Logo for British Columbia/Yukon Open Authoring Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

74 Drawing Conclusions From Your Data

As we mentioned earlier, it is important to not just state the results of your statistical analyses. You should interpret the meanings, because this will enable you to answer your research questions. At the end of your analysis, you should be able to conclude whether your hypotheses are confirmed or rejected. To ensure you are able to draw conclusions from your analyses, we offer the following suggestions:

  • Highlight key findings from the data. ​
  • Making generalized comparisons​
  • Assess the right strength of the claim. Are hypotheses supported? To what extent? ​To what extent do generalizations hold?​
  • Examine the goodness of fit.

Your conclusions could be framed in statements such as:

“Most respondents …..​”

“Group A (e.g., Young adults) were more likely to ___than group B (older adults)

“Given the low degree of fit, other variables/factors might explain the relationship discovered”

Box 10.10 – Statistical Analysis Checklist

Access and Organize the Dataset

  • I have checked whether an Institutional Ethics Review is needed. If it is needed, I have obtained it.
  • I have recorded all the ways that I manipulated the data
  • I have inspected the data set and have noted the limitations (e.g., sampling, non-response, measurement, coverage) and have inspected it for reliability and validity.
  • I have inspected the data to ensure that it meets the requirements and assumptions of the statistical techniques that I wish to perform

Cleaning, Coding, and Recoding

  • I have re-coded variables as appropriate.
  • I have cleaned and processed the data set to make sure it is ready for analysis.

Research Design

  • If it is secondary data I am using, my methodology has documented their method for deriving the data.
  • My methodology documented the procedures for the quantitative data analysis.
  • I have highlighted my research questions and how my findings relate to them

Statistical Analysis

  • I have reported on the goodness of fit measures such as r2 and chi-square for the likelihood ratio test in order to show that your model fits the data well.
  • I have not interpreted coefficients for models that do not fit the data.
  • I have not merely provided statistical results, I have also interpreted the results.
  • You must test relationships. Univariate statistics are not enough for quantitative research.​ Make some inferences supported by tests of significance.​ Correlations, Chi-square, ANOVAs, Regressions (Linear and Logistics) etc. ​
  • I have stored all my statistical results in a central file which I can use to write up my results.

Statistical Presentation

  • My tables and figures conform to the referencing styles that I am using.
  • Report both statistically significant and non-statistically significant results.​ Do not be tempted to ignore the non-statistically significant results. They also tell a story.
  • I have avoided generalizations that my statistics cannot make.
  • I have discussed all of the relevant demographics

Practicing and Presenting Social Research Copyright © 2022 by Oral Robinson and Alexander Wilson is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License , except where otherwise noted.

Share This Book

Educate 360

  • Resources / Blog

The Power of Data Analysis in Research

The Power of Data Analysis in Research

For as long as humans have existed, we've been conducting research. We do it to solve problems, advance technology, understand diseases and develop treatments, inform policymaking, and, most fundamentally, expand human knowledge. At the heart of all research is data. Data, whether observations, statistics, surveys, or interviews, serves as the building blocks for all research.

The more we research, the more data we collect, and the more thorough our analysis will be. Data analysis illuminates patterns, trends, and relationships within the data and plays a pivotal role in shaping the outcomes and conclusions of research. In the sections below, we'll look at different data analysis methods, popular tools researchers use today, and how to make the most of your data.

On this page:

Understanding Data Analysis

The data analysis process, data analysis methods, tools and software for data analysis.

  • Choosing the Right Tools for Your Research
  • Applications for Data Analysis in Research

Challenges in Data Analysis

Future trends in data analysis, getting started with data analysis.

Data analysis is the most crucial part of any research. It allows researchers to understand the information gathered, test hypotheses, and draw conclusions. Analysis is the process of interpreting raw data through logical reasoning and applying various statistical and analytical techniques to understand patterns, relationships, and trends within the data.

Researchers must follow a methodical data analysis approach to ensure accurate results. Skipping steps can skew the outcomes and leave research findings vulnerable to scrutiny.

  • Plan and Design the Analysis: Determine the problem you want to solve before analyzing data. Defining the objectives of the analysis is crucial because it establishes the research direction and identifies the data you need to use to solve the problem.
  • Collecting and Preparing Data: Once the proper data is identified to use, it must be cleaned by checking for missing, inconsistent, and outlier data, ensuring accurate results from the analysis.
  • Analyzing Data: Once cleaned, apply statistical and mathematical to find patterns, relationships, or trends in the data.
  • Interpreting Data: After analysis, interpret the results and report actionable insights in ways non-data analysts can easily understand, e.g., using graphs or tables.

There are so many different reasons to conduct research and so many types of data that there is no one-size-fits-all approach to analysis. Instead, there are many methods, each with its unique purpose.

Non-numerical data gathered and produced using observation methods

Measurable and verifiable numeric data

Describes the characteristics of a data set: mean, mode, median, range, and standard deviation

Tests hypotheses and draws conclusions about the larger populations from the data sample

Uses historical data to understand how variables affect each other and potential outcomes

AI that learns to identify patterns in large data sets and can help predict future outcomes

As digital technology has advanced, the number of data analysis tools available to researchers has exploded. Some of the most well-known data analysis tools include:

It has extensive calculation and graphing functions and plug-ins ideal for data analysis, including pivot tables.

Power BI, PowerApps, Power Automate, and Power Virtual Agents allow data analysts to manipulate, visualize, automate, and analyze data and connect to hundreds of data sources and services.

A popular open-source programming language known for its flexibility and scalability, it can handle many different analyses independently and integrate with third-party ML and data visualization packages.

A commonly used open-source programming language that integrates with other languages like C and C++ that is harder for beginners than Python but has a vast collection of libraries for data analysis and ML

Structured Query Language that allows you to work with, edit, extract, sort, and filter data from multiple databases

Choosing the Right Tools For Your Research.

There is no universal data analytics tool that will address all your needs. Everyone who works with data at some point needs secondary tools and plugins. Here are some things to consider when looking for data analysis software:

  • What is your budget?
  • Is there a viable free version, or do you need a subscription?
  • What is your technical expertise?
  • What is the scalability and flexibility?
  • Can the tool integrate with your existing data sources?
  • Can it handle the volume of data you’re working with?
  • Do you require a tool with modeling capabilities?

Applications of Data Analysis in Research

Data analysis is in high demand across industries, driving innovation that improves an organization's business outcomes and the lives of employees and customers. To understand how data analysis applies to different types of research, let's look at some real-world examples:

  • Environmental studies

Example #1: Healthcare

Data analysis in the medical field has dramatically improved healthcare outcomes. For example, epidemiologists investigate patterns and determinants of disease occurrence and distribution within populations. Through data analysis, they've made great strides in identifying associations between lifestyle factors (e.g., smoking, diet, and physical activity) and chronic diseases like cardiovascular disease, diabetes, and cancer.

Example #2: Finance

Data analysis plays a central role in assessing and managing financial risks. Analyzing historical data and using techniques like value-at-risk (VaR) and stress testing allows risk managers to quantify the potential impact of adverse events on investment portfolios and implement risk mitigation strategies.

Example #3: Environmental studies

The world's leading climate scientists use data analysis in their research. They analyze large datasets of temperature records, atmospheric CO2 concentrations, sea level measurements, and other climate variables to detect trends and patterns over time. This climate data allows researchers to understand global warming better, assess its impacts on ecosystems and human societies, and inform climate policy decisions.

The insights you gain from analyzing data are only as good as the data they are based on. Knowing the common challenges associated with data analytics is essential for data analysts, both new and experienced. Some of the common challenges data analysts face are:

  • Setting clear hypotheses and goals
  • Understanding the data being analyzed
  • Knowing the correct source data to use
  • Determining the integrity and trustworthiness of the source data
  • Maintaining the privacy and ethical use of data
  • Communicating data insights using easily understood methods
  • Remaining objective throughout the analysis

Any of these challenges can lead to incorrect analysis, impacting organizational decision-making. There are several ways in which data analysts can overcome these challenges , including seeking advice from fellow data analysts or taking self-paced or online training. By overcoming these data analysis challenges, data analysts can ensure they provide correct insights to improve an organization’s business outcomes.

Many future trends will impact data analysis, especially from a technology and regulatory standpoint. These trends will allow data analysts to work with more data that can provide deeper business insights for organizations while ensuring that it is used ethically and remains private and secure. Some of the future trends that will impact data analysis include:

  • Artificial intelligence (AI) and machine learning (ML) are changing data analysis by automating complex data processing tasks. These tools can identify patterns in massive data sets and provide highly accurate insights and predictions.
  • Regulation : The European Union's General Data Protection Regulation (GDPR) went into effect in 2018, heralding a new era for data privacy. It levies harsh fines against any person or organization that violates its privacy and security standards, aiming to protect consumer data. As the volume of global data increases, other international governments will follow suit. 
  • Quantum Computing : As organizations generate more significant amounts of data, the need for computers that can store it grows. Demand for more powerful computers to process vast amounts of data is rising. Quantum computing may be the answer, with its ability to store vast amounts of information using qubits and much less energy.
  • Data Democratization : As analytics platforms evolve to become more powerful and intuitive, it will allow anyone, regardless of data analysis experience, to harness and analyze data. Self-service analytics significantly reduces the time and effort required to retrieve insights from data so that data analysts can focus on more specialized work.

The typical starting point for a career in data analysis is through collegiate programs such as computer science, mathematics, and programming. However, you don't have to attend college to become a data analyst. Professional training courses on data analysis are a viable option if you want to start your data analysis career. For example, New Horizons offers online training courses in Data and Analytics , which fall into three categories:

  • No-Code is appropriate for individuals who want to improve their data analytics skills without learning a programming language.
  • Low-Code: Appropriate for those with limited programming skills or data analysis experience.
  • Traditional Data & Analytics: Appropriate for those with programming and data analysis experience looking for courses for specific job roles.

New Horizons offers several Python training courses , as well as vendor-specific data analytics courses, such as:

  • A WS Data Analytics Bootcamp : Four one-day AWS courses, including Building Data Lakes on AWS, Building Batch Data Analytics Solutions on AWS, Building Data Analytics Solutions Using Amazon Redshift, and Building Streaming Data Analytics Solutions on AWS.
  • Microsoft Power Platform : Our subject matter experts show you how to do more with your data, including manipulating, visualizing, automating, and analyzing it using PowerBI, PowerApps, Power Automate, and Power Virtual Agents.

For beginners, completing small projects using public datasets can provide a great way to gain practical data analysis experience. Platforms like Kaggle, GitHub, and Data.gov offer publicly available datasets, providing a great way to apply theoretical knowledge and develop technical skills.

Organizations will always look for ways to improve and innovate; data analysts can help define and solve problems to help the organization move forward. By pinpointing patterns and extracting actionable insights from large quantities of data, data analysts can help guide organizations toward more innovative and customer-centric solutions. As data analytics tools evolve, they will allow even those with little to no data analysis experience to work with data and make better decisions that will help their organization reach and surpass its goals.

  • Expand/Collapse Microsoft Office 39 RSS
  • Expand/Collapse Training Trends 107 RSS
  • Expand/Collapse CyberSecurity 59 RSS
  • Expand/Collapse DevOps 2 RSS
  • Expand/Collapse Modern Workplace 43 RSS
  • Expand/Collapse Cloud 28 RSS
  • Expand/Collapse Programming 11 RSS
  • Expand/Collapse Artificial Intelligence (AI) 18 RSS
  • Expand/Collapse ITIL 21 RSS
  • Expand/Collapse Data & Analytics 32 RSS
  • Expand/Collapse Business Analyst 13 RSS
  • Expand/Collapse Training By Job Role 6 RSS
  • Expand/Collapse Leadership and Professional Development 14 RSS
  • Expand/Collapse Managed Learning Services 3 RSS
  • Expand/Collapse Design & Multi-Media 1 RSS

Qualitative Data Analysis and Interpretation: Systematic Search for Meaning

Patrick Ngulube at University of South Africa

  • University of South Africa

Abstract and Figures

Steps for using discourse analysis (Adapted from Gill, 2000:178-179)

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • Anna Charlotte Morris
  • Stephen Douch
  • Teodora Popnikolova

Johnny M Downs

  • Ayoade Stephen
  • Nida Aulia Mumtazah
  • Eni Rosnija

Eka Fajar Rahmani

  • Fitra Andana
  • Azwandi Azwandi
  • Rico Senjaya

Betha Nurina Sari

  • Intan Purnamasari

Patricia Virella

  • Ojonugwa Ejiga Peter
  • Oluwapemiisin Akingbola

Abiodun Olaitan

  • Ayu Tiara Hamdani
  • Vitha Octavanny
  • Akhmad Edhy Aruman
  • Seyed Masoud Sajjadian
  • Int J Res Meth Educ

Jennifer Keys Adair

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Anaesth
  • v.60(9); 2016 Sep

Basic statistical tools in research and data analysis

Zulfiqar ali.

Department of Anaesthesiology, Division of Neuroanaesthesiology, Sheri Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India

S Bala Bhaskar

1 Department of Anaesthesiology and Critical Care, Vijayanagar Institute of Medical Sciences, Bellary, Karnataka, India

Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if proper statistical tests are used. This article will try to acquaint the reader with the basic research tools that are utilised while conducting various studies. The article covers a brief outline of the variables, an understanding of quantitative and qualitative variables and the measures of central tendency. An idea of the sample size estimation, power analysis and the statistical errors is given. Finally, there is a summary of parametric and non-parametric tests used for data analysis.

INTRODUCTION

Statistics is a branch of science that deals with the collection, organisation, analysis of data and drawing of inferences from the samples to the whole population.[ 1 ] This requires a proper design of the study, an appropriate selection of the study sample and choice of a suitable statistical test. An adequate knowledge of statistics is necessary for proper designing of an epidemiological study or a clinical trial. Improper statistical methods may result in erroneous conclusions which may lead to unethical practice.[ 2 ]

Variable is a characteristic that varies from one individual member of population to another individual.[ 3 ] Variables such as height and weight are measured by some type of scale, convey quantitative information and are called as quantitative variables. Sex and eye colour give qualitative information and are called as qualitative variables[ 3 ] [ Figure 1 ].

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g001.jpg

Classification of variables

Quantitative variables

Quantitative or numerical data are subdivided into discrete and continuous measurements. Discrete numerical data are recorded as a whole number such as 0, 1, 2, 3,… (integer), whereas continuous data can assume any value. Observations that can be counted constitute the discrete data and observations that can be measured constitute the continuous data. Examples of discrete data are number of episodes of respiratory arrests or the number of re-intubations in an intensive care unit. Similarly, examples of continuous data are the serial serum glucose levels, partial pressure of oxygen in arterial blood and the oesophageal temperature.

A hierarchical scale of increasing precision can be used for observing and recording the data which is based on categorical, ordinal, interval and ratio scales [ Figure 1 ].

Categorical or nominal variables are unordered. The data are merely classified into categories and cannot be arranged in any particular order. If only two categories exist (as in gender male and female), it is called as a dichotomous (or binary) data. The various causes of re-intubation in an intensive care unit due to upper airway obstruction, impaired clearance of secretions, hypoxemia, hypercapnia, pulmonary oedema and neurological impairment are examples of categorical variables.

Ordinal variables have a clear ordering between the variables. However, the ordered data may not have equal intervals. Examples are the American Society of Anesthesiologists status or Richmond agitation-sedation scale.

Interval variables are similar to an ordinal variable, except that the intervals between the values of the interval variable are equally spaced. A good example of an interval scale is the Fahrenheit degree scale used to measure temperature. With the Fahrenheit scale, the difference between 70° and 75° is equal to the difference between 80° and 85°: The units of measurement are equal throughout the full range of the scale.

Ratio scales are similar to interval scales, in that equal differences between scale values have equal quantitative meaning. However, ratio scales also have a true zero point, which gives them an additional property. For example, the system of centimetres is an example of a ratio scale. There is a true zero point and the value of 0 cm means a complete absence of length. The thyromental distance of 6 cm in an adult may be twice that of a child in whom it may be 3 cm.

STATISTICS: DESCRIPTIVE AND INFERENTIAL STATISTICS

Descriptive statistics[ 4 ] try to describe the relationship between variables in a sample or population. Descriptive statistics provide a summary of data in the form of mean, median and mode. Inferential statistics[ 4 ] use a random sample of data taken from a population to describe and make inferences about the whole population. It is valuable when it is not possible to examine each member of an entire population. The examples if descriptive and inferential statistics are illustrated in Table 1 .

Example of descriptive and inferential statistics

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g002.jpg

Descriptive statistics

The extent to which the observations cluster around a central location is described by the central tendency and the spread towards the extremes is described by the degree of dispersion.

Measures of central tendency

The measures of central tendency are mean, median and mode.[ 6 ] Mean (or the arithmetic average) is the sum of all the scores divided by the number of scores. Mean may be influenced profoundly by the extreme variables. For example, the average stay of organophosphorus poisoning patients in ICU may be influenced by a single patient who stays in ICU for around 5 months because of septicaemia. The extreme values are called outliers. The formula for the mean is

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g003.jpg

where x = each observation and n = number of observations. Median[ 6 ] is defined as the middle of a distribution in a ranked data (with half of the variables in the sample above and half below the median value) while mode is the most frequently occurring variable in a distribution. Range defines the spread, or variability, of a sample.[ 7 ] It is described by the minimum and maximum values of the variables. If we rank the data and after ranking, group the observations into percentiles, we can get better information of the pattern of spread of the variables. In percentiles, we rank the observations into 100 equal parts. We can then describe 25%, 50%, 75% or any other percentile amount. The median is the 50 th percentile. The interquartile range will be the observations in the middle 50% of the observations about the median (25 th -75 th percentile). Variance[ 7 ] is a measure of how spread out is the distribution. It gives an indication of how close an individual observation clusters about the mean value. The variance of a population is defined by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g004.jpg

where σ 2 is the population variance, X is the population mean, X i is the i th element from the population and N is the number of elements in the population. The variance of a sample is defined by slightly different formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g005.jpg

where s 2 is the sample variance, x is the sample mean, x i is the i th element from the sample and n is the number of elements in the sample. The formula for the variance of a population has the value ‘ n ’ as the denominator. The expression ‘ n −1’ is known as the degrees of freedom and is one less than the number of parameters. Each observation is free to vary, except the last one which must be a defined value. The variance is measured in squared units. To make the interpretation of the data simple and to retain the basic unit of observation, the square root of variance is used. The square root of the variance is the standard deviation (SD).[ 8 ] The SD of a population is defined by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g006.jpg

where σ is the population SD, X is the population mean, X i is the i th element from the population and N is the number of elements in the population. The SD of a sample is defined by slightly different formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g007.jpg

where s is the sample SD, x is the sample mean, x i is the i th element from the sample and n is the number of elements in the sample. An example for calculation of variation and SD is illustrated in Table 2 .

Example of mean, variance, standard deviation

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g008.jpg

Normal distribution or Gaussian distribution

Most of the biological variables usually cluster around a central value, with symmetrical positive and negative deviations about this point.[ 1 ] The standard normal distribution curve is a symmetrical bell-shaped. In a normal distribution curve, about 68% of the scores are within 1 SD of the mean. Around 95% of the scores are within 2 SDs of the mean and 99% within 3 SDs of the mean [ Figure 2 ].

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g009.jpg

Normal distribution curve

Skewed distribution

It is a distribution with an asymmetry of the variables about its mean. In a negatively skewed distribution [ Figure 3 ], the mass of the distribution is concentrated on the right of Figure 1 . In a positively skewed distribution [ Figure 3 ], the mass of the distribution is concentrated on the left of the figure leading to a longer right tail.

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g010.jpg

Curves showing negatively skewed and positively skewed distribution

Inferential statistics

In inferential statistics, data are analysed from a sample to make inferences in the larger collection of the population. The purpose is to answer or test the hypotheses. A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. Hypothesis tests are thus procedures for making rational decisions about the reality of observed effects.

Probability is the measure of the likelihood that an event will occur. Probability is quantified as a number between 0 and 1 (where 0 indicates impossibility and 1 indicates certainty).

In inferential statistics, the term ‘null hypothesis’ ( H 0 ‘ H-naught ,’ ‘ H-null ’) denotes that there is no relationship (difference) between the population variables in question.[ 9 ]

Alternative hypothesis ( H 1 and H a ) denotes that a statement between the variables is expected to be true.[ 9 ]

The P value (or the calculated probability) is the probability of the event occurring by chance if the null hypothesis is true. The P value is a numerical between 0 and 1 and is interpreted by researchers in deciding whether to reject or retain the null hypothesis [ Table 3 ].

P values with interpretation

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g011.jpg

If P value is less than the arbitrarily chosen value (known as α or the significance level), the null hypothesis (H0) is rejected [ Table 4 ]. However, if null hypotheses (H0) is incorrectly rejected, this is known as a Type I error.[ 11 ] Further details regarding alpha error, beta error and sample size calculation and factors influencing them are dealt with in another section of this issue by Das S et al .[ 12 ]

Illustration for null hypothesis

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g012.jpg

PARAMETRIC AND NON-PARAMETRIC TESTS

Numerical data (quantitative variables) that are normally distributed are analysed with parametric tests.[ 13 ]

Two most basic prerequisites for parametric statistical analysis are:

  • The assumption of normality which specifies that the means of the sample group are normally distributed
  • The assumption of equal variance which specifies that the variances of the samples and of their corresponding population are equal.

However, if the distribution of the sample is skewed towards one side or the distribution is unknown due to the small sample size, non-parametric[ 14 ] statistical techniques are used. Non-parametric tests are used to analyse ordinal and categorical data.

Parametric tests

The parametric tests assume that the data are on a quantitative (numerical) scale, with a normal distribution of the underlying population. The samples have the same variance (homogeneity of variances). The samples are randomly drawn from the population, and the observations within a group are independent of each other. The commonly used parametric tests are the Student's t -test, analysis of variance (ANOVA) and repeated measures ANOVA.

Student's t -test

Student's t -test is used to test the null hypothesis that there is no difference between the means of the two groups. It is used in three circumstances:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g013.jpg

where X = sample mean, u = population mean and SE = standard error of mean

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g014.jpg

where X 1 − X 2 is the difference between the means of the two groups and SE denotes the standard error of the difference.

  • To test if the population means estimated by two dependent samples differ significantly (the paired t -test). A usual setting for paired t -test is when measurements are made on the same subjects before and after a treatment.

The formula for paired t -test is:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g015.jpg

where d is the mean difference and SE denotes the standard error of this difference.

The group variances can be compared using the F -test. The F -test is the ratio of variances (var l/var 2). If F differs significantly from 1.0, then it is concluded that the group variances differ significantly.

Analysis of variance

The Student's t -test cannot be used for comparison of three or more groups. The purpose of ANOVA is to test if there is any significant difference between the means of two or more groups.

In ANOVA, we study two variances – (a) between-group variability and (b) within-group variability. The within-group variability (error variance) is the variation that cannot be accounted for in the study design. It is based on random differences present in our samples.

However, the between-group (or effect variance) is the result of our treatment. These two estimates of variances are compared using the F-test.

A simplified formula for the F statistic is:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g016.jpg

where MS b is the mean squares between the groups and MS w is the mean squares within groups.

Repeated measures analysis of variance

As with ANOVA, repeated measures ANOVA analyses the equality of means of three or more groups. However, a repeated measure ANOVA is used when all variables of a sample are measured under different conditions or at different points in time.

As the variables are measured from a sample at different points of time, the measurement of the dependent variable is repeated. Using a standard ANOVA in this case is not appropriate because it fails to model the correlation between the repeated measures: The data violate the ANOVA assumption of independence. Hence, in the measurement of repeated dependent variables, repeated measures ANOVA should be used.

Non-parametric tests

When the assumptions of normality are not met, and the sample means are not normally, distributed parametric tests can lead to erroneous results. Non-parametric tests (distribution-free test) are used in such situation as they do not require the normality assumption.[ 15 ] Non-parametric tests may fail to detect a significant difference when compared with a parametric test. That is, they usually have less power.

As is done for the parametric tests, the test statistic is compared with known values for the sampling distribution of that statistic and the null hypothesis is accepted or rejected. The types of non-parametric analysis techniques and the corresponding parametric analysis techniques are delineated in Table 5 .

Analogue of parametric and non-parametric tests

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g017.jpg

Median test for one sample: The sign test and Wilcoxon's signed rank test

The sign test and Wilcoxon's signed rank test are used for median tests of one sample. These tests examine whether one instance of sample data is greater or smaller than the median reference value.

This test examines the hypothesis about the median θ0 of a population. It tests the null hypothesis H0 = θ0. When the observed value (Xi) is greater than the reference value (θ0), it is marked as+. If the observed value is smaller than the reference value, it is marked as − sign. If the observed value is equal to the reference value (θ0), it is eliminated from the sample.

If the null hypothesis is true, there will be an equal number of + signs and − signs.

The sign test ignores the actual values of the data and only uses + or − signs. Therefore, it is useful when it is difficult to measure the values.

Wilcoxon's signed rank test

There is a major limitation of sign test as we lose the quantitative information of the given data and merely use the + or – signs. Wilcoxon's signed rank test not only examines the observed values in comparison with θ0 but also takes into consideration the relative sizes, adding more statistical power to the test. As in the sign test, if there is an observed value that is equal to the reference value θ0, this observed value is eliminated from the sample.

Wilcoxon's rank sum test ranks all data points in order, calculates the rank sum of each sample and compares the difference in the rank sums.

Mann-Whitney test

It is used to test the null hypothesis that two samples have the same median or, alternatively, whether observations in one sample tend to be larger than observations in the other.

Mann–Whitney test compares all data (xi) belonging to the X group and all data (yi) belonging to the Y group and calculates the probability of xi being greater than yi: P (xi > yi). The null hypothesis states that P (xi > yi) = P (xi < yi) =1/2 while the alternative hypothesis states that P (xi > yi) ≠1/2.

Kolmogorov-Smirnov test

The two-sample Kolmogorov-Smirnov (KS) test was designed as a generic method to test whether two random samples are drawn from the same distribution. The null hypothesis of the KS test is that both distributions are identical. The statistic of the KS test is a distance between the two empirical distributions, computed as the maximum absolute difference between their cumulative curves.

Kruskal-Wallis test

The Kruskal–Wallis test is a non-parametric test to analyse the variance.[ 14 ] It analyses if there is any difference in the median values of three or more independent samples. The data values are ranked in an increasing order, and the rank sums calculated followed by calculation of the test statistic.

Jonckheere test

In contrast to Kruskal–Wallis test, in Jonckheere test, there is an a priori ordering that gives it a more statistical power than the Kruskal–Wallis test.[ 14 ]

Friedman test

The Friedman test is a non-parametric test for testing the difference between several related samples. The Friedman test is an alternative for repeated measures ANOVAs which is used when the same parameter has been measured under different conditions on the same subjects.[ 13 ]

Tests to analyse the categorical data

Chi-square test, Fischer's exact test and McNemar's test are used to analyse the categorical or nominal variables. The Chi-square test compares the frequencies and tests whether the observed data differ significantly from that of the expected data if there were no differences between groups (i.e., the null hypothesis). It is calculated by the sum of the squared difference between observed ( O ) and the expected ( E ) data (or the deviation, d ) divided by the expected data by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g018.jpg

A Yates correction factor is used when the sample size is small. Fischer's exact test is used to determine if there are non-random associations between two categorical variables. It does not assume random sampling, and instead of referring a calculated statistic to a sampling distribution, it calculates an exact probability. McNemar's test is used for paired nominal data. It is applied to 2 × 2 table with paired-dependent samples. It is used to determine whether the row and column frequencies are equal (that is, whether there is ‘marginal homogeneity’). The null hypothesis is that the paired proportions are equal. The Mantel-Haenszel Chi-square test is a multivariate test as it analyses multiple grouping variables. It stratifies according to the nominated confounding variables and identifies any that affects the primary outcome variable. If the outcome variable is dichotomous, then logistic regression is used.

SOFTWARES AVAILABLE FOR STATISTICS, SAMPLE SIZE CALCULATION AND POWER ANALYSIS

Numerous statistical software systems are available currently. The commonly used software systems are Statistical Package for the Social Sciences (SPSS – manufactured by IBM corporation), Statistical Analysis System ((SAS – developed by SAS Institute North Carolina, United States of America), R (designed by Ross Ihaka and Robert Gentleman from R core team), Minitab (developed by Minitab Inc), Stata (developed by StataCorp) and the MS Excel (developed by Microsoft).

There are a number of web resources which are related to statistical power analyses. A few are:

  • StatPages.net – provides links to a number of online power calculators
  • G-Power – provides a downloadable power analysis program that runs under DOS
  • Power analysis for ANOVA designs an interactive site that calculates power or sample size needed to attain a given power for one effect in a factorial ANOVA design
  • SPSS makes a program called SamplePower. It gives an output of a complete report on the computer screen which can be cut and paste into another document.

It is important that a researcher knows the concepts of the basic statistical methods used for conduct of a research study. This will help to conduct an appropriately well-designed study leading to valid and reliable results. Inappropriate use of statistical techniques may lead to faulty conclusions, inducing errors and undermining the significance of the article. Bad statistics may lead to bad research, and bad research may lead to unethical practice. Hence, an adequate knowledge of statistics and the appropriate use of statistical tests are important. An appropriate knowledge about the basic statistical methods will go a long way in improving the research designs and producing quality medical research which can be utilised for formulating the evidence-based guidelines.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

The Beginner's Guide to Statistical Analysis | 5 Steps & Examples

Statistical analysis means investigating trends, patterns, and relationships using quantitative data . It is an important research tool used by scientists, governments, businesses, and other organizations.

To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process . You need to specify your hypotheses and make decisions about your research design, sample size, and sampling procedure.

After collecting data from your sample, you can organize and summarize the data using descriptive statistics . Then, you can use inferential statistics to formally test hypotheses and make estimates about the population. Finally, you can interpret and generalize your findings.

This article is a practical introduction to statistical analysis for students and researchers. We’ll walk you through the steps using two research examples. The first investigates a potential cause-and-effect relationship, while the second investigates a potential correlation between variables.

Table of contents

Step 1: write your hypotheses and plan your research design, step 2: collect data from a sample, step 3: summarize your data with descriptive statistics, step 4: test hypotheses or make estimates with inferential statistics, step 5: interpret your results, other interesting articles.

To collect valid data for statistical analysis, you first need to specify your hypotheses and plan out your research design.

Writing statistical hypotheses

The goal of research is often to investigate a relationship between variables within a population . You start with a prediction, and use statistical analysis to test that prediction.

A statistical hypothesis is a formal way of writing a prediction about a population. Every research prediction is rephrased into null and alternative hypotheses that can be tested using sample data.

While the null hypothesis always predicts no effect or no relationship between variables, the alternative hypothesis states your research prediction of an effect or relationship.

  • Null hypothesis: A 5-minute meditation exercise will have no effect on math test scores in teenagers.
  • Alternative hypothesis: A 5-minute meditation exercise will improve math test scores in teenagers.
  • Null hypothesis: Parental income and GPA have no relationship with each other in college students.
  • Alternative hypothesis: Parental income and GPA are positively correlated in college students.

Planning your research design

A research design is your overall strategy for data collection and analysis. It determines the statistical tests you can use to test your hypothesis later on.

First, decide whether your research will use a descriptive, correlational, or experimental design. Experiments directly influence variables, whereas descriptive and correlational studies only measure variables.

  • In an experimental design , you can assess a cause-and-effect relationship (e.g., the effect of meditation on test scores) using statistical tests of comparison or regression.
  • In a correlational design , you can explore relationships between variables (e.g., parental income and GPA) without any assumption of causality using correlation coefficients and significance tests.
  • In a descriptive design , you can study the characteristics of a population or phenomenon (e.g., the prevalence of anxiety in U.S. college students) using statistical tests to draw inferences from sample data.

Your research design also concerns whether you’ll compare participants at the group level or individual level, or both.

  • In a between-subjects design , you compare the group-level outcomes of participants who have been exposed to different treatments (e.g., those who performed a meditation exercise vs those who didn’t).
  • In a within-subjects design , you compare repeated measures from participants who have participated in all treatments of a study (e.g., scores from before and after performing a meditation exercise).
  • In a mixed (factorial) design , one variable is altered between subjects and another is altered within subjects (e.g., pretest and posttest scores from participants who either did or didn’t do a meditation exercise).
  • Experimental
  • Correlational

First, you’ll take baseline test scores from participants. Then, your participants will undergo a 5-minute meditation exercise. Finally, you’ll record participants’ scores from a second math test.

In this experiment, the independent variable is the 5-minute meditation exercise, and the dependent variable is the math test score from before and after the intervention. Example: Correlational research design In a correlational study, you test whether there is a relationship between parental income and GPA in graduating college students. To collect your data, you will ask participants to fill in a survey and self-report their parents’ incomes and their own GPA.

Measuring variables

When planning a research design, you should operationalize your variables and decide exactly how you will measure them.

For statistical analysis, it’s important to consider the level of measurement of your variables, which tells you what kind of data they contain:

  • Categorical data represents groupings. These may be nominal (e.g., gender) or ordinal (e.g. level of language ability).
  • Quantitative data represents amounts. These may be on an interval scale (e.g. test score) or a ratio scale (e.g. age).

Many variables can be measured at different levels of precision. For example, age data can be quantitative (8 years old) or categorical (young). If a variable is coded numerically (e.g., level of agreement from 1–5), it doesn’t automatically mean that it’s quantitative instead of categorical.

Identifying the measurement level is important for choosing appropriate statistics and hypothesis tests. For example, you can calculate a mean score with quantitative data, but not with categorical data.

In a research study, along with measures of your variables of interest, you’ll often collect data on relevant participant characteristics.

Variable Type of data
Age Quantitative (ratio)
Gender Categorical (nominal)
Race or ethnicity Categorical (nominal)
Baseline test scores Quantitative (interval)
Final test scores Quantitative (interval)
Parental income Quantitative (ratio)
GPA Quantitative (interval)

Prevent plagiarism. Run a free check.

Population vs sample

In most cases, it’s too difficult or expensive to collect data from every member of the population you’re interested in studying. Instead, you’ll collect data from a sample.

Statistical analysis allows you to apply your findings beyond your own sample as long as you use appropriate sampling procedures . You should aim for a sample that is representative of the population.

Sampling for statistical analysis

There are two main approaches to selecting a sample.

  • Probability sampling: every member of the population has a chance of being selected for the study through random selection.
  • Non-probability sampling: some members of the population are more likely than others to be selected for the study because of criteria such as convenience or voluntary self-selection.

In theory, for highly generalizable findings, you should use a probability sampling method. Random selection reduces several types of research bias , like sampling bias , and ensures that data from your sample is actually typical of the population. Parametric tests can be used to make strong statistical inferences when data are collected using probability sampling.

But in practice, it’s rarely possible to gather the ideal sample. While non-probability samples are more likely to at risk for biases like self-selection bias , they are much easier to recruit and collect data from. Non-parametric tests are more appropriate for non-probability samples, but they result in weaker inferences about the population.

If you want to use parametric tests for non-probability samples, you have to make the case that:

  • your sample is representative of the population you’re generalizing your findings to.
  • your sample lacks systematic bias.

Keep in mind that external validity means that you can only generalize your conclusions to others who share the characteristics of your sample. For instance, results from Western, Educated, Industrialized, Rich and Democratic samples (e.g., college students in the US) aren’t automatically applicable to all non-WEIRD populations.

If you apply parametric tests to data from non-probability samples, be sure to elaborate on the limitations of how far your results can be generalized in your discussion section .

Create an appropriate sampling procedure

Based on the resources available for your research, decide on how you’ll recruit participants.

  • Will you have resources to advertise your study widely, including outside of your university setting?
  • Will you have the means to recruit a diverse sample that represents a broad population?
  • Do you have time to contact and follow up with members of hard-to-reach groups?

Your participants are self-selected by their schools. Although you’re using a non-probability sample, you aim for a diverse and representative sample. Example: Sampling (correlational study) Your main population of interest is male college students in the US. Using social media advertising, you recruit senior-year male college students from a smaller subpopulation: seven universities in the Boston area.

Calculate sufficient sample size

Before recruiting participants, decide on your sample size either by looking at other studies in your field or using statistics. A sample that’s too small may be unrepresentative of the sample, while a sample that’s too large will be more costly than necessary.

There are many sample size calculators online. Different formulas are used depending on whether you have subgroups or how rigorous your study should be (e.g., in clinical research). As a rule of thumb, a minimum of 30 units or more per subgroup is necessary.

To use these calculators, you have to understand and input these key components:

  • Significance level (alpha): the risk of rejecting a true null hypothesis that you are willing to take, usually set at 5%.
  • Statistical power : the probability of your study detecting an effect of a certain size if there is one, usually 80% or higher.
  • Expected effect size : a standardized indication of how large the expected result of your study will be, usually based on other similar studies.
  • Population standard deviation: an estimate of the population parameter based on a previous study or a pilot study of your own.

Once you’ve collected all of your data, you can inspect them and calculate descriptive statistics that summarize them.

Inspect your data

There are various ways to inspect your data, including the following:

  • Organizing data from each variable in frequency distribution tables .
  • Displaying data from a key variable in a bar chart to view the distribution of responses.
  • Visualizing the relationship between two variables using a scatter plot .

By visualizing your data in tables and graphs, you can assess whether your data follow a skewed or normal distribution and whether there are any outliers or missing data.

A normal distribution means that your data are symmetrically distributed around a center where most values lie, with the values tapering off at the tail ends.

Mean, median, mode, and standard deviation in a normal distribution

In contrast, a skewed distribution is asymmetric and has more values on one end than the other. The shape of the distribution is important to keep in mind because only some descriptive statistics should be used with skewed distributions.

Extreme outliers can also produce misleading statistics, so you may need a systematic approach to dealing with these values.

Calculate measures of central tendency

Measures of central tendency describe where most of the values in a data set lie. Three main measures of central tendency are often reported:

  • Mode : the most popular response or value in the data set.
  • Median : the value in the exact middle of the data set when ordered from low to high.
  • Mean : the sum of all values divided by the number of values.

However, depending on the shape of the distribution and level of measurement, only one or two of these measures may be appropriate. For example, many demographic characteristics can only be described using the mode or proportions, while a variable like reaction time may not have a mode at all.

Calculate measures of variability

Measures of variability tell you how spread out the values in a data set are. Four main measures of variability are often reported:

  • Range : the highest value minus the lowest value of the data set.
  • Interquartile range : the range of the middle half of the data set.
  • Standard deviation : the average distance between each value in your data set and the mean.
  • Variance : the square of the standard deviation.

Once again, the shape of the distribution and level of measurement should guide your choice of variability statistics. The interquartile range is the best measure for skewed distributions, while standard deviation and variance provide the best information for normal distributions.

Using your table, you should check whether the units of the descriptive statistics are comparable for pretest and posttest scores. For example, are the variance levels similar across the groups? Are there any extreme values? If there are, you may need to identify and remove extreme outliers in your data set or transform your data before performing a statistical test.

Pretest scores Posttest scores
Mean 68.44 75.25
Standard deviation 9.43 9.88
Variance 88.96 97.96
Range 36.25 45.12
30

From this table, we can see that the mean score increased after the meditation exercise, and the variances of the two scores are comparable. Next, we can perform a statistical test to find out if this improvement in test scores is statistically significant in the population. Example: Descriptive statistics (correlational study) After collecting data from 653 students, you tabulate descriptive statistics for annual parental income and GPA.

It’s important to check whether you have a broad range of data points. If you don’t, your data may be skewed towards some groups more than others (e.g., high academic achievers), and only limited inferences can be made about a relationship.

Parental income (USD) GPA
Mean 62,100 3.12
Standard deviation 15,000 0.45
Variance 225,000,000 0.16
Range 8,000–378,000 2.64–4.00
653

A number that describes a sample is called a statistic , while a number describing a population is called a parameter . Using inferential statistics , you can make conclusions about population parameters based on sample statistics.

Researchers often use two main methods (simultaneously) to make inferences in statistics.

  • Estimation: calculating population parameters based on sample statistics.
  • Hypothesis testing: a formal process for testing research predictions about the population using samples.

You can make two types of estimates of population parameters from sample statistics:

  • A point estimate : a value that represents your best guess of the exact parameter.
  • An interval estimate : a range of values that represent your best guess of where the parameter lies.

If your aim is to infer and report population characteristics from sample data, it’s best to use both point and interval estimates in your paper.

You can consider a sample statistic a point estimate for the population parameter when you have a representative sample (e.g., in a wide public opinion poll, the proportion of a sample that supports the current government is taken as the population proportion of government supporters).

There’s always error involved in estimation, so you should also provide a confidence interval as an interval estimate to show the variability around a point estimate.

A confidence interval uses the standard error and the z score from the standard normal distribution to convey where you’d generally expect to find the population parameter most of the time.

Hypothesis testing

Using data from a sample, you can test hypotheses about relationships between variables in the population. Hypothesis testing starts with the assumption that the null hypothesis is true in the population, and you use statistical tests to assess whether the null hypothesis can be rejected or not.

Statistical tests determine where your sample data would lie on an expected distribution of sample data if the null hypothesis were true. These tests give two main outputs:

  • A test statistic tells you how much your data differs from the null hypothesis of the test.
  • A p value tells you the likelihood of obtaining your results if the null hypothesis is actually true in the population.

Statistical tests come in three main varieties:

  • Comparison tests assess group differences in outcomes.
  • Regression tests assess cause-and-effect relationships between variables.
  • Correlation tests assess relationships between variables without assuming causation.

Your choice of statistical test depends on your research questions, research design, sampling method, and data characteristics.

Parametric tests

Parametric tests make powerful inferences about the population based on sample data. But to use them, some assumptions must be met, and only some types of variables can be used. If your data violate these assumptions, you can perform appropriate data transformations or use alternative non-parametric tests instead.

A regression models the extent to which changes in a predictor variable results in changes in outcome variable(s).

  • A simple linear regression includes one predictor variable and one outcome variable.
  • A multiple linear regression includes two or more predictor variables and one outcome variable.

Comparison tests usually compare the means of groups. These may be the means of different groups within a sample (e.g., a treatment and control group), the means of one sample group taken at different times (e.g., pretest and posttest scores), or a sample mean and a population mean.

  • A t test is for exactly 1 or 2 groups when the sample is small (30 or less).
  • A z test is for exactly 1 or 2 groups when the sample is large.
  • An ANOVA is for 3 or more groups.

The z and t tests have subtypes based on the number and types of samples and the hypotheses:

  • If you have only one sample that you want to compare to a population mean, use a one-sample test .
  • If you have paired measurements (within-subjects design), use a dependent (paired) samples test .
  • If you have completely separate measurements from two unmatched groups (between-subjects design), use an independent (unpaired) samples test .
  • If you expect a difference between groups in a specific direction, use a one-tailed test .
  • If you don’t have any expectations for the direction of a difference between groups, use a two-tailed test .

The only parametric correlation test is Pearson’s r . The correlation coefficient ( r ) tells you the strength of a linear relationship between two quantitative variables.

However, to test whether the correlation in the sample is strong enough to be important in the population, you also need to perform a significance test of the correlation coefficient, usually a t test, to obtain a p value. This test uses your sample size to calculate how much the correlation coefficient differs from zero in the population.

You use a dependent-samples, one-tailed t test to assess whether the meditation exercise significantly improved math test scores. The test gives you:

  • a t value (test statistic) of 3.00
  • a p value of 0.0028

Although Pearson’s r is a test statistic, it doesn’t tell you anything about how significant the correlation is in the population. You also need to test whether this sample correlation coefficient is large enough to demonstrate a correlation in the population.

A t test can also determine how significantly a correlation coefficient differs from zero based on sample size. Since you expect a positive correlation between parental income and GPA, you use a one-sample, one-tailed t test. The t test gives you:

  • a t value of 3.08
  • a p value of 0.001

The final step of statistical analysis is interpreting your results.

Statistical significance

In hypothesis testing, statistical significance is the main criterion for forming conclusions. You compare your p value to a set significance level (usually 0.05) to decide whether your results are statistically significant or non-significant.

Statistically significant results are considered unlikely to have arisen solely due to chance. There is only a very low chance of such a result occurring if the null hypothesis is true in the population.

This means that you believe the meditation intervention, rather than random factors, directly caused the increase in test scores. Example: Interpret your results (correlational study) You compare your p value of 0.001 to your significance threshold of 0.05. With a p value under this threshold, you can reject the null hypothesis. This indicates a statistically significant correlation between parental income and GPA in male college students.

Note that correlation doesn’t always mean causation, because there are often many underlying factors contributing to a complex variable like GPA. Even if one variable is related to another, this may be because of a third variable influencing both of them, or indirect links between the two variables.

Effect size

A statistically significant result doesn’t necessarily mean that there are important real life applications or clinical outcomes for a finding.

In contrast, the effect size indicates the practical significance of your results. It’s important to report effect sizes along with your inferential statistics for a complete picture of your results. You should also report interval estimates of effect sizes if you’re writing an APA style paper .

With a Cohen’s d of 0.72, there’s medium to high practical significance to your finding that the meditation exercise improved test scores. Example: Effect size (correlational study) To determine the effect size of the correlation coefficient, you compare your Pearson’s r value to Cohen’s effect size criteria.

Decision errors

Type I and Type II errors are mistakes made in research conclusions. A Type I error means rejecting the null hypothesis when it’s actually true, while a Type II error means failing to reject the null hypothesis when it’s false.

You can aim to minimize the risk of these errors by selecting an optimal significance level and ensuring high power . However, there’s a trade-off between the two errors, so a fine balance is necessary.

Frequentist versus Bayesian statistics

Traditionally, frequentist statistics emphasizes null hypothesis significance testing and always starts with the assumption of a true null hypothesis.

However, Bayesian statistics has grown in popularity as an alternative approach in the last few decades. In this approach, you use previous research to continually update your hypotheses based on your expectations and observations.

Bayes factor compares the relative strength of evidence for the null versus the alternative hypothesis rather than making a conclusion about rejecting the null hypothesis or not.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval

Methodology

  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Likert scale

Research bias

  • Implicit bias
  • Framing effect
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hostile attribution bias
  • Affect heuristic

Is this article helpful?

Other students also liked.

  • Descriptive Statistics | Definitions, Types, Examples
  • Inferential Statistics | An Easy Introduction & Examples
  • Choosing the Right Statistical Test | Types & Examples

More interesting articles

  • Akaike Information Criterion | When & How to Use It (Example)
  • An Easy Introduction to Statistical Significance (With Examples)
  • An Introduction to t Tests | Definitions, Formula and Examples
  • ANOVA in R | A Complete Step-by-Step Guide with Examples
  • Central Limit Theorem | Formula, Definition & Examples
  • Central Tendency | Understanding the Mean, Median & Mode
  • Chi-Square (Χ²) Distributions | Definition & Examples
  • Chi-Square (Χ²) Table | Examples & Downloadable Table
  • Chi-Square (Χ²) Tests | Types, Formula & Examples
  • Chi-Square Goodness of Fit Test | Formula, Guide & Examples
  • Chi-Square Test of Independence | Formula, Guide & Examples
  • Coefficient of Determination (R²) | Calculation & Interpretation
  • Correlation Coefficient | Types, Formulas & Examples
  • Frequency Distribution | Tables, Types & Examples
  • How to Calculate Standard Deviation (Guide) | Calculator & Examples
  • How to Calculate Variance | Calculator, Analysis & Examples
  • How to Find Degrees of Freedom | Definition & Formula
  • How to Find Interquartile Range (IQR) | Calculator & Examples
  • How to Find Outliers | 4 Ways with Examples & Explanation
  • How to Find the Geometric Mean | Calculator & Formula
  • How to Find the Mean | Definition, Examples & Calculator
  • How to Find the Median | Definition, Examples & Calculator
  • How to Find the Mode | Definition, Examples & Calculator
  • How to Find the Range of a Data Set | Calculator & Formula
  • Hypothesis Testing | A Step-by-Step Guide with Easy Examples
  • Interval Data and How to Analyze It | Definitions & Examples
  • Levels of Measurement | Nominal, Ordinal, Interval and Ratio
  • Linear Regression in R | A Step-by-Step Guide & Examples
  • Missing Data | Types, Explanation, & Imputation
  • Multiple Linear Regression | A Quick Guide (Examples)
  • Nominal Data | Definition, Examples, Data Collection & Analysis
  • Normal Distribution | Examples, Formulas, & Uses
  • Null and Alternative Hypotheses | Definitions & Examples
  • One-way ANOVA | When and How to Use It (With Examples)
  • Ordinal Data | Definition, Examples, Data Collection & Analysis
  • Parameter vs Statistic | Definitions, Differences & Examples
  • Pearson Correlation Coefficient (r) | Guide & Examples
  • Poisson Distributions | Definition, Formula & Examples
  • Probability Distribution | Formula, Types, & Examples
  • Quartiles & Quantiles | Calculation, Definition & Interpretation
  • Ratio Scales | Definition, Examples, & Data Analysis
  • Simple Linear Regression | An Easy Introduction & Examples
  • Skewness | Definition, Examples & Formula
  • Statistical Power and Why It Matters | A Simple Introduction
  • Student's t Table (Free Download) | Guide & Examples
  • T-distribution: What it is and how to use it
  • Test statistics | Definition, Interpretation, and Examples
  • The Standard Normal Distribution | Calculator, Examples & Uses
  • Two-Way ANOVA | Examples & When To Use It
  • Type I & Type II Errors | Differences, Examples, Visualizations
  • Understanding Confidence Intervals | Easy Examples & Formulas
  • Understanding P values | Definition and Examples
  • Variability | Calculating Range, IQR, Variance, Standard Deviation
  • What is Effect Size and Why Does It Matter? (Examples)
  • What Is Kurtosis? | Definition, Examples & Formula
  • What Is Standard Error? | How to Calculate (Guide with Examples)

What is your plagiarism score?

conclusion of data analysis research

How to Write a Conclusion for Research Papers (with Examples)

How to Write a Conclusion for Research Papers (with Examples)

The conclusion of a research paper is a crucial section that plays a significant role in the overall impact and effectiveness of your research paper. However, this is also the section that typically receives less attention compared to the introduction and the body of the paper. The conclusion serves to provide a concise summary of the key findings, their significance, their implications, and a sense of closure to the study. Discussing how can the findings be applied in real-world scenarios or inform policy, practice, or decision-making is especially valuable to practitioners and policymakers. The research paper conclusion also provides researchers with clear insights and valuable information for their own work, which they can then build on and contribute to the advancement of knowledge in the field.

The research paper conclusion should explain the significance of your findings within the broader context of your field. It restates how your results contribute to the existing body of knowledge and whether they confirm or challenge existing theories or hypotheses. Also, by identifying unanswered questions or areas requiring further investigation, your awareness of the broader research landscape can be demonstrated.

Remember to tailor the research paper conclusion to the specific needs and interests of your intended audience, which may include researchers, practitioners, policymakers, or a combination of these.

Table of Contents

What is a conclusion in a research paper, summarizing conclusion, editorial conclusion, externalizing conclusion, importance of a good research paper conclusion, how to write a conclusion for your research paper, research paper conclusion examples.

  • How to write a research paper conclusion with Paperpal? 

Frequently Asked Questions

A conclusion in a research paper is the final section where you summarize and wrap up your research, presenting the key findings and insights derived from your study. The research paper conclusion is not the place to introduce new information or data that was not discussed in the main body of the paper. When working on how to conclude a research paper, remember to stick to summarizing and interpreting existing content. The research paper conclusion serves the following purposes: 1

  • Warn readers of the possible consequences of not attending to the problem.
  • Recommend specific course(s) of action.
  • Restate key ideas to drive home the ultimate point of your research paper.
  • Provide a “take-home” message that you want the readers to remember about your study.

conclusion of data analysis research

Types of conclusions for research papers

In research papers, the conclusion provides closure to the reader. The type of research paper conclusion you choose depends on the nature of your study, your goals, and your target audience. I provide you with three common types of conclusions:

A summarizing conclusion is the most common type of conclusion in research papers. It involves summarizing the main points, reiterating the research question, and restating the significance of the findings. This common type of research paper conclusion is used across different disciplines.

An editorial conclusion is less common but can be used in research papers that are focused on proposing or advocating for a particular viewpoint or policy. It involves presenting a strong editorial or opinion based on the research findings and offering recommendations or calls to action.

An externalizing conclusion is a type of conclusion that extends the research beyond the scope of the paper by suggesting potential future research directions or discussing the broader implications of the findings. This type of conclusion is often used in more theoretical or exploratory research papers.

Align your conclusion’s tone with the rest of your research paper. Start Writing with Paperpal Now!  

The conclusion in a research paper serves several important purposes:

  • Offers Implications and Recommendations : Your research paper conclusion is an excellent place to discuss the broader implications of your research and suggest potential areas for further study. It’s also an opportunity to offer practical recommendations based on your findings.
  • Provides Closure : A good research paper conclusion provides a sense of closure to your paper. It should leave the reader with a feeling that they have reached the end of a well-structured and thought-provoking research project.
  • Leaves a Lasting Impression : Writing a well-crafted research paper conclusion leaves a lasting impression on your readers. It’s your final opportunity to leave them with a new idea, a call to action, or a memorable quote.

conclusion of data analysis research

Writing a strong conclusion for your research paper is essential to leave a lasting impression on your readers. Here’s a step-by-step process to help you create and know what to put in the conclusion of a research paper: 2

  • Research Statement : Begin your research paper conclusion by restating your research statement. This reminds the reader of the main point you’ve been trying to prove throughout your paper. Keep it concise and clear.
  • Key Points : Summarize the main arguments and key points you’ve made in your paper. Avoid introducing new information in the research paper conclusion. Instead, provide a concise overview of what you’ve discussed in the body of your paper.
  • Address the Research Questions : If your research paper is based on specific research questions or hypotheses, briefly address whether you’ve answered them or achieved your research goals. Discuss the significance of your findings in this context.
  • Significance : Highlight the importance of your research and its relevance in the broader context. Explain why your findings matter and how they contribute to the existing knowledge in your field.
  • Implications : Explore the practical or theoretical implications of your research. How might your findings impact future research, policy, or real-world applications? Consider the “so what?” question.
  • Future Research : Offer suggestions for future research in your area. What questions or aspects remain unanswered or warrant further investigation? This shows that your work opens the door for future exploration.
  • Closing Thought : Conclude your research paper conclusion with a thought-provoking or memorable statement. This can leave a lasting impression on your readers and wrap up your paper effectively. Avoid introducing new information or arguments here.
  • Proofread and Revise : Carefully proofread your conclusion for grammar, spelling, and clarity. Ensure that your ideas flow smoothly and that your conclusion is coherent and well-structured.

Write your research paper conclusion 2x faster with Paperpal. Try it now!

Remember that a well-crafted research paper conclusion is a reflection of the strength of your research and your ability to communicate its significance effectively. It should leave a lasting impression on your readers and tie together all the threads of your paper. Now you know how to start the conclusion of a research paper and what elements to include to make it impactful, let’s look at a research paper conclusion sample.

Summarizing ConclusionImpact of social media on adolescents’ mental healthIn conclusion, our study has shown that increased usage of social media is significantly associated with higher levels of anxiety and depression among adolescents. These findings highlight the importance of understanding the complex relationship between social media and mental health to develop effective interventions and support systems for this vulnerable population.
Editorial ConclusionEnvironmental impact of plastic wasteIn light of our research findings, it is clear that we are facing a plastic pollution crisis. To mitigate this issue, we strongly recommend a comprehensive ban on single-use plastics, increased recycling initiatives, and public awareness campaigns to change consumer behavior. The responsibility falls on governments, businesses, and individuals to take immediate actions to protect our planet and future generations.  
Externalizing ConclusionExploring applications of AI in healthcareWhile our study has provided insights into the current applications of AI in healthcare, the field is rapidly evolving. Future research should delve deeper into the ethical, legal, and social implications of AI in healthcare, as well as the long-term outcomes of AI-driven diagnostics and treatments. Furthermore, interdisciplinary collaboration between computer scientists, medical professionals, and policymakers is essential to harness the full potential of AI while addressing its challenges.

conclusion of data analysis research

How to write a research paper conclusion with Paperpal?

A research paper conclusion is not just a summary of your study, but a synthesis of the key findings that ties the research together and places it in a broader context. A research paper conclusion should be concise, typically around one paragraph in length. However, some complex topics may require a longer conclusion to ensure the reader is left with a clear understanding of the study’s significance. Paperpal, an AI writing assistant trusted by over 800,000 academics globally, can help you write a well-structured conclusion for your research paper. 

  • Sign Up or Log In: Create a new Paperpal account or login with your details.  
  • Navigate to Features : Once logged in, head over to the features’ side navigation pane. Click on Templates and you’ll find a suite of generative AI features to help you write better, faster.  
  • Generate an outline: Under Templates, select ‘Outlines’. Choose ‘Research article’ as your document type.  
  • Select your section: Since you’re focusing on the conclusion, select this section when prompted.  
  • Choose your field of study: Identifying your field of study allows Paperpal to provide more targeted suggestions, ensuring the relevance of your conclusion to your specific area of research. 
  • Provide a brief description of your study: Enter details about your research topic and findings. This information helps Paperpal generate a tailored outline that aligns with your paper’s content. 
  • Generate the conclusion outline: After entering all necessary details, click on ‘generate’. Paperpal will then create a structured outline for your conclusion, to help you start writing and build upon the outline.  
  • Write your conclusion: Use the generated outline to build your conclusion. The outline serves as a guide, ensuring you cover all critical aspects of a strong conclusion, from summarizing key findings to highlighting the research’s implications. 
  • Refine and enhance: Paperpal’s ‘Make Academic’ feature can be particularly useful in the final stages. Select any paragraph of your conclusion and use this feature to elevate the academic tone, ensuring your writing is aligned to the academic journal standards. 

By following these steps, Paperpal not only simplifies the process of writing a research paper conclusion but also ensures it is impactful, concise, and aligned with academic standards. Sign up with Paperpal today and write your research paper conclusion 2x faster .  

The research paper conclusion is a crucial part of your paper as it provides the final opportunity to leave a strong impression on your readers. In the research paper conclusion, summarize the main points of your research paper by restating your research statement, highlighting the most important findings, addressing the research questions or objectives, explaining the broader context of the study, discussing the significance of your findings, providing recommendations if applicable, and emphasizing the takeaway message. The main purpose of the conclusion is to remind the reader of the main point or argument of your paper and to provide a clear and concise summary of the key findings and their implications. All these elements should feature on your list of what to put in the conclusion of a research paper to create a strong final statement for your work.

A strong conclusion is a critical component of a research paper, as it provides an opportunity to wrap up your arguments, reiterate your main points, and leave a lasting impression on your readers. Here are the key elements of a strong research paper conclusion: 1. Conciseness : A research paper conclusion should be concise and to the point. It should not introduce new information or ideas that were not discussed in the body of the paper. 2. Summarization : The research paper conclusion should be comprehensive enough to give the reader a clear understanding of the research’s main contributions. 3 . Relevance : Ensure that the information included in the research paper conclusion is directly relevant to the research paper’s main topic and objectives; avoid unnecessary details. 4 . Connection to the Introduction : A well-structured research paper conclusion often revisits the key points made in the introduction and shows how the research has addressed the initial questions or objectives. 5. Emphasis : Highlight the significance and implications of your research. Why is your study important? What are the broader implications or applications of your findings? 6 . Call to Action : Include a call to action or a recommendation for future research or action based on your findings.

The length of a research paper conclusion can vary depending on several factors, including the overall length of the paper, the complexity of the research, and the specific journal requirements. While there is no strict rule for the length of a conclusion, but it’s generally advisable to keep it relatively short. A typical research paper conclusion might be around 5-10% of the paper’s total length. For example, if your paper is 10 pages long, the conclusion might be roughly half a page to one page in length.

In general, you do not need to include citations in the research paper conclusion. Citations are typically reserved for the body of the paper to support your arguments and provide evidence for your claims. However, there may be some exceptions to this rule: 1. If you are drawing a direct quote or paraphrasing a specific source in your research paper conclusion, you should include a citation to give proper credit to the original author. 2. If your conclusion refers to or discusses specific research, data, or sources that are crucial to the overall argument, citations can be included to reinforce your conclusion’s validity.

The conclusion of a research paper serves several important purposes: 1. Summarize the Key Points 2. Reinforce the Main Argument 3. Provide Closure 4. Offer Insights or Implications 5. Engage the Reader. 6. Reflect on Limitations

Remember that the primary purpose of the research paper conclusion is to leave a lasting impression on the reader, reinforcing the key points and providing closure to your research. It’s often the last part of the paper that the reader will see, so it should be strong and well-crafted.

  • Makar, G., Foltz, C., Lendner, M., & Vaccaro, A. R. (2018). How to write effective discussion and conclusion sections. Clinical spine surgery, 31(8), 345-346.
  • Bunton, D. (2005). The structure of PhD conclusion chapters.  Journal of English for academic purposes ,  4 (3), 207-224.

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • 5 Reasons for Rejection After Peer Review
  • Ethical Research Practices For Research with Human Subjects

7 Ways to Improve Your Academic Writing Process

  • Paraphrasing in Academic Writing: Answering Top Author Queries

Preflight For Editorial Desk: The Perfect Hybrid (AI + Human) Assistance Against Compromised Manuscripts

You may also like, how to cite in apa format (7th edition):..., how to write your research paper in apa..., how to choose a dissertation topic, how to write a phd research proposal, how to write an academic paragraph (step-by-step guide), research funding basics: what should a grant proposal..., how to write an abstract in research papers..., how to write dissertation acknowledgements, how to write the first draft of a..., mla works cited page: format, template & examples.

  • Privacy Policy

Research Method

Home » Research Paper Conclusion – Writing Guide and Examples

Research Paper Conclusion – Writing Guide and Examples

Table of Contents

Research Paper Conclusion

Research Paper Conclusion

Definition:

A research paper conclusion is the final section of a research paper that summarizes the key findings, significance, and implications of the research. It is the writer’s opportunity to synthesize the information presented in the paper, draw conclusions, and make recommendations for future research or actions.

The conclusion should provide a clear and concise summary of the research paper, reiterating the research question or problem, the main results, and the significance of the findings. It should also discuss the limitations of the study and suggest areas for further research.

Parts of Research Paper Conclusion

The parts of a research paper conclusion typically include:

Restatement of the Thesis

The conclusion should begin by restating the thesis statement from the introduction in a different way. This helps to remind the reader of the main argument or purpose of the research.

Summary of Key Findings

The conclusion should summarize the main findings of the research, highlighting the most important results and conclusions. This section should be brief and to the point.

Implications and Significance

In this section, the researcher should explain the implications and significance of the research findings. This may include discussing the potential impact on the field or industry, highlighting new insights or knowledge gained, or pointing out areas for future research.

Limitations and Recommendations

It is important to acknowledge any limitations or weaknesses of the research and to make recommendations for how these could be addressed in future studies. This shows that the researcher is aware of the potential limitations of their work and is committed to improving the quality of research in their field.

Concluding Statement

The conclusion should end with a strong concluding statement that leaves a lasting impression on the reader. This could be a call to action, a recommendation for further research, or a final thought on the topic.

How to Write Research Paper Conclusion

Here are some steps you can follow to write an effective research paper conclusion:

  • Restate the research problem or question: Begin by restating the research problem or question that you aimed to answer in your research. This will remind the reader of the purpose of your study.
  • Summarize the main points: Summarize the key findings and results of your research. This can be done by highlighting the most important aspects of your research and the evidence that supports them.
  • Discuss the implications: Discuss the implications of your findings for the research area and any potential applications of your research. You should also mention any limitations of your research that may affect the interpretation of your findings.
  • Provide a conclusion : Provide a concise conclusion that summarizes the main points of your paper and emphasizes the significance of your research. This should be a strong and clear statement that leaves a lasting impression on the reader.
  • Offer suggestions for future research: Lastly, offer suggestions for future research that could build on your findings and contribute to further advancements in the field.

Remember that the conclusion should be brief and to the point, while still effectively summarizing the key findings and implications of your research.

Example of Research Paper Conclusion

Here’s an example of a research paper conclusion:

Conclusion :

In conclusion, our study aimed to investigate the relationship between social media use and mental health among college students. Our findings suggest that there is a significant association between social media use and increased levels of anxiety and depression among college students. This highlights the need for increased awareness and education about the potential negative effects of social media use on mental health, particularly among college students.

Despite the limitations of our study, such as the small sample size and self-reported data, our findings have important implications for future research and practice. Future studies should aim to replicate our findings in larger, more diverse samples, and investigate the potential mechanisms underlying the association between social media use and mental health. In addition, interventions should be developed to promote healthy social media use among college students, such as mindfulness-based approaches and social media detox programs.

Overall, our study contributes to the growing body of research on the impact of social media on mental health, and highlights the importance of addressing this issue in the context of higher education. By raising awareness and promoting healthy social media use among college students, we can help to reduce the negative impact of social media on mental health and improve the well-being of young adults.

Purpose of Research Paper Conclusion

The purpose of a research paper conclusion is to provide a summary and synthesis of the key findings, significance, and implications of the research presented in the paper. The conclusion serves as the final opportunity for the writer to convey their message and leave a lasting impression on the reader.

The conclusion should restate the research problem or question, summarize the main results of the research, and explain their significance. It should also acknowledge the limitations of the study and suggest areas for future research or action.

Overall, the purpose of the conclusion is to provide a sense of closure to the research paper and to emphasize the importance of the research and its potential impact. It should leave the reader with a clear understanding of the main findings and why they matter. The conclusion serves as the writer’s opportunity to showcase their contribution to the field and to inspire further research and action.

When to Write Research Paper Conclusion

The conclusion of a research paper should be written after the body of the paper has been completed. It should not be written until the writer has thoroughly analyzed and interpreted their findings and has written a complete and cohesive discussion of the research.

Before writing the conclusion, the writer should review their research paper and consider the key points that they want to convey to the reader. They should also review the research question, hypotheses, and methodology to ensure that they have addressed all of the necessary components of the research.

Once the writer has a clear understanding of the main findings and their significance, they can begin writing the conclusion. The conclusion should be written in a clear and concise manner, and should reiterate the main points of the research while also providing insights and recommendations for future research or action.

Characteristics of Research Paper Conclusion

The characteristics of a research paper conclusion include:

  • Clear and concise: The conclusion should be written in a clear and concise manner, summarizing the key findings and their significance.
  • Comprehensive: The conclusion should address all of the main points of the research paper, including the research question or problem, the methodology, the main results, and their implications.
  • Future-oriented : The conclusion should provide insights and recommendations for future research or action, based on the findings of the research.
  • Impressive : The conclusion should leave a lasting impression on the reader, emphasizing the importance of the research and its potential impact.
  • Objective : The conclusion should be based on the evidence presented in the research paper, and should avoid personal biases or opinions.
  • Unique : The conclusion should be unique to the research paper and should not simply repeat information from the introduction or body of the paper.

Advantages of Research Paper Conclusion

The advantages of a research paper conclusion include:

  • Summarizing the key findings : The conclusion provides a summary of the main findings of the research, making it easier for the reader to understand the key points of the study.
  • Emphasizing the significance of the research: The conclusion emphasizes the importance of the research and its potential impact, making it more likely that readers will take the research seriously and consider its implications.
  • Providing recommendations for future research or action : The conclusion suggests practical recommendations for future research or action, based on the findings of the study.
  • Providing closure to the research paper : The conclusion provides a sense of closure to the research paper, tying together the different sections of the paper and leaving a lasting impression on the reader.
  • Demonstrating the writer’s contribution to the field : The conclusion provides the writer with an opportunity to showcase their contribution to the field and to inspire further research and action.

Limitations of Research Paper Conclusion

While the conclusion of a research paper has many advantages, it also has some limitations that should be considered, including:

  • I nability to address all aspects of the research: Due to the limited space available in the conclusion, it may not be possible to address all aspects of the research in detail.
  • Subjectivity : While the conclusion should be objective, it may be influenced by the writer’s personal biases or opinions.
  • Lack of new information: The conclusion should not introduce new information that has not been discussed in the body of the research paper.
  • Lack of generalizability: The conclusions drawn from the research may not be applicable to other contexts or populations, limiting the generalizability of the study.
  • Misinterpretation by the reader: The reader may misinterpret the conclusions drawn from the research, leading to a misunderstanding of the findings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Outline

Research Paper Outline – Types, Example, Template

Research Process

Research Process – Steps, Examples and Tips

How to Publish a Research Paper

How to Publish a Research Paper – Step by Step...

Research Recommendations

Research Recommendations – Examples and Writing...

Delimitations

Delimitations in Research – Types, Examples and...

Future Research

Future Research – Thesis Guide

PW Skills | Blog

Data Analysis Techniques in Research – Methods, Tools & Examples

' src=

Varun Saharawat is a seasoned professional in the fields of SEO and content writing. With a profound knowledge of the intricate aspects of these disciplines, Varun has established himself as a valuable asset in the world of digital marketing and online content creation.

Data analysis techniques in research are essential because they allow researchers to derive meaningful insights from data sets to support their hypotheses or research objectives.

data analysis techniques in research

Data Analysis Techniques in Research : While various groups, institutions, and professionals may have diverse approaches to data analysis, a universal definition captures its essence. Data analysis involves refining, transforming, and interpreting raw data to derive actionable insights that guide informed decision-making for businesses.

A straightforward illustration of data analysis emerges when we make everyday decisions, basing our choices on past experiences or predictions of potential outcomes.

If you want to learn more about this topic and acquire valuable skills that will set you apart in today’s data-driven world, we highly recommend enrolling in the Data Analytics Course by Physics Wallah . And as a special offer for our readers, use the coupon code “READER” to get a discount on this course.

Table of Contents

What is Data Analysis?

Data analysis is the systematic process of inspecting, cleaning, transforming, and interpreting data with the objective of discovering valuable insights and drawing meaningful conclusions. This process involves several steps:

  • Inspecting : Initial examination of data to understand its structure, quality, and completeness.
  • Cleaning : Removing errors, inconsistencies, or irrelevant information to ensure accurate analysis.
  • Transforming : Converting data into a format suitable for analysis, such as normalization or aggregation.
  • Interpreting : Analyzing the transformed data to identify patterns, trends, and relationships.

Types of Data Analysis Techniques in Research

Data analysis techniques in research are categorized into qualitative and quantitative methods, each with its specific approaches and tools. These techniques are instrumental in extracting meaningful insights, patterns, and relationships from data to support informed decision-making, validate hypotheses, and derive actionable recommendations. Below is an in-depth exploration of the various types of data analysis techniques commonly employed in research:

1) Qualitative Analysis:

Definition: Qualitative analysis focuses on understanding non-numerical data, such as opinions, concepts, or experiences, to derive insights into human behavior, attitudes, and perceptions.

  • Content Analysis: Examines textual data, such as interview transcripts, articles, or open-ended survey responses, to identify themes, patterns, or trends.
  • Narrative Analysis: Analyzes personal stories or narratives to understand individuals’ experiences, emotions, or perspectives.
  • Ethnographic Studies: Involves observing and analyzing cultural practices, behaviors, and norms within specific communities or settings.

2) Quantitative Analysis:

Quantitative analysis emphasizes numerical data and employs statistical methods to explore relationships, patterns, and trends. It encompasses several approaches:

Descriptive Analysis:

  • Frequency Distribution: Represents the number of occurrences of distinct values within a dataset.
  • Central Tendency: Measures such as mean, median, and mode provide insights into the central values of a dataset.
  • Dispersion: Techniques like variance and standard deviation indicate the spread or variability of data.

Diagnostic Analysis:

  • Regression Analysis: Assesses the relationship between dependent and independent variables, enabling prediction or understanding causality.
  • ANOVA (Analysis of Variance): Examines differences between groups to identify significant variations or effects.

Predictive Analysis:

  • Time Series Forecasting: Uses historical data points to predict future trends or outcomes.
  • Machine Learning Algorithms: Techniques like decision trees, random forests, and neural networks predict outcomes based on patterns in data.

Prescriptive Analysis:

  • Optimization Models: Utilizes linear programming, integer programming, or other optimization techniques to identify the best solutions or strategies.
  • Simulation: Mimics real-world scenarios to evaluate various strategies or decisions and determine optimal outcomes.

Specific Techniques:

  • Monte Carlo Simulation: Models probabilistic outcomes to assess risk and uncertainty.
  • Factor Analysis: Reduces the dimensionality of data by identifying underlying factors or components.
  • Cohort Analysis: Studies specific groups or cohorts over time to understand trends, behaviors, or patterns within these groups.
  • Cluster Analysis: Classifies objects or individuals into homogeneous groups or clusters based on similarities or attributes.
  • Sentiment Analysis: Uses natural language processing and machine learning techniques to determine sentiment, emotions, or opinions from textual data.

Also Read: AI and Predictive Analytics: Examples, Tools, Uses, Ai Vs Predictive Analytics

Data Analysis Techniques in Research Examples

To provide a clearer understanding of how data analysis techniques are applied in research, let’s consider a hypothetical research study focused on evaluating the impact of online learning platforms on students’ academic performance.

Research Objective:

Determine if students using online learning platforms achieve higher academic performance compared to those relying solely on traditional classroom instruction.

Data Collection:

  • Quantitative Data: Academic scores (grades) of students using online platforms and those using traditional classroom methods.
  • Qualitative Data: Feedback from students regarding their learning experiences, challenges faced, and preferences.

Data Analysis Techniques Applied:

1) Descriptive Analysis:

  • Calculate the mean, median, and mode of academic scores for both groups.
  • Create frequency distributions to represent the distribution of grades in each group.

2) Diagnostic Analysis:

  • Conduct an Analysis of Variance (ANOVA) to determine if there’s a statistically significant difference in academic scores between the two groups.
  • Perform Regression Analysis to assess the relationship between the time spent on online platforms and academic performance.

3) Predictive Analysis:

  • Utilize Time Series Forecasting to predict future academic performance trends based on historical data.
  • Implement Machine Learning algorithms to develop a predictive model that identifies factors contributing to academic success on online platforms.

4) Prescriptive Analysis:

  • Apply Optimization Models to identify the optimal combination of online learning resources (e.g., video lectures, interactive quizzes) that maximize academic performance.
  • Use Simulation Techniques to evaluate different scenarios, such as varying student engagement levels with online resources, to determine the most effective strategies for improving learning outcomes.

5) Specific Techniques:

  • Conduct Factor Analysis on qualitative feedback to identify common themes or factors influencing students’ perceptions and experiences with online learning.
  • Perform Cluster Analysis to segment students based on their engagement levels, preferences, or academic outcomes, enabling targeted interventions or personalized learning strategies.
  • Apply Sentiment Analysis on textual feedback to categorize students’ sentiments as positive, negative, or neutral regarding online learning experiences.

By applying a combination of qualitative and quantitative data analysis techniques, this research example aims to provide comprehensive insights into the effectiveness of online learning platforms.

Also Read: Learning Path to Become a Data Analyst in 2024

Data Analysis Techniques in Quantitative Research

Quantitative research involves collecting numerical data to examine relationships, test hypotheses, and make predictions. Various data analysis techniques are employed to interpret and draw conclusions from quantitative data. Here are some key data analysis techniques commonly used in quantitative research:

1) Descriptive Statistics:

  • Description: Descriptive statistics are used to summarize and describe the main aspects of a dataset, such as central tendency (mean, median, mode), variability (range, variance, standard deviation), and distribution (skewness, kurtosis).
  • Applications: Summarizing data, identifying patterns, and providing initial insights into the dataset.

2) Inferential Statistics:

  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. This technique includes hypothesis testing, confidence intervals, t-tests, chi-square tests, analysis of variance (ANOVA), regression analysis, and correlation analysis.
  • Applications: Testing hypotheses, making predictions, and generalizing findings from a sample to a larger population.

3) Regression Analysis:

  • Description: Regression analysis is a statistical technique used to model and examine the relationship between a dependent variable and one or more independent variables. Linear regression, multiple regression, logistic regression, and nonlinear regression are common types of regression analysis .
  • Applications: Predicting outcomes, identifying relationships between variables, and understanding the impact of independent variables on the dependent variable.

4) Correlation Analysis:

  • Description: Correlation analysis is used to measure and assess the strength and direction of the relationship between two or more variables. The Pearson correlation coefficient, Spearman rank correlation coefficient, and Kendall’s tau are commonly used measures of correlation.
  • Applications: Identifying associations between variables and assessing the degree and nature of the relationship.

5) Factor Analysis:

  • Description: Factor analysis is a multivariate statistical technique used to identify and analyze underlying relationships or factors among a set of observed variables. It helps in reducing the dimensionality of data and identifying latent variables or constructs.
  • Applications: Identifying underlying factors or constructs, simplifying data structures, and understanding the underlying relationships among variables.

6) Time Series Analysis:

  • Description: Time series analysis involves analyzing data collected or recorded over a specific period at regular intervals to identify patterns, trends, and seasonality. Techniques such as moving averages, exponential smoothing, autoregressive integrated moving average (ARIMA), and Fourier analysis are used.
  • Applications: Forecasting future trends, analyzing seasonal patterns, and understanding time-dependent relationships in data.

7) ANOVA (Analysis of Variance):

  • Description: Analysis of variance (ANOVA) is a statistical technique used to analyze and compare the means of two or more groups or treatments to determine if they are statistically different from each other. One-way ANOVA, two-way ANOVA, and MANOVA (Multivariate Analysis of Variance) are common types of ANOVA.
  • Applications: Comparing group means, testing hypotheses, and determining the effects of categorical independent variables on a continuous dependent variable.

8) Chi-Square Tests:

  • Description: Chi-square tests are non-parametric statistical tests used to assess the association between categorical variables in a contingency table. The Chi-square test of independence, goodness-of-fit test, and test of homogeneity are common chi-square tests.
  • Applications: Testing relationships between categorical variables, assessing goodness-of-fit, and evaluating independence.

These quantitative data analysis techniques provide researchers with valuable tools and methods to analyze, interpret, and derive meaningful insights from numerical data. The selection of a specific technique often depends on the research objectives, the nature of the data, and the underlying assumptions of the statistical methods being used.

Also Read: Analysis vs. Analytics: How Are They Different?

Data Analysis Methods

Data analysis methods refer to the techniques and procedures used to analyze, interpret, and draw conclusions from data. These methods are essential for transforming raw data into meaningful insights, facilitating decision-making processes, and driving strategies across various fields. Here are some common data analysis methods:

  • Description: Descriptive statistics summarize and organize data to provide a clear and concise overview of the dataset. Measures such as mean, median, mode, range, variance, and standard deviation are commonly used.
  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. Techniques such as hypothesis testing, confidence intervals, and regression analysis are used.

3) Exploratory Data Analysis (EDA):

  • Description: EDA techniques involve visually exploring and analyzing data to discover patterns, relationships, anomalies, and insights. Methods such as scatter plots, histograms, box plots, and correlation matrices are utilized.
  • Applications: Identifying trends, patterns, outliers, and relationships within the dataset.

4) Predictive Analytics:

  • Description: Predictive analytics use statistical algorithms and machine learning techniques to analyze historical data and make predictions about future events or outcomes. Techniques such as regression analysis, time series forecasting, and machine learning algorithms (e.g., decision trees, random forests, neural networks) are employed.
  • Applications: Forecasting future trends, predicting outcomes, and identifying potential risks or opportunities.

5) Prescriptive Analytics:

  • Description: Prescriptive analytics involve analyzing data to recommend actions or strategies that optimize specific objectives or outcomes. Optimization techniques, simulation models, and decision-making algorithms are utilized.
  • Applications: Recommending optimal strategies, decision-making support, and resource allocation.

6) Qualitative Data Analysis:

  • Description: Qualitative data analysis involves analyzing non-numerical data, such as text, images, videos, or audio, to identify themes, patterns, and insights. Methods such as content analysis, thematic analysis, and narrative analysis are used.
  • Applications: Understanding human behavior, attitudes, perceptions, and experiences.

7) Big Data Analytics:

  • Description: Big data analytics methods are designed to analyze large volumes of structured and unstructured data to extract valuable insights. Technologies such as Hadoop, Spark, and NoSQL databases are used to process and analyze big data.
  • Applications: Analyzing large datasets, identifying trends, patterns, and insights from big data sources.

8) Text Analytics:

  • Description: Text analytics methods involve analyzing textual data, such as customer reviews, social media posts, emails, and documents, to extract meaningful information and insights. Techniques such as sentiment analysis, text mining, and natural language processing (NLP) are used.
  • Applications: Analyzing customer feedback, monitoring brand reputation, and extracting insights from textual data sources.

These data analysis methods are instrumental in transforming data into actionable insights, informing decision-making processes, and driving organizational success across various sectors, including business, healthcare, finance, marketing, and research. The selection of a specific method often depends on the nature of the data, the research objectives, and the analytical requirements of the project or organization.

Also Read: Quantitative Data Analysis: Types, Analysis & Examples

Data Analysis Tools

Data analysis tools are essential instruments that facilitate the process of examining, cleaning, transforming, and modeling data to uncover useful information, make informed decisions, and drive strategies. Here are some prominent data analysis tools widely used across various industries:

1) Microsoft Excel:

  • Description: A spreadsheet software that offers basic to advanced data analysis features, including pivot tables, data visualization tools, and statistical functions.
  • Applications: Data cleaning, basic statistical analysis, visualization, and reporting.

2) R Programming Language :

  • Description: An open-source programming language specifically designed for statistical computing and data visualization.
  • Applications: Advanced statistical analysis, data manipulation, visualization, and machine learning.

3) Python (with Libraries like Pandas, NumPy, Matplotlib, and Seaborn):

  • Description: A versatile programming language with libraries that support data manipulation, analysis, and visualization.
  • Applications: Data cleaning, statistical analysis, machine learning, and data visualization.

4) SPSS (Statistical Package for the Social Sciences):

  • Description: A comprehensive statistical software suite used for data analysis, data mining, and predictive analytics.
  • Applications: Descriptive statistics, hypothesis testing, regression analysis, and advanced analytics.

5) SAS (Statistical Analysis System):

  • Description: A software suite used for advanced analytics, multivariate analysis, and predictive modeling.
  • Applications: Data management, statistical analysis, predictive modeling, and business intelligence.

6) Tableau:

  • Description: A data visualization tool that allows users to create interactive and shareable dashboards and reports.
  • Applications: Data visualization , business intelligence , and interactive dashboard creation.

7) Power BI:

  • Description: A business analytics tool developed by Microsoft that provides interactive visualizations and business intelligence capabilities.
  • Applications: Data visualization, business intelligence, reporting, and dashboard creation.

8) SQL (Structured Query Language) Databases (e.g., MySQL, PostgreSQL, Microsoft SQL Server):

  • Description: Database management systems that support data storage, retrieval, and manipulation using SQL queries.
  • Applications: Data retrieval, data cleaning, data transformation, and database management.

9) Apache Spark:

  • Description: A fast and general-purpose distributed computing system designed for big data processing and analytics.
  • Applications: Big data processing, machine learning, data streaming, and real-time analytics.

10) IBM SPSS Modeler:

  • Description: A data mining software application used for building predictive models and conducting advanced analytics.
  • Applications: Predictive modeling, data mining, statistical analysis, and decision optimization.

These tools serve various purposes and cater to different data analysis needs, from basic statistical analysis and data visualization to advanced analytics, machine learning, and big data processing. The choice of a specific tool often depends on the nature of the data, the complexity of the analysis, and the specific requirements of the project or organization.

Also Read: How to Analyze Survey Data: Methods & Examples

Importance of Data Analysis in Research

The importance of data analysis in research cannot be overstated; it serves as the backbone of any scientific investigation or study. Here are several key reasons why data analysis is crucial in the research process:

  • Data analysis helps ensure that the results obtained are valid and reliable. By systematically examining the data, researchers can identify any inconsistencies or anomalies that may affect the credibility of the findings.
  • Effective data analysis provides researchers with the necessary information to make informed decisions. By interpreting the collected data, researchers can draw conclusions, make predictions, or formulate recommendations based on evidence rather than intuition or guesswork.
  • Data analysis allows researchers to identify patterns, trends, and relationships within the data. This can lead to a deeper understanding of the research topic, enabling researchers to uncover insights that may not be immediately apparent.
  • In empirical research, data analysis plays a critical role in testing hypotheses. Researchers collect data to either support or refute their hypotheses, and data analysis provides the tools and techniques to evaluate these hypotheses rigorously.
  • Transparent and well-executed data analysis enhances the credibility of research findings. By clearly documenting the data analysis methods and procedures, researchers allow others to replicate the study, thereby contributing to the reproducibility of research findings.
  • In fields such as business or healthcare, data analysis helps organizations allocate resources more efficiently. By analyzing data on consumer behavior, market trends, or patient outcomes, organizations can make strategic decisions about resource allocation, budgeting, and planning.
  • In public policy and social sciences, data analysis is instrumental in developing and evaluating policies and interventions. By analyzing data on social, economic, or environmental factors, policymakers can assess the effectiveness of existing policies and inform the development of new ones.
  • Data analysis allows for continuous improvement in research methods and practices. By analyzing past research projects, identifying areas for improvement, and implementing changes based on data-driven insights, researchers can refine their approaches and enhance the quality of future research endeavors.

However, it is important to remember that mastering these techniques requires practice and continuous learning. That’s why we highly recommend the Data Analytics Course by Physics Wallah . Not only does it cover all the fundamentals of data analysis, but it also provides hands-on experience with various tools such as Excel, Python, and Tableau. Plus, if you use the “ READER ” coupon code at checkout, you can get a special discount on the course.

For Latest Tech Related Information, Join Our Official Free Telegram Group : PW Skills Telegram Group

Data Analysis Techniques in Research FAQs

What are the 5 techniques for data analysis.

The five techniques for data analysis include: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis Qualitative Analysis

What are techniques of data analysis in research?

Techniques of data analysis in research encompass both qualitative and quantitative methods. These techniques involve processes like summarizing raw data, investigating causes of events, forecasting future outcomes, offering recommendations based on predictions, and examining non-numerical data to understand concepts or experiences.

What are the 3 methods of data analysis?

The three primary methods of data analysis are: Qualitative Analysis Quantitative Analysis Mixed-Methods Analysis

What are the four types of data analysis techniques?

The four types of data analysis techniques are: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis

  • 10 Best Companies For Data Analysis Internships 2024

data analysis internship

This article will help you provide the top 10 best companies for a Data Analysis Internship which will not only…

  • Top Best Big Data Analytics Classes 2024

big data analytics classes

Many websites and institutions provide online remote big data analytics classes to help you learn and also earn certifications for…

  • Data Analyst Roadmap 2024: Responsibilities, Skills Required, Career Path

conclusion of data analysis research

Data Analyst Roadmap: The field of data analysis is booming and is very rewarding for those with the right skills.…

right adv

Related Articles

  • The Best Data And Analytics Courses For Beginners
  • Best Courses For Data Analytics: Top 10 Courses For Your Career in Trend
  • BI & Analytics: What’s The Difference?
  • Predictive Analysis: Predicting the Future with Data
  • Graph Analytics – What Is it and Why Does It Matter?
  • How to Analysis of Survey Data: Methods & Examples
  • SQL For Data Analytics: A Comprehensive Guide

bottom banner

IMAGES

  1. How to Write a Research Paper Conclusion: Tips & Examples

    conclusion of data analysis research

  2. Basics of Data Analysis

    conclusion of data analysis research

  3. PPT

    conclusion of data analysis research

  4. Quantitative Data Analysis

    conclusion of data analysis research

  5. SOLUTION: Analyzing the meaning of the data and drawing conclusions

    conclusion of data analysis research

  6. PPT

    conclusion of data analysis research

VIDEO

  1. Research Design: Decide on your Data Analysis Strategy

  2. Types of Qualitative Data Analysis [Purposes, Steps, Example]

  3. Fundamentals of Qualitative Research Methods: Data Analysis (Module 5)

  4. A Beginners Guide To The Data Analysis Process

  5. Research Design: Decide on your Data Analysis Strategy

  6. LESSON 72

COMMENTS

  1. Writing a Research Paper Conclusion

    Writing a Research Paper Conclusion | Step-by-Step Guide

  2. Data Analysis

    Data Analysis. Definition: Data analysis refers to the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. It involves applying various statistical and computational techniques to interpret and derive insights from large datasets.

  3. A practical guide to data analysis in general literature reviews

    A practical guide to data analysis in general literature reviews

  4. 74 Drawing Conclusions From Your Data

    74. Drawing Conclusions From Your Data

  5. 11 Conclusions

    Assertions of knowledge require control over errors, and a major part of the challenge of massive data analysis is that of de-. Page 162. Suggested Citation: "11 Conclusions." National Research Council. 2013. Frontiers in Massive Data Analysis. Washington, DC: The National Academies Press. doi: 10.17226/18374. ×. Save.

  6. An Overview of Data Analysis and Interpretations in Research

    (PDF) An Overview of Data Analysis and Interpretations in ...

  7. Introduction to Research Statistical Analysis: An Overview of the

    Introduction. Statistical analysis is necessary for any research project seeking to make quantitative conclusions. The following is a primer for research-based statistical analysis. It is intended to be a high-level overview of appropriate statistical testing, while not diving too deep into any specific methodology.

  8. PDF 12 Qualitative Data, Analysis, and Design

    Qualitative Data, Analysis, and Design

  9. The Power of Data Analysis in Research

    Data analysis illuminates patterns, trends, and relationships within the data and plays a pivotal role in shaping the outcomes and conclusions of research. In the sections below, we'll look at different data analysis methods, popular tools researchers use today, and how to make the most of your data. On this page:

  10. Analysing and Interpreting Data in Your ...

    Choosing the appropriate analysis methods that align with your research questions and data types ensures accurate and valid conclusions. Preparing your data through thorough cleaning and organization is the first step toward reliable analysis, whether dealing with missing data, outliers, or coding qualitative data.

  11. (PDF) Qualitative Data Analysis and Interpretation: Systematic Search

    Qualitative data analysis is. concerned with transforming raw data by searching, evaluating, recogni sing, cod ing, mapping, exploring and describing patterns, trends, themes an d categories in ...

  12. PDF Data Analysis for Scientific Research

    • Very likely, your research will involve data collection and analysis in order to test your hypothesis. • Data is a universal language allowing scientists to work together no matter where they are and when do they live. • Without careful data analysis to back up your conclusions, the results of your scientific research won't be taken

  13. Basic statistical tools in research and data analysis

    Basic statistical tools in research and data analysis - PMC

  14. The Beginner's Guide to Statistical Analysis

    The Beginner's Guide to Statistical Analysis | 5 Steps & ...

  15. How to Write a Conclusion for Research Papers (with Examples)

    How to Write the Conclusion in Research Papers ...

  16. Learning to Do Qualitative Data Analysis: A Starting Point

    Learning to Do Qualitative Data Analysis: A Starting Point

  17. Qualitative Data Analysis for Health Research: A Step-by-Step Example

    This methodological discussion paper describes data analysis in hermeneutic interpretive phenomenology. Data management strategies (transcript preparation, coding, philosophy application, tabling/concept maps, and Microsoft Word) and data analysis processes (reduction, display, and conclusion drawing/verification) are illustrated.

  18. Research Paper Conclusion

    Here are some steps you can follow to write an effective research paper conclusion: Restate the research problem or question: Begin by restating the research problem or question that you aimed to answer in your research. This will remind the reader of the purpose of your study. Summarize the main points: Summarize the key findings and results ...

  19. Data Analysis Techniques in Research

    Data Analysis Techniques In Research - Methods, Tools & ...

  20. PDF Chapter 6: Data Analysis and Interpretation 6.1. Introduction

    CHAPTER 6: DATA ANALYSIS AND INTERPRETATION 357 The results of qualitative data analysis guide subsequent data collection, and analysis is thus a less-distinct final stage of the research process than quantitative analysis, where data analysis does not begin until all data have been collected and condensed into numbers;

  21. Research Guide: Data analysis and reporting findings

    Research Guide: Data analysis and reporting findings