples. [21] The community's receptiveness to stem cell research depends on including communitarian African ethics.

c.     Asia

Some Asian countries also have a collective model of ethics and decision making. [22] In China, the ethics model promotes a sincere respect for life or human dignity, [23] based on protective medicine. This model, influenced by Traditional Chinese Medicine (TCM), [24] recognizes Qi as the vital energy delivered via the meridians of the body; it connects illness to body systems, the body’s entire constitution, and the universe for a holistic bond of nature, health, and quality of life. [25] Following a protective ethics model, and traditional customs of wholeness, investment in stem cell research is heavily desired for its applications in regenerative therapies, disease modeling, and protective medicines. In a survey of medical students and healthcare practitioners, 30.8 percent considered stem cell research morally unacceptable while 63.5 percent accepted medical research using human embryonic stem cells. Of these individuals, 89.9 percent supported increased funding for stem cell research. [26] The scientific community might not reflect the overall population. From 1997 to 2019, China spent a total of $576 million (USD) on stem cell research at 8,050 stem cell programs, increased published presence from 0.6 percent to 14.01 percent of total global stem cell publications as of 2014, and made significant strides in cell-based therapies for various medical conditions. [27] However, while China has made substantial investments in stem cell research and achieved notable progress in clinical applications, concerns linger regarding ethical oversight and transparency. [28] For example, the China Biosecurity Law, promoted by the National Health Commission and China Hospital Association, attempted to mitigate risks by introducing an institutional review board (IRB) in the regulatory bodies. 5800 IRBs registered with the Chinese Clinical Trial Registry since 2021. [29] However, issues still need to be addressed in implementing effective IRB review and approval procedures.

The substantial government funding and focus on scientific advancement have sometimes overshadowed considerations of regional cultures, ethnic minorities, and individual perspectives, particularly evident during the one-child policy era. As government policy adapts to promote public stability, such as the change from the one-child to the two-child policy, [30] research ethics should also adapt to ensure respect for the values of its represented peoples.

Japan is also relatively supportive of stem cell research and therapies. Japan has a more transparent regulatory framework, allowing for faster approval of regenerative medicine products, which has led to several advanced clinical trials and therapies. [31] South Korea is also actively engaged in stem cell research and has a history of breakthroughs in cloning and embryonic stem cells. [32] However, the field is controversial, and there are issues of scientific integrity. For example, the Korean FDA fast-tracked products for approval, [33] and in another instance, the oocyte source was unclear and possibly violated ethical standards. [34] Trust is important in research, as it builds collaborative foundations between colleagues, trial participant comfort, open-mindedness for complicated and sensitive discussions, and supports regulatory procedures for stakeholders. There is a need to respect the culture’s interest, engagement, and for research and clinical trials to be transparent and have ethical oversight to promote global research discourse and trust.

d.     Middle East

Countries in the Middle East have varying degrees of acceptance of or restrictions to policies related to using embryonic stem cells due to cultural and religious influences. Saudi Arabia has made significant contributions to stem cell research, and conducts research based on international guidelines for ethical conduct and under strict adherence to guidelines in accordance with Islamic principles. Specifically, the Saudi government and people require ESC research to adhere to Sharia law. In addition to umbilical and placental stem cells, [35] Saudi Arabia permits the use of embryonic stem cells as long as they come from miscarriages, therapeutic abortions permissible by Sharia law, or are left over from in vitro fertilization and donated to research. [36] Laws and ethical guidelines for stem cell research allow the development of research institutions such as the King Abdullah International Medical Research Center, which has a cord blood bank and a stem cell registry with nearly 10,000 donors. [37] Such volume and acceptance are due to the ethical ‘permissibility’ of the donor sources, which do not conflict with religious pillars. However, some researchers err on the side of caution, choosing not to use embryos or fetal tissue as they feel it is unethical to do so. [38]

Jordan has a positive research ethics culture. [39] However, there is a significant issue of lack of trust in researchers, with 45.23 percent (38.66 percent agreeing and 6.57 percent strongly agreeing) of Jordanians holding a low level of trust in researchers, compared to 81.34 percent of Jordanians agreeing that they feel safe to participate in a research trial. [40] Safety testifies to the feeling of confidence that adequate measures are in place to protect participants from harm, whereas trust in researchers could represent the confidence in researchers to act in the participants’ best interests, adhere to ethical guidelines, provide accurate information, and respect participants’ rights and dignity. One method to improve trust would be to address communication issues relevant to ESC. Legislation surrounding stem cell research has adopted specific language, especially concerning clarification “between ‘stem cells’ and ‘embryonic stem cells’” in translation. [41] Furthermore, legislation “mandates the creation of a national committee… laying out specific regulations for stem-cell banking in accordance with international standards.” [42] This broad regulation opens the door for future global engagement and maintains transparency. However, these regulations may also constrain the influence of research direction, pace, and accessibility of research outcomes.

e.     Europe

In the European Union (EU), ethics is also principle-based, but the principles of autonomy, dignity, integrity, and vulnerability are interconnected. [43] As such, the opportunity for cohesion and concessions between individuals’ thoughts and ideals allows for a more adaptable ethics model due to the flexible principles that relate to the human experience The EU has put forth a framework in its Convention for the Protection of Human Rights and Dignity of the Human Being allowing member states to take different approaches. Each European state applies these principles to its specific conventions, leading to or reflecting different acceptance levels of stem cell research. [44]

For example, in Germany, Lebenzusammenhang , or the coherence of life, references integrity in the unity of human culture. Namely, the personal sphere “should not be subject to external intervention.” [45]  Stem cell interventions could affect this concept of bodily completeness, leading to heavy restrictions. Under the Grundgesetz, human dignity and the right to life with physical integrity are paramount. [46] The Embryo Protection Act of 1991 made producing cell lines illegal. Cell lines can be imported if approved by the Central Ethics Commission for Stem Cell Research only if they were derived before May 2007. [47] Stem cell research respects the integrity of life for the embryo with heavy specifications and intense oversight. This is vastly different in Finland, where the regulatory bodies find research more permissible in IVF excess, but only up to 14 days after fertilization. [48] Spain’s approach differs still, with a comprehensive regulatory framework. [49] Thus, research regulation can be culture-specific due to variations in applied principles. Diverse cultures call for various approaches to ethical permissibility. [50] Only an adaptive-deliberative model can address the cultural constructions of self and achieve positive, culturally sensitive stem cell research practices. [51]

II.     Religious Perspectives on ESC

Embryonic stem cell sources are the main consideration within religious contexts. While individuals may not regard their own religious texts as authoritative or factual, religion can shape their foundations or perspectives.

The Qur'an states:

“And indeed We created man from a quintessence of clay. Then We placed within him a small quantity of nutfa (sperm to fertilize) in a safe place. Then We have fashioned the nutfa into an ‘alaqa (clinging clot or cell cluster), then We developed the ‘alaqa into mudgha (a lump of flesh), and We made mudgha into bones, and clothed the bones with flesh, then We brought it into being as a new creation. So Blessed is Allah, the Best of Creators.” [52]

Many scholars of Islam estimate the time of soul installment, marked by the angel breathing in the soul to bring the individual into creation, as 120 days from conception. [53] Personhood begins at this point, and the value of life would prohibit research or experimentation that could harm the individual. If the fetus is more than 120 days old, the time ensoulment is interpreted to occur according to Islamic law, abortion is no longer permissible. [54] There are a few opposing opinions about early embryos in Islamic traditions. According to some Islamic theologians, there is no ensoulment of the early embryo, which is the source of stem cells for ESC research. [55]

In Buddhism, the stance on stem cell research is not settled. The main tenets, the prohibition against harming or destroying others (ahimsa) and the pursuit of knowledge (prajña) and compassion (karuna), leave Buddhist scholars and communities divided. [56] Some scholars argue stem cell research is in accordance with the Buddhist tenet of seeking knowledge and ending human suffering. Others feel it violates the principle of not harming others. Finding the balance between these two points relies on the karmic burden of Buddhist morality. In trying to prevent ahimsa towards the embryo, Buddhist scholars suggest that to comply with Buddhist tenets, research cannot be done as the embryo has personhood at the moment of conception and would reincarnate immediately, harming the individual's ability to build their karmic burden. [57] On the other hand, the Bodhisattvas, those considered to be on the path to enlightenment or Nirvana, have given organs and flesh to others to help alleviate grieving and to benefit all. [58] Acceptance varies on applied beliefs and interpretations.

Catholicism does not support embryonic stem cell research, as it entails creation or destruction of human embryos. This destruction conflicts with the belief in the sanctity of life. For example, in the Old Testament, Genesis describes humanity as being created in God’s image and multiplying on the Earth, referencing the sacred rights to human conception and the purpose of development and life. In the Ten Commandments, the tenet that one should not kill has numerous interpretations where killing could mean murder or shedding of the sanctity of life, demonstrating the high value of human personhood. In other books, the theological conception of when life begins is interpreted as in utero, [59] highlighting the inviolability of life and its formation in vivo to make a religious point for accepting such research as relatively limited, if at all. [60] The Vatican has released ethical directives to help apply a theological basis to modern-day conflicts. The Magisterium of the Church states that “unless there is a moral certainty of not causing harm,” experimentation on fetuses, fertilized cells, stem cells, or embryos constitutes a crime. [61] Such procedures would not respect the human person who exists at these stages, according to Catholicism. Damages to the embryo are considered gravely immoral and illicit. [62] Although the Catholic Church officially opposes abortion, surveys demonstrate that many Catholic people hold pro-choice views, whether due to the context of conception, stage of pregnancy, threat to the mother’s life, or for other reasons, demonstrating that practicing members can also accept some but not all tenets. [63]

Some major Jewish denominations, such as the Reform, Conservative, and Reconstructionist movements, are open to supporting ESC use or research as long as it is for saving a life. [64] Within Judaism, the Talmud, or study, gives personhood to the child at birth and emphasizes that life does not begin at conception: [65]

“If she is found pregnant, until the fortieth day it is mere fluid,” [66]

Whereas most religions prioritize the status of human embryos, the Halakah (Jewish religious law) states that to save one life, most other religious laws can be ignored because it is in pursuit of preservation. [67] Stem cell research is accepted due to application of these religious laws.

We recognize that all religions contain subsets and sects. The variety of environmental and cultural differences within religious groups requires further analysis to respect the flexibility of religious thoughts and practices. We make no presumptions that all cultures require notions of autonomy or morality as under the common morality theory , which asserts a set of universal moral norms that all individuals share provides moral reasoning and guides ethical decisions. [68] We only wish to show that the interaction with morality varies between cultures and countries.

III.     A Flexible Ethical Approach

The plurality of different moral approaches described above demonstrates that there can be no universally acceptable uniform law for ESC on a global scale. Instead of developing one standard, flexible ethical applications must be continued. We recommend local guidelines that incorporate important cultural and ethical priorities.

While the Declaration of Helsinki is more relevant to people in clinical trials receiving ESC products, in keeping with the tradition of protections for research subjects, consent of the donor is an ethical requirement for ESC donation in many jurisdictions including the US, Canada, and Europe. [69] The Declaration of Helsinki provides a reference point for regulatory standards and could potentially be used as a universal baseline for obtaining consent prior to gamete or embryo donation.

For instance, in Columbia University’s egg donor program for stem cell research, donors followed standard screening protocols and “underwent counseling sessions that included information as to the purpose of oocyte donation for research, what the oocytes would be used for, the risks and benefits of donation, and process of oocyte stimulation” to ensure transparency for consent. [70] The program helped advance stem cell research and provided clear and safe research methods with paid participants. Though paid participation or covering costs of incidental expenses may not be socially acceptable in every culture or context, [71] and creating embryos for ESC research is illegal in many jurisdictions, Columbia’s program was effective because of the clear and honest communications with donors, IRBs, and related stakeholders.  This example demonstrates that cultural acceptance of scientific research and of the idea that an egg or embryo does not have personhood is likely behind societal acceptance of donating eggs for ESC research. As noted, many countries do not permit the creation of embryos for research.

Proper communication and education regarding the process and purpose of stem cell research may bolster comprehension and garner more acceptance. “Given the sensitive subject material, a complete consent process can support voluntary participation through trust, understanding, and ethical norms from the cultures and morals participants value. This can be hard for researchers entering countries of different socioeconomic stability, with different languages and different societal values. [72]

An adequate moral foundation in medical ethics is derived from the cultural and religious basis that informs knowledge and actions. [73] Understanding local cultural and religious values and their impact on research could help researchers develop humility and promote inclusion.

IV.     Concerns

Some may argue that if researchers all adhere to one ethics standard, protection will be satisfied across all borders, and the global public will trust researchers. However, defining what needs to be protected and how to define such research standards is very specific to the people to which standards are applied. We suggest that applying one uniform guide cannot accurately protect each individual because we all possess our own perceptions and interpretations of social values. [74] Therefore, the issue of not adjusting to the moral pluralism between peoples in applying one standard of ethics can be resolved by building out ethics models that can be adapted to different cultures and religions.

Other concerns include medical tourism, which may promote health inequities. [75] Some countries may develop and approve products derived from ESC research before others, compromising research ethics or drug approval processes. There are also concerns about the sale of unauthorized stem cell treatments, for example, those without FDA approval in the United States. Countries with robust research infrastructures may be tempted to attract medical tourists, and some customers will have false hopes based on aggressive publicity of unproven treatments. [76]

For example, in China, stem cell clinics can market to foreign clients who are not protected under the regulatory regimes. Companies employ a marketing strategy of “ethically friendly” therapies. Specifically, in the case of Beike, China’s leading stem cell tourism company and sprouting network, ethical oversight of administrators or health bureaus at one site has “the unintended consequence of shifting questionable activities to another node in Beike's diffuse network.” [77] In contrast, Jordan is aware of stem cell research’s potential abuse and its own status as a “health-care hub.” Jordan’s expanded regulations include preserving the interests of individuals in clinical trials and banning private companies from ESC research to preserve transparency and the integrity of research practices. [78]

The social priorities of the community are also a concern. The ISSCR explicitly states that guidelines “should be periodically revised to accommodate scientific advances, new challenges, and evolving social priorities.” [79] The adaptable ethics model extends this consideration further by addressing whether research is warranted given the varying degrees of socioeconomic conditions, political stability, and healthcare accessibilities and limitations. An ethical approach would require discussion about resource allocation and appropriate distribution of funds. [80]

While some religions emphasize the sanctity of life from conception, which may lead to public opposition to ESC research, others encourage ESC research due to its potential for healing and alleviating human pain. Many countries have special regulations that balance local views on embryonic personhood, the benefits of research as individual or societal goods, and the protection of human research subjects. To foster understanding and constructive dialogue, global policy frameworks should prioritize the protection of universal human rights, transparency, and informed consent. In addition to these foundational global policies, we recommend tailoring local guidelines to reflect the diverse cultural and religious perspectives of the populations they govern. Ethics models should be adapted to local populations to effectively establish research protections, growth, and possibilities of stem cell research.

For example, in countries with strong beliefs in the moral sanctity of embryos or heavy religious restrictions, an adaptive model can allow for discussion instead of immediate rejection. In countries with limited individual rights and voice in science policy, an adaptive model ensures cultural, moral, and religious views are taken into consideration, thereby building social inclusion. While this ethical consideration by the government may not give a complete voice to every individual, it will help balance policies and maintain the diverse perspectives of those it affects. Embracing an adaptive ethics model of ESC research promotes open-minded dialogue and respect for the importance of human belief and tradition. By actively engaging with cultural and religious values, researchers can better handle disagreements and promote ethical research practices that benefit each society.

This brief exploration of the religious and cultural differences that impact ESC research reveals the nuances of relative ethics and highlights a need for local policymakers to apply a more intense adaptive model.

[1] Poliwoda, S., Noor, N., Downs, E., Schaaf, A., Cantwell, A., Ganti, L., Kaye, A. D., Mosel, L. I., Carroll, C. B., Viswanath, O., & Urits, I. (2022). Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice.  Orthopedic reviews ,  14 (3), 37498. https://doi.org/10.52965/001c.37498

[2] Poliwoda, S., Noor, N., Downs, E., Schaaf, A., Cantwell, A., Ganti, L., Kaye, A. D., Mosel, L. I., Carroll, C. B., Viswanath, O., & Urits, I. (2022). Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice.  Orthopedic reviews ,  14 (3), 37498. https://doi.org/10.52965/001c.37498

[3] International Society for Stem Cell Research. (2023). Laboratory-based human embryonic stem cell research, embryo research, and related research activities . International Society for Stem Cell Research. https://www.isscr.org/guidelines/blog-post-title-one-ed2td-6fcdk ; Kimmelman, J., Hyun, I., Benvenisty, N.  et al.  Policy: Global standards for stem-cell research.  Nature   533 , 311–313 (2016). https://doi.org/10.1038/533311a

[4] International Society for Stem Cell Research. (2023). Laboratory-based human embryonic stem cell research, embryo research, and related research activities . International Society for Stem Cell Research. https://www.isscr.org/guidelines/blog-post-title-one-ed2td-6fcdk

[5] Concerning the moral philosophies of stem cell research, our paper does not posit a personal moral stance nor delve into the “when” of human life begins. To read further about the philosophical debate, consider the following sources:

Sandel M. J. (2004). Embryo ethics--the moral logic of stem-cell research.  The New England journal of medicine ,  351 (3), 207–209. https://doi.org/10.1056/NEJMp048145 ; George, R. P., & Lee, P. (2020, September 26). Acorns and Embryos . The New Atlantis. https://www.thenewatlantis.com/publications/acorns-and-embryos ; Sagan, A., & Singer, P. (2007). The moral status of stem cells. Metaphilosophy , 38 (2/3), 264–284. http://www.jstor.org/stable/24439776 ; McHugh P. R. (2004). Zygote and "clonote"--the ethical use of embryonic stem cells.  The New England journal of medicine ,  351 (3), 209–211. https://doi.org/10.1056/NEJMp048147 ; Kurjak, A., & Tripalo, A. (2004). The facts and doubts about beginning of the human life and personality.  Bosnian journal of basic medical sciences ,  4 (1), 5–14. https://doi.org/10.17305/bjbms.2004.3453

[6] Vazin, T., & Freed, W. J. (2010). Human embryonic stem cells: derivation, culture, and differentiation: a review.  Restorative neurology and neuroscience ,  28 (4), 589–603. https://doi.org/10.3233/RNN-2010-0543

[7] Socially, at its core, the Western approach to ethics is widely principle-based, autonomy being one of the key factors to ensure a fundamental respect for persons within research. For information regarding autonomy in research, see: Department of Health, Education, and Welfare, & National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research (1978). The Belmont Report. Ethical principles and guidelines for the protection of human subjects of research.; For a more in-depth review of autonomy within the US, see: Beauchamp, T. L., & Childress, J. F. (1994). Principles of Biomedical Ethics . Oxford University Press.

[8] Sherley v. Sebelius , 644 F.3d 388 (D.C. Cir. 2011), citing 45 C.F.R. 46.204(b) and [42 U.S.C. § 289g(b)]. https://www.cadc.uscourts.gov/internet/opinions.nsf/6c690438a9b43dd685257a64004ebf99/$file/11-5241-1391178.pdf

[9] Stem Cell Research Enhancement Act of 2005, H. R. 810, 109 th Cong. (2001). https://www.govtrack.us/congress/bills/109/hr810/text ; Bush, G. W. (2006, July 19). Message to the House of Representatives . National Archives and Records Administration. https://georgewbush-whitehouse.archives.gov/news/releases/2006/07/20060719-5.html

[10] National Archives and Records Administration. (2009, March 9). Executive order 13505 -- removing barriers to responsible scientific research involving human stem cells . National Archives and Records Administration. https://obamawhitehouse.archives.gov/the-press-office/removing-barriers-responsible-scientific-research-involving-human-stem-cells

[11] Hurlbut, W. B. (2006). Science, Religion, and the Politics of Stem Cells.  Social Research ,  73 (3), 819–834. http://www.jstor.org/stable/40971854

[12] Akpa-Inyang, Francis & Chima, Sylvester. (2021). South African traditional values and beliefs regarding informed consent and limitations of the principle of respect for autonomy in African communities: a cross-cultural qualitative study. BMC Medical Ethics . 22. 10.1186/s12910-021-00678-4.

[13] Source for further reading: Tangwa G. B. (2007). Moral status of embryonic stem cells: perspective of an African villager. Bioethics , 21(8), 449–457. https://doi.org/10.1111/j.1467-8519.2007.00582.x , see also Mnisi, F. M. (2020). An African analysis based on ethics of Ubuntu - are human embryonic stem cell patents morally justifiable? African Insight , 49 (4).

[14] Jecker, N. S., & Atuire, C. (2021). Bioethics in Africa: A contextually enlightened analysis of three cases. Developing World Bioethics , 22 (2), 112–122. https://doi.org/10.1111/dewb.12324

[15] Jecker, N. S., & Atuire, C. (2021). Bioethics in Africa: A contextually enlightened analysis of three cases. Developing World Bioethics, 22(2), 112–122. https://doi.org/10.1111/dewb.12324

[16] Jackson, C.S., Pepper, M.S. Opportunities and barriers to establishing a cell therapy programme in South Africa.  Stem Cell Res Ther   4 , 54 (2013). https://doi.org/10.1186/scrt204 ; Pew Research Center. (2014, May 1). Public health a major priority in African nations . Pew Research Center’s Global Attitudes Project. https://www.pewresearch.org/global/2014/05/01/public-health-a-major-priority-in-african-nations/

[17] Department of Health Republic of South Africa. (2021). Health Research Priorities (revised) for South Africa 2021-2024 . National Health Research Strategy. https://www.health.gov.za/wp-content/uploads/2022/05/National-Health-Research-Priorities-2021-2024.pdf

[18] Oosthuizen, H. (2013). Legal and Ethical Issues in Stem Cell Research in South Africa. In: Beran, R. (eds) Legal and Forensic Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32338-6_80 , see also: Gaobotse G (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[19] United States Bureau of Citizenship and Immigration Services. (1998). Tunisia: Information on the status of Christian conversions in Tunisia . UNHCR Web Archive. https://webarchive.archive.unhcr.org/20230522142618/https://www.refworld.org/docid/3df0be9a2.html

[20] Gaobotse, G. (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[21] Kooli, C. Review of assisted reproduction techniques, laws, and regulations in Muslim countries.  Middle East Fertil Soc J   24 , 8 (2020). https://doi.org/10.1186/s43043-019-0011-0 ; Gaobotse, G. (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[22] Pang M. C. (1999). Protective truthfulness: the Chinese way of safeguarding patients in informed treatment decisions. Journal of medical ethics , 25(3), 247–253. https://doi.org/10.1136/jme.25.3.247

[23] Wang, L., Wang, F., & Zhang, W. (2021). Bioethics in China’s biosecurity law: Forms, effects, and unsettled issues. Journal of law and the biosciences , 8(1).  https://doi.org/10.1093/jlb/lsab019 https://academic.oup.com/jlb/article/8/1/lsab019/6299199

[24] Wang, Y., Xue, Y., & Guo, H. D. (2022). Intervention effects of traditional Chinese medicine on stem cell therapy of myocardial infarction.  Frontiers in pharmacology ,  13 , 1013740. https://doi.org/10.3389/fphar.2022.1013740

[25] Li, X.-T., & Zhao, J. (2012). Chapter 4: An Approach to the Nature of Qi in TCM- Qi and Bioenergy. In Recent Advances in Theories and Practice of Chinese Medicine (p. 79). InTech.

[26] Luo, D., Xu, Z., Wang, Z., & Ran, W. (2021). China's Stem Cell Research and Knowledge Levels of Medical Practitioners and Students.  Stem cells international ,  2021 , 6667743. https://doi.org/10.1155/2021/6667743

[27] Luo, D., Xu, Z., Wang, Z., & Ran, W. (2021). China's Stem Cell Research and Knowledge Levels of Medical Practitioners and Students.  Stem cells international ,  2021 , 6667743. https://doi.org/10.1155/2021/6667743

[28] Zhang, J. Y. (2017). Lost in translation? accountability and governance of Clinical Stem Cell Research in China. Regenerative Medicine , 12 (6), 647–656. https://doi.org/10.2217/rme-2017-0035

[29] Wang, L., Wang, F., & Zhang, W. (2021). Bioethics in China’s biosecurity law: Forms, effects, and unsettled issues. Journal of law and the biosciences , 8(1).  https://doi.org/10.1093/jlb/lsab019 https://academic.oup.com/jlb/article/8/1/lsab019/6299199

[30] Chen, H., Wei, T., Wang, H.  et al.  Association of China’s two-child policy with changes in number of births and birth defects rate, 2008–2017.  BMC Public Health   22 , 434 (2022). https://doi.org/10.1186/s12889-022-12839-0

[31] Azuma, K. Regulatory Landscape of Regenerative Medicine in Japan.  Curr Stem Cell Rep   1 , 118–128 (2015). https://doi.org/10.1007/s40778-015-0012-6

[32] Harris, R. (2005, May 19). Researchers Report Advance in Stem Cell Production . NPR. https://www.npr.org/2005/05/19/4658967/researchers-report-advance-in-stem-cell-production

[33] Park, S. (2012). South Korea steps up stem-cell work.  Nature . https://doi.org/10.1038/nature.2012.10565

[34] Resnik, D. B., Shamoo, A. E., & Krimsky, S. (2006). Fraudulent human embryonic stem cell research in South Korea: lessons learned.  Accountability in research ,  13 (1), 101–109. https://doi.org/10.1080/08989620600634193 .

[35] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: interviews with researchers from Saudi Arabia. BMC medical ethics, 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6

[36] Association for the Advancement of Blood and Biotherapies.  https://www.aabb.org/regulatory-and-advocacy/regulatory-affairs/regulatory-for-cellular-therapies/international-competent-authorities/saudi-arabia

[37] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: Interviews with researchers from Saudi Arabia.  BMC medical ethics ,  21 (1), 35. https://doi.org/10.1186/s12910-020-00482-6

[38] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: Interviews with researchers from Saudi Arabia. BMC medical ethics , 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6

Culturally, autonomy practices follow a relational autonomy approach based on a paternalistic deontological health care model. The adherence to strict international research policies and religious pillars within the regulatory environment is a great foundation for research ethics. However, there is a need to develop locally targeted ethics approaches for research (as called for in Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: interviews with researchers from Saudi Arabia. BMC medical ethics, 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6), this decision-making approach may help advise a research decision model. For more on the clinical cultural autonomy approaches, see: Alabdullah, Y. Y., Alzaid, E., Alsaad, S., Alamri, T., Alolayan, S. W., Bah, S., & Aljoudi, A. S. (2022). Autonomy and paternalism in Shared decision‐making in a Saudi Arabian tertiary hospital: A cross‐sectional study. Developing World Bioethics , 23 (3), 260–268. https://doi.org/10.1111/dewb.12355 ; Bukhari, A. A. (2017). Universal Principles of Bioethics and Patient Rights in Saudi Arabia (Doctoral dissertation, Duquesne University). https://dsc.duq.edu/etd/124; Ladha, S., Nakshawani, S. A., Alzaidy, A., & Tarab, B. (2023, October 26). Islam and Bioethics: What We All Need to Know . Columbia University School of Professional Studies. https://sps.columbia.edu/events/islam-and-bioethics-what-we-all-need-know

[39] Ababneh, M. A., Al-Azzam, S. I., Alzoubi, K., Rababa’h, A., & Al Demour, S. (2021). Understanding and attitudes of the Jordanian public about clinical research ethics.  Research Ethics ,  17 (2), 228-241.  https://doi.org/10.1177/1747016120966779

[40] Ababneh, M. A., Al-Azzam, S. I., Alzoubi, K., Rababa’h, A., & Al Demour, S. (2021). Understanding and attitudes of the Jordanian public about clinical research ethics.  Research Ethics ,  17 (2), 228-241.  https://doi.org/10.1177/1747016120966779

[41] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[42] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[43] The EU’s definition of autonomy relates to the capacity for creating ideas, moral insight, decisions, and actions without constraint, personal responsibility, and informed consent. However, the EU views autonomy as not completely able to protect individuals and depends on other principles, such as dignity, which “expresses the intrinsic worth and fundamental equality of all human beings.” Rendtorff, J.D., Kemp, P. (2019). Four Ethical Principles in European Bioethics and Biolaw: Autonomy, Dignity, Integrity and Vulnerability. In: Valdés, E., Lecaros, J. (eds) Biolaw and Policy in the Twenty-First Century. International Library of Ethics, Law, and the New Medicine, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-030-05903-3_3

[44] Council of Europe. Convention for the protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine (ETS No. 164) https://www.coe.int/en/web/conventions/full-list?module=treaty-detail&treatynum=164 (forbidding the creation of embryos for research purposes only, and suggests embryos in vitro have protections.); Also see Drabiak-Syed B. K. (2013). New President, New Human Embryonic Stem Cell Research Policy: Comparative International Perspectives and Embryonic Stem Cell Research Laws in France.  Biotechnology Law Report ,  32 (6), 349–356. https://doi.org/10.1089/blr.2013.9865

[45] Rendtorff, J.D., Kemp, P. (2019). Four Ethical Principles in European Bioethics and Biolaw: Autonomy, Dignity, Integrity and Vulnerability. In: Valdés, E., Lecaros, J. (eds) Biolaw and Policy in the Twenty-First Century. International Library of Ethics, Law, and the New Medicine, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-030-05903-3_3

[46] Tomuschat, C., Currie, D. P., Kommers, D. P., & Kerr, R. (Trans.). (1949, May 23). Basic law for the Federal Republic of Germany. https://www.btg-bestellservice.de/pdf/80201000.pdf

[47] Regulation of Stem Cell Research in Germany . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-germany

[48] Regulation of Stem Cell Research in Finland . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-finland

[49] Regulation of Stem Cell Research in Spain . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-spain

[50] Some sources to consider regarding ethics models or regulatory oversights of other cultures not covered:

Kara MA. Applicability of the principle of respect for autonomy: the perspective of Turkey. J Med Ethics. 2007 Nov;33(11):627-30. doi: 10.1136/jme.2006.017400. PMID: 17971462; PMCID: PMC2598110.

Ugarte, O. N., & Acioly, M. A. (2014). The principle of autonomy in Brazil: one needs to discuss it ...  Revista do Colegio Brasileiro de Cirurgioes ,  41 (5), 374–377. https://doi.org/10.1590/0100-69912014005013

Bharadwaj, A., & Glasner, P. E. (2012). Local cells, global science: The rise of embryonic stem cell research in India . Routledge.

For further research on specific European countries regarding ethical and regulatory framework, we recommend this database: Regulation of Stem Cell Research in Europe . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-europe   

[51] Klitzman, R. (2006). Complications of culture in obtaining informed consent. The American Journal of Bioethics, 6(1), 20–21. https://doi.org/10.1080/15265160500394671 see also: Ekmekci, P. E., & Arda, B. (2017). Interculturalism and Informed Consent: Respecting Cultural Differences without Breaching Human Rights.  Cultura (Iasi, Romania) ,  14 (2), 159–172.; For why trust is important in research, see also: Gray, B., Hilder, J., Macdonald, L., Tester, R., Dowell, A., & Stubbe, M. (2017). Are research ethics guidelines culturally competent?  Research Ethics ,  13 (1), 23-41.  https://doi.org/10.1177/1747016116650235

[52] The Qur'an  (M. Khattab, Trans.). (1965). Al-Mu’minun, 23: 12-14. https://quran.com/23

[53] Lenfest, Y. (2017, December 8). Islam and the beginning of human life . Bill of Health. https://blog.petrieflom.law.harvard.edu/2017/12/08/islam-and-the-beginning-of-human-life/

[54] Aksoy, S. (2005). Making regulations and drawing up legislation in Islamic countries under conditions of uncertainty, with special reference to embryonic stem cell research. Journal of Medical Ethics , 31: 399-403.; see also: Mahmoud, Azza. "Islamic Bioethics: National Regulations and Guidelines of Human Stem Cell Research in the Muslim World." Master's thesis, Chapman University, 2022. https://doi.org/10.36837/ chapman.000386

[55] Rashid, R. (2022). When does Ensoulment occur in the Human Foetus. Journal of the British Islamic Medical Association , 12 (4). ISSN 2634 8071. https://www.jbima.com/wp-content/uploads/2023/01/2-Ethics-3_-Ensoulment_Rafaqat.pdf.

[56] Sivaraman, M. & Noor, S. (2017). Ethics of embryonic stem cell research according to Buddhist, Hindu, Catholic, and Islamic religions: perspective from Malaysia. Asian Biomedicine,8(1) 43-52.  https://doi.org/10.5372/1905-7415.0801.260

[57] Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[58] Lecso, P. A. (1991). The Bodhisattva Ideal and Organ Transplantation.  Journal of Religion and Health ,  30 (1), 35–41. http://www.jstor.org/stable/27510629 ; Bodhisattva, S. (n.d.). The Key of Becoming a Bodhisattva . A Guide to the Bodhisattva Way of Life. http://www.buddhism.org/Sutras/2/BodhisattvaWay.htm

[59] There is no explicit religious reference to when life begins or how to conduct research that interacts with the concept of life. However, these are relevant verses pertaining to how the fetus is viewed. (( King James Bible . (1999). Oxford University Press. (original work published 1769))

Jerimiah 1: 5 “Before I formed thee in the belly I knew thee; and before thou camest forth out of the womb I sanctified thee…”

In prophet Jerimiah’s insight, God set him apart as a person known before childbirth, a theme carried within the Psalm of David.

Psalm 139: 13-14 “…Thou hast covered me in my mother's womb. I will praise thee; for I am fearfully and wonderfully made…”

These verses demonstrate David’s respect for God as an entity that would know of all man’s thoughts and doings even before birth.

[60] It should be noted that abortion is not supported as well.

[61] The Vatican. (1987, February 22). Instruction on Respect for Human Life in Its Origin and on the Dignity of Procreation Replies to Certain Questions of the Day . Congregation For the Doctrine of the Faith. https://www.vatican.va/roman_curia/congregations/cfaith/documents/rc_con_cfaith_doc_19870222_respect-for-human-life_en.html

[62] The Vatican. (2000, August 25). Declaration On the Production and the Scientific and Therapeutic Use of Human Embryonic Stem Cells . Pontifical Academy for Life. https://www.vatican.va/roman_curia/pontifical_academies/acdlife/documents/rc_pa_acdlife_doc_20000824_cellule-staminali_en.html ; Ohara, N. (2003). Ethical Consideration of Experimentation Using Living Human Embryos: The Catholic Church’s Position on Human Embryonic Stem Cell Research and Human Cloning. Department of Obstetrics and Gynecology . Retrieved from https://article.imrpress.com/journal/CEOG/30/2-3/pii/2003018/77-81.pdf.

[63] Smith, G. A. (2022, May 23). Like Americans overall, Catholics vary in their abortion views, with regular mass attenders most opposed . Pew Research Center. https://www.pewresearch.org/short-reads/2022/05/23/like-americans-overall-catholics-vary-in-their-abortion-views-with-regular-mass-attenders-most-opposed/

[64] Rosner, F., & Reichman, E. (2002). Embryonic stem cell research in Jewish law. Journal of halacha and contemporary society , (43), 49–68.; Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[65] Schenker J. G. (2008). The beginning of human life: status of embryo. Perspectives in Halakha (Jewish Religious Law).  Journal of assisted reproduction and genetics ,  25 (6), 271–276. https://doi.org/10.1007/s10815-008-9221-6

[66] Ruttenberg, D. (2020, May 5). The Torah of Abortion Justice (annotated source sheet) . Sefaria. https://www.sefaria.org/sheets/234926.7?lang=bi&with=all&lang2=en

[67] Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[68] Gert, B. (2007). Common morality: Deciding what to do . Oxford Univ. Press.

[69] World Medical Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA , 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053 Declaration of Helsinki – WMA – The World Medical Association .; see also: National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. (1979).  The Belmont report: Ethical principles and guidelines for the protection of human subjects of research . U.S. Department of Health and Human Services.  https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html

[70] Zakarin Safier, L., Gumer, A., Kline, M., Egli, D., & Sauer, M. V. (2018). Compensating human subjects providing oocytes for stem cell research: 9-year experience and outcomes.  Journal of assisted reproduction and genetics ,  35 (7), 1219–1225. https://doi.org/10.1007/s10815-018-1171-z https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063839/ see also: Riordan, N. H., & Paz Rodríguez, J. (2021). Addressing concerns regarding associated costs, transparency, and integrity of research in recent stem cell trial. Stem Cells Translational Medicine , 10 (12), 1715–1716. https://doi.org/10.1002/sctm.21-0234

[71] Klitzman, R., & Sauer, M. V. (2009). Payment of egg donors in stem cell research in the USA.  Reproductive biomedicine online ,  18 (5), 603–608. https://doi.org/10.1016/s1472-6483(10)60002-8

[72] Krosin, M. T., Klitzman, R., Levin, B., Cheng, J., & Ranney, M. L. (2006). Problems in comprehension of informed consent in rural and peri-urban Mali, West Africa.  Clinical trials (London, England) ,  3 (3), 306–313. https://doi.org/10.1191/1740774506cn150oa

[73] Veatch, Robert M.  Hippocratic, Religious, and Secular Medical Ethics: The Points of Conflict . Georgetown University Press, 2012.

[74] Msoroka, M. S., & Amundsen, D. (2018). One size fits not quite all: Universal research ethics with diversity.  Research Ethics ,  14 (3), 1-17.  https://doi.org/10.1177/1747016117739939

[75] Pirzada, N. (2022). The Expansion of Turkey’s Medical Tourism Industry.  Voices in Bioethics ,  8 . https://doi.org/10.52214/vib.v8i.9894

[76] Stem Cell Tourism: False Hope for Real Money . Harvard Stem Cell Institute (HSCI). (2023). https://hsci.harvard.edu/stem-cell-tourism , See also: Bissassar, M. (2017). Transnational Stem Cell Tourism: An ethical analysis.  Voices in Bioethics ,  3 . https://doi.org/10.7916/vib.v3i.6027

[77] Song, P. (2011) The proliferation of stem cell therapies in post-Mao China: problematizing ethical regulation,  New Genetics and Society , 30:2, 141-153, DOI:  10.1080/14636778.2011.574375

[78] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[79] International Society for Stem Cell Research. (2024). Standards in stem cell research . International Society for Stem Cell Research. https://www.isscr.org/guidelines/5-standards-in-stem-cell-research

[80] Benjamin, R. (2013). People’s science bodies and rights on the Stem Cell Frontier . Stanford University Press.

Mifrah Hayath

SM Candidate Harvard Medical School, MS Biotechnology Johns Hopkins University

Olivia Bowers

MS Bioethics Columbia University (Disclosure: affiliated with Voices in Bioethics)

Article Details

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License .

Your Guide to Summer STEM Programs

Published May 15, 2024

Three summer students, one about to look through a microscope.

If so, you’ll want to learn what summer STEM programs have to offer, options for online and in-person study, and how to enroll in a program that works best for you.

What Are Summer STEM Programs?

Summer STEM programs are designed to enhance your understanding and proficiency in STEM topics, often through classroom instruction, hands-on experiences, workshops, and projects focused on STEM disciplines such as computer science, engineering, the life sciences, and mathematics.

The purpose of STEM summer programs for pre-college students is to provide accelerated learning opportunities in a college environment. You’ll be given the chance to explore college-level concepts and cutting-edge technologies in STEM fields. Such programs prepare you for future academic and career success in STEM-related fields by helping you develop critical thinking, problem-solving, and collaboration skills.

Benefits of Summer STEM Programs

Summer STEM programs offer numerous academic advantages for college-bound pre-college students. They provide unique hands-on learning experiences that deepen your understanding and proficiency in STEM subjects. And while most summer programs can’t guarantee you admission into specific colleges, they can enhance your application by demonstrating your ability to handle college-level coursework.

Moreover, participating in summer STEM programs allows you to learn about potential career paths, gain insights into industry trends, and connect with like-minded peers. These programs foster your skills in areas such as teamwork, communication, and adaptability, which help prepare you for college and beyond.

What to Expect in a Summer STEM Program

Many STEM programs go beyond classroom-bound academics by offering events and activities designed to enhance your summer experience. They often incorporate relevant field trips, labs, discussion sessions, and experiments to enrich the learning experience.

Common Subjects Covered in Summer STEM Programs

Topics covered in a summer STEM program will vary by program and institution. At Johns Hopkins, Summer at Hopkins Pre-College Programs offerings in STEM topics include:

  • Anatomy, Physiology, & Disease
  • Exploring the Universe with Space Telescopes
  • Foundational Mathematics of Artificial Intelligence
  • Introduction to Experimental Design in Biology
  • Social Inequality and the Public’s Health
  • Introduction to Laboratory Research
  • Population Genomics: Evolution, Extinction & Disease
  • Applications of Chemistry in Medicine

Summer at Hopkins also offers programs and courses in medicine and health .

Qualified pre-college students can also enroll in STEM-related Summer Term undergraduate courses, where they will study alongside Johns Hopkins and visiting undergraduate students. A sample of Johns Hopkins STEM Summer Term undergraduate courses:

  • Bootcamp: Python
  • Calculus I, II, and III
  • Computer System Fundamentals
  • Mathematics for Sustainability
  • General Biology I and II
  • Stars and the Universe: Cosmic Evolution

How to Enroll in a Summer STEM Program

Are you interested in a summer STEM program? Here’s how to get started.

  • Research Programs: Start by researching different summer STEM programs to find options that align with your interests and goals. Look for programs offered by universities, organizations, or institutions specializing in STEM education. Some programs are online, while others are in person and might require you to commute or live on campus.
  • Check Deadlines: Application deadlines can vary. Some programs may have early deadlines, so it’s essential to plan and apply as early as possible.
  • Review Fees: Understand the program fees and additional costs such as materials, transportation, or accommodation.
  • Get Answers to Your Questions: Some programs offer online FAQs and information sessions where you can learn about the program from administrators and admissions staff.

Once you’re ready to apply, follow these tips:

  • The Application: While a summer program won’t take the same level of work as applying to college, you should take your application seriously and ensure it is filled out completely.
  • Required Materials: Program websites will list the required materials. Make sure you submit all necessary documents before the deadline.

Scholarships and Funding Opportunities

Many schools want to ensure that any student interested in STEM has the chance to spend a summer in their program. Some schools provide financial assistance . You can visit the program’s official website or call or email about the availability of such assistance.

External scholarships are another option. They’re often offered by esteemed organizations or foundations dedicated to promoting STEM education. There are also general websites like Scholarships.com that can help you find the best pre-college scholarship.

How to Choose the Right Summer STEM Program

When selecting a summer STEM program, consider your interests and circumstances, as well as the following:

  • Program Focus: Depending on your particular STEM interests, such as coding, calculus, or anatomy, look for a program that will foster your enthusiasm.
  • Program Reputation: Double-check any program’s reputation, including reviews, success stories, and alumni feedback, if possible.
  • Instructors and Staff: Consider who will be teaching the program. Are they regular faculty? Guests? Ensure that your instructor can provide you with effective learning experiences in their particular field.
  • Facilities and Resources: If you plan to attend a program in person, get a feel for the campus ahead of time, either in person or through a virtual tour. Check the facilities, equipment, and resources available to students during summer programs.
  • Opportunities for Growth: Look for programs that offer opportunities for personal and academic growth, such as project-based learning, collaboration, and skill development.
  • Cost and Financial Aid: Program costs can vary widely, so check the availability of financial assistance and payment options to make an informed decision.

Program Duration and Structure

Summer STEM programs typically range from one to several weeks, with intensive daily sessions. The curriculum often includes a blend of lectures, workshops, hands-on projects, and field trips to provide a comprehensive learning experience. For example, a two-week program might involve daily classes, guest speaker sessions, and a group project.

Target Audience and Eligibility

Some STEM pre-college programs are only open to rising seniors or juniors and seniors. Others are available to anyone who is high-school aged. And some colleges offer summer STEM semesters for pre-first-year undergrads. As you search for a program, be sure to check the eligibility requirements related to age or grade-level.

Summer STEM programs typically seek to admit applicants with at least a basic knowledge of relevant subjects, a passion for STEM, and a willingness to engage in hands-on learning activities. Before applying, check your specific program’s prerequisites and requirements.

Find the Right Summer STEM Program for You with Summer at Hopkins

Pursue your passion for STEM this summer at Johns Hopkins University. Whether you enroll in a two-week Pre-College Program— on campus or online —or a Summer Term undergraduate course, you can focus on the STEM topics you love while interacting with like-minded peers and world-class faculty. With Summer at Hopkins, you’ll get a preview of what college is like, all while adding extra polish to your college applications.

Learn more about Summer at Hopkins admissions , including tuition, eligibility requirements, and deadlines, or start your application today!

Audience Menu

10 STEM Project Ideas for Elementary Students

1. build a solar oven: harness sunlight for cooking., 2. create a diy volcano: study chemical reactions., 3. design a simple circuit: learn about electricity flow., 4. construct a mini greenhouse: explore plant growth., 5. make a homemade thermometer: investigate temperature., 6. build a water filtration system: understand purification., 7. experiment with paper airplanes: explore aerodynamics., 8. build a bridge out of popsicle sticks: test strength., 9. grow crystals : observe crystalline structures., 10. construct a homemade robot: introduce robotics basics., discover more stories.

  • Get Started
  • Request Information
  • Degrees & Certificates
  • Paying for College
  • Community Education

EMCC STEM Students Pursue Pollinator Projects

6 students and 1 instructor smiling and posing around a classroom table, 3 close up photos of bees from the project

Undergrads Study Wildflower Growth; Conduct Native Bee Survey

Estrella Mountain Community College (EMCC) STEM students are busy, busy bees having engaged in Undergraduate Research Experiences, or UREs this semester. Some of our Mountain Lions just wrapped up a study of wildflower growth across different soil types while others are conducting a native bee survey — two things that can’t live without the other.

The wildflower study started last fall when  Quail Forever , a wildlife habitat conservation group, donated a rather large sum of wildflower seeds to EMCC Biology Professor Dr. Catherine Parmiter to use in her classes. They couldn’t have come at a better time as her colleague, Professor Thasanee Morrissey, who also teaches biology and is the Program Analyst for the STEM Center, just happened to be looking for a research opportunity for her students.

They decided to create a URE for five of their students and the Pollinator-Wildflower Research Initiative was born. The goal of the initiative was to determine which type of soil wildflowers would grow best in, with the understanding that more healthy wildflowers attract pollinators such as bees.

First, with the help of their Life Sciences Division colleagues Drs. Neil Raymond, Rachel Smith, and Jarod Raithel, along with the Facilities Department, an area was cleared next to the EMCC Community Teaching Garden where they constructed 16 research plots with four different soil types — native soil, pea gravel, compost, and sand. Next, they asked the MakerSpace to create some appealing signage to mark off the area. Then they planted nine different varieties of wildflower seeds and turned on the irrigation. After that, they monitored the plots weekly and kept track of the plants’ growth with written observations and digitized images.

Natalia Quinones, one of Dr. Parmiter’s students who is graduating this spring with an Associate in Biological Sciences and then transferring to  Arizona State University (ASU) to study microbiology, said one of the reasons she signed up for the URE was to boost her resume.

“I hope that this experience will allow me to join other research projects when I transfer to ASU,” she said.

Dr. Parmiter said the selection process for research opportunities at the university level is very competitive.

“Gaining research experience at the pre-Associate Degree level is essential for students such as Natalia as she navigates her transfer to ASU and later to medical school,” Dr. Parmiter said. 

For this URE, Natalia and her lab partner were responsible for identifying the types of flowers in each substrate of soil and measuring the nitrogen, phosphorus, potassium, and pH content in each plot. 

“I learned more about plant growth and development,” Natalia said. “I gained more knowledge and new vocabulary about the subject. And I learned how to edit and rewrite procedures.”

Dr. Parmiter said Natalia’s field observations and attention to detail were an asset to the team.

“She is an excellent student researcher,” Dr. Parmiter said.

Natalia also works as a part-time lab technician in EMCC’s Life Science Lab, another gold star on her resume.

“I started as a student worker in September 2022 and the lab technicians were always patient and allowed me to make mistakes and learn from them,” she said. “And since they knew I wanted to pursue an education in microbiology, they educated and taught me skills that would apply to my field of study.”

Students who participated in the Pollinator-Wildflower Research Initiative will earn  Western Alliance to Expand Student Opportunities (WAESO) scholarships after they submit their research summaries.

“This scholarship is encouragement for all of the hard work that has gone into this project,” Natalia said. “It also shows that the school supports undergraduate students to work outside the classroom and gain hands-on experiences.”

Cierra Herrera, one of Professor Morrisey’s students who participated in the Pollinator-Wildflower Research Initiative, is also big on hands-on experiences. 

“I learn best when I am doing, and I learned a lot,” Cierra said. “I love to learn and put that knowledge into practice and that is exactly what UREs do.”

Cierra, who is also one of EMCC’s  Animal Ambassadors , will graduate this spring and then transfer to the  University of Hawaiʻi at Mānoa . She plans to double major in Animal Science and either Plant and Environmental Protection Services or Marine Biology.

“I’ve always been caring and conserving before I even knew what that meant,” she said. As unusual as it might sound for a 10-year-old, I hated wasting paper, always recycled, loathed littering, and it always hurt me to see animals suffering, especially because of us, and when we can do something about it. As I continued to go to school and learned more about biology, endangered species, and why they are being endangered, there was no doubt in my mind that I wanted to help these animals.”

Naturally, when Cierra heard about the native bee survey URE, she signed up for that one, too. A perfect complement to the Pollinator-Wildflower Research Initiative, the EMCC Native Bee Project officially kicked off in March. It’s part of a collaborative effort with community colleges in Arizona and California conducting surveys to find out how many different types of bees exist across the two states, something that is currently unknown.

“One out of every three bites of your food you owe to bees,” Dr. Raithel said. “We don’t even have a baseline to know how many bees we have. They are crucial to our survival, yet we know so little about them.”

The EMCC Native Bee Project began over spring break with Drs. Parmiter, Raithel, and Smith spending four days at the  College of the Canyons in Santa Clarita, Calif., learning how to identify, or “key,” native bees so that they could pass that knowledge on to their URE students. Since then, they have begun teaching their students how to catch, clean, dry, pin, key, and photograph native bees caught on and around campus. It’s a lengthy and sometimes nerve-racking process, but for Cierra, the keys are the bee’s knees.

“Looking at the bee under the microscope is my favorite part,” she said. “They are majestic creatures and so beautiful. It is crazy to see the variation of bees in our lab! They are all so unique.”

The  National Science Foundation -funded native bee URE will last three years with six students participating each semester. The data collected will be verified and entered into  Symbiota , a public database, and each bee will have an identification number that corresponds to the student who keyed it.

“It is mind-blowing just thinking about the fact that a native bee that I, myself, keyed will go into a national database with my name!” Cierra said. “That’s absolutely surreal to me, but it is really happening. It makes me a little emotional just thinking about it because I see it as a big deal and I’m only 20 years old and this is happening along with my fellow peers. I can only think about my future and what it has in store for me.”

Cierra’s professors describe her as a problem solver who never hesitates to roll up her sleeves and dive into the action.

“She was like our wildflower research group’s secret weapon — always diving fearlessly into problems and asking all the right questions,” Professor Morrisey said. “With her sharp critical thinking skills, she was like the Sherlock Holmes of our research team! But what’s even better is her team spirit — she’s the ultimate collaborator, bringing fresh ideas to the table.”

Professor Morrisey’s students wrapped up their wildflower growth URE and presented their findings at the  Arizona-Nevada Academy of Science Annual Meeting on April 13 at Glendale Community College. 

“They did great and had a great experience at their first science conference,” Professor Morrisey said.

Cierra said she was nervous but ultimately enjoyed herself.

“It was really good!” she said. “One of the judges said our poster was eye-catching and easy to follow. He was really happy with our experiment in the design aspect — how we eliminated a lot of bias, controlled all of our variables well, and the quadrat sampling. It was really rewarding to hear that feedback.”

Are you an Estrella Mountain Community College student who would like to join the EMCC Native Bee Project or any other STEM Undergraduate Research Experience? Email Dr. Catherine Parmiter at  [email protected]

IMAGES

  1. Stem Cell Research Final Outline

    research paper title for stem students

  2. Qualitative Research Title Examples For Abm Students / The Advantages

    research paper title for stem students

  3. Scope and Delimitation 365

    research paper title for stem students

  4. Research Titles for STEM Strand Student

    research paper title for stem students

  5. 100 Qualitative Research Titles For High School Students

    research paper title for stem students

  6. The Issue of Stem Education Essay Example

    research paper title for stem students

VIDEO

  1. QUALITATIVE RESEARCH TITLES FOR STEM STUDENTS #researchtitle #qualitativeresearch #stem

  2. HOW TO PUBLISH RESEARCH PAPER

  3. How to access and download paid research papers for free (all steps)?

  4. Writing Good Research Paper Title

  5. Meta-Reinforcement Learning with Self Modifying Networks

  6. Practical Research 1

COMMENTS

  1. 55 Brilliant Research Topics For STEM Students

    There are several science research topics for STEM students. Below are some possible quantitative research topics for STEM students. A study of protease inhibitor and how it operates. A study of how men's exercise impacts DNA traits passed to children. A study of the future of commercial space flight.

  2. 200+ Experimental Quantitative Research Topics For Stem Students

    Here are 10 practical research topics for STEM students: Developing an affordable and sustainable water purification system for rural communities. Designing a low-cost, energy-efficient home heating and cooling system. Investigating strategies for reducing food waste in the supply chain and households.

  3. Research and trends in STEM education: a systematic review of journal

    With the rapid increase in the number of scholarly publications on STEM education in recent years, reviews of the status and trends in STEM education research internationally support the development of the field. For this review, we conducted a systematic analysis of 798 articles in STEM education published between 2000 and the end of 2018 in 36 journals to get an overview about developments ...

  4. Factors Influencing Student STEM Learning: Self-Efficacy and ...

    Social, motivational, and instructional factors impact students' outcomes in STEM learning and their career paths. Based on prior research and expectancy-value theory, the study further explored how multiple factors affect students in the context of integrated STEM learning. High school STEM teachers participated in summer professional development and taught integrated STEM to students ...

  5. PDF Advantages and Challenges of STEM Education in K-12: Systematic Review

    To answer the research questions, the review focused on research that directly looked at K-12 student-centered STEM trends, advantages, and challenges. Therefore, to identify the trends of STEM education in K-12 (RQ1) we considered eight factors: year of publication, dominant discipline, educational stage, country, educational

  6. PDF The Effect of Stem Education on Academic Performance: A Meta ...

    STEM education is applied to raise individuals having 21st-century skills based on the integration of science, technology, engineering, and mathematics. This paper aims to present the overall effect of STEM education on students' academic achievement by analyzing 64 research findings obtained from 56 quantitative studies published

  7. PDF STEM Education: A review of the contribution of the disciplines of

    increasing the number of students pursuing STEM subjects, and ensuring students are well-prepared, and suitably qualified to engage in STEM careers. This paper examines the contributions of the four disciplines - Science, Technology, Engineering and Mathematics - to the field of STEM education, and discusses

  8. Research and trends in STEM education: a systematic analysis of

    Taking publicly funded projects in STEM education as a special lens, we aimed to learn about research and trends in STEM education. We identified a total of 127 projects funded by the Institute of Education Sciences (IES) of the US Department of Education from 2003 to 2019. Both the number of funded projects in STEM education and their funding amounts were high, although there were ...

  9. (PDF) The Effect of Stem Education on Academic ...

    STEM education is applied to raise individuals having 21st-century skills based on the integration of science, technology, engineering, and mathematics. This paper aims to present the overall ...

  10. (PDF) Research and trends in STEM education: a systematic review of

    Fig. 2 The trends of STEM education publications with vs. without STEM included in the title Li et al. International Journal of STEM Education (2020) 7:11 Page 7 of 16 Dika and D ' Amico ( 2016 ).

  11. Home

    Overview. The Journal for STEM Education Research is an interdisciplinary research journal that aims to promote STEM education as a distinct field. Offers a platform for interdisciplinary research on a broad spectrum of topics in STEM education. Publishes integrative reviews and syntheses of literature relevant to STEM education and research.

  12. 11 STEM Research Topics for High School Students

    Topic 1: Artificial Intelligence (AI) AI stands at the forefront of technological innovation. Students can engage in research on AI applications in various sectors and the ethical implications of AI. This field is suitable for students with interests in computer science, AI, data analytics, and related areas. Topic 2: Applied Math and AI.

  13. Evidence of STEM enactment effectiveness in Asian student learning

    This study used a systematic review and meta-analysis as a method to investigate whether STEM enactment in Asia effectively enhances students' learning outcomes. Verifiable examples of science, technology, engineering, and mathematics (STEM) education, effectively being applied in Asia, are presented in this study. The study involved 4768 students from 54 studies.

  14. (Pdf) Students' Perceptions of A Stem-based Curriculum: a

    of students in STEM activities towards the development of STEM attitudes and skills for lifelong learning and STEM careers [21, 22, 23, 9]. Baran et al. (2016) studied the perceptions of 18 females

  15. Q: Can you give a research title for the STEM strand?

    3 Basic tips on writing a good research paper title. How to write an effective title and abstract and choose appropriate keywords. One tip we can give right away is that you should first have a working (rough) title when you start the paper and then refine/finalize it once you've completed the paper (or the first draft). Hope that helps.

  16. 169+ Exciting Qualitative Research Topics For STEM Students

    Engineering Qualitative Research Topics For STEM Students. Ethics in Artificial Intelligence and Robotics. Human-Centered Design in Engineering. Innovation and Sustainability in Civil Engineering. Public Perception of Self-Driving Cars. Engineering Solutions for Climate Change Mitigation.

  17. Top 200 Quantitative Research Title for Stem Students

    Quantitative research involves gathering numerical data to answer specific questions, and it's a fundamental part of STEM fields. To help you get started on your research journey, we've compiled a list of 200 quantitative research title for stem students. These titles span various STEM disciplines, from biology to computer science.

  18. PDF STEM as Minority: A Phenomenological Case Study of How Students of ...

    As students in previous research have described LLPs as "cultural phenomena" (Wawrzynski et al., 2009, p. 156), we utilized phenomenological case study methods stemming from a social-constructivist epistemology to address our research questions. Students of color in a STEM LLP served as the phenomenon and the specific LLP served as a case ...

  19. Undergraduate Research for STEM Students, Benefits and Challenges

    UNDERGRADUA TE RESEARCH FOR STEM. STUDENTS, BENEFITS AND CHALLENGES. 1 Mohammed Mahmoud, 2 Mark Hoffmann. 1 [email protected], 2 [email protected]. 1 Department of Computer Science ...

  20. Cultural Relativity and Acceptance of Embryonic Stem Cell Research

    Cultural Relativity and Acceptance of Embryonic Stem Cell Research. ABSTRACT. There is a debate about the ethical implications of using human embryos in stem cell research, which can be influenced by cultural, moral, and social values. This paper argues for an adaptable framework to accommodate diverse cultural and religious perspectives.

  21. Your Guide to Summer STEM Programs

    Summer STEM programs are designed to enhance your understanding and proficiency in STEM topics, often through classroom instruction, hands-on experiences, workshops, and projects focused on STEM disciplines such as computer science, engineering, the life sciences, and mathematics. The purpose of STEM summer programs for pre-college students is ...

  22. PDF The Effect of Science, Technology, Engineering and Mathematics-Stem

    engineering design based teaching (Dugger, 2010). STEM education; is important because it is a method by which students gain knowledge and skills by approaching problems from a multidisciplinary point of view and also provide opportunities for students to gain twenty-first century skills and opportunities for these four field specializations.

  23. 10 STEM Project Ideas for Elementary Students

    10 STEM Project Ideas for Elementary Students. 1. Build a solar oven: Harness sunlight for cooking. 2. Create a DIY volcano: Study chemical reactions. 3. Design a simple circuit: Learn about electricity flow. Explore 10 engaging STEM project ideas for elementary students, from building solar ovens to creating homemade robots. Perfect for young ...

  24. (PDF) The effectiveness of science, technology, engineering and

    This research was aiming at trying out the implementation of STEM approach to teach the topics of electricity in Science and Statistics in Mathematics to grade IX students by using real life ...

  25. EMCC STEM Students Pursue Pollinator Projects

    Undergrads Study Wildflower Growth; Conduct Native Bee Survey Estrella Mountain Community College (EMCC) STEM students are busy, busy bees having engaged in Undergraduate Research Experiences, or UREs this semester. Some of our Mountain Lions just wrapped up a study of wildflower growth across different soil types while others are conducting a native bee survey — two things that can't live ...

  26. Pursuing STEM Careers: Perspectives of Senior High School Students

    This qualitative descriptive research explored the perspectives of STEM (science, technology, engineering, and mathematics) senior high school students in a public secondary school in Zambales ...

  27. Challenges in STEM Learning: A Case of Filipino High School Students

    DOI: 10.30870/jppi.v7i2.11293. Abstract. STEM education faces monumental challenges which are aggravated by the Industrial. Revolution (IR) 4.0 and the current COVID-19 global contagion. These ...