• Privacy Policy

Research Method

Home » Research Questions – Types, Examples and Writing Guide

Research Questions – Types, Examples and Writing Guide

Table of Contents

Research Questions

Research Questions


Research questions are the specific questions that guide a research study or inquiry. These questions help to define the scope of the research and provide a clear focus for the study. Research questions are usually developed at the beginning of a research project and are designed to address a particular research problem or objective.

Types of Research Questions

Types of Research Questions are as follows:

Descriptive Research Questions

These aim to describe a particular phenomenon, group, or situation. For example:

  • What are the characteristics of the target population?
  • What is the prevalence of a particular disease in a specific region?

Exploratory Research Questions

These aim to explore a new area of research or generate new ideas or hypotheses. For example:

  • What are the potential causes of a particular phenomenon?
  • What are the possible outcomes of a specific intervention?

Explanatory Research Questions

These aim to understand the relationship between two or more variables or to explain why a particular phenomenon occurs. For example:

  • What is the effect of a specific drug on the symptoms of a particular disease?
  • What are the factors that contribute to employee turnover in a particular industry?

Predictive Research Questions

These aim to predict a future outcome or trend based on existing data or trends. For example :

  • What will be the future demand for a particular product or service?
  • What will be the future prevalence of a particular disease?

Evaluative Research Questions

These aim to evaluate the effectiveness of a particular intervention or program. For example:

  • What is the impact of a specific educational program on student learning outcomes?
  • What is the effectiveness of a particular policy or program in achieving its intended goals?

How to Choose Research Questions

Choosing research questions is an essential part of the research process and involves careful consideration of the research problem, objectives, and design. Here are some steps to consider when choosing research questions:

  • Identify the research problem: Start by identifying the problem or issue that you want to study. This could be a gap in the literature, a social or economic issue, or a practical problem that needs to be addressed.
  • Conduct a literature review: Conducting a literature review can help you identify existing research in your area of interest and can help you formulate research questions that address gaps or limitations in the existing literature.
  • Define the research objectives : Clearly define the objectives of your research. What do you want to achieve with your study? What specific questions do you want to answer?
  • Consider the research design : Consider the research design that you plan to use. This will help you determine the appropriate types of research questions to ask. For example, if you plan to use a qualitative approach, you may want to focus on exploratory or descriptive research questions.
  • Ensure that the research questions are clear and answerable: Your research questions should be clear and specific, and should be answerable with the data that you plan to collect. Avoid asking questions that are too broad or vague.
  • Get feedback : Get feedback from your supervisor, colleagues, or peers to ensure that your research questions are relevant, feasible, and meaningful.

How to Write Research Questions

Guide for Writing Research Questions:

  • Start with a clear statement of the research problem: Begin by stating the problem or issue that your research aims to address. This will help you to formulate focused research questions.
  • Use clear language : Write your research questions in clear and concise language that is easy to understand. Avoid using jargon or technical terms that may be unfamiliar to your readers.
  • Be specific: Your research questions should be specific and focused. Avoid broad questions that are difficult to answer. For example, instead of asking “What is the impact of climate change on the environment?” ask “What are the effects of rising sea levels on coastal ecosystems?”
  • Use appropriate question types: Choose the appropriate question types based on the research design and objectives. For example, if you are conducting a qualitative study, you may want to use open-ended questions that allow participants to provide detailed responses.
  • Consider the feasibility of your questions : Ensure that your research questions are feasible and can be answered with the resources available. Consider the data sources and methods of data collection when writing your questions.
  • Seek feedback: Get feedback from your supervisor, colleagues, or peers to ensure that your research questions are relevant, appropriate, and meaningful.

Examples of Research Questions

Some Examples of Research Questions with Research Titles:

Research Title: The Impact of Social Media on Mental Health

  • Research Question : What is the relationship between social media use and mental health, and how does this impact individuals’ well-being?

Research Title: Factors Influencing Academic Success in High School

  • Research Question: What are the primary factors that influence academic success in high school, and how do they contribute to student achievement?

Research Title: The Effects of Exercise on Physical and Mental Health

  • Research Question: What is the relationship between exercise and physical and mental health, and how can exercise be used as a tool to improve overall well-being?

Research Title: Understanding the Factors that Influence Consumer Purchasing Decisions

  • Research Question : What are the key factors that influence consumer purchasing decisions, and how do these factors vary across different demographics and products?

Research Title: The Impact of Technology on Communication

  • Research Question : How has technology impacted communication patterns, and what are the effects of these changes on interpersonal relationships and society as a whole?

Research Title: Investigating the Relationship between Parenting Styles and Child Development

  • Research Question: What is the relationship between different parenting styles and child development outcomes, and how do these outcomes vary across different ages and developmental stages?

Research Title: The Effectiveness of Cognitive-Behavioral Therapy in Treating Anxiety Disorders

  • Research Question: How effective is cognitive-behavioral therapy in treating anxiety disorders, and what factors contribute to its success or failure in different patients?

Research Title: The Impact of Climate Change on Biodiversity

  • Research Question : How is climate change affecting global biodiversity, and what can be done to mitigate the negative effects on natural ecosystems?

Research Title: Exploring the Relationship between Cultural Diversity and Workplace Productivity

  • Research Question : How does cultural diversity impact workplace productivity, and what strategies can be employed to maximize the benefits of a diverse workforce?

Research Title: The Role of Artificial Intelligence in Healthcare

  • Research Question: How can artificial intelligence be leveraged to improve healthcare outcomes, and what are the potential risks and ethical concerns associated with its use?

Applications of Research Questions

Here are some of the key applications of research questions:

  • Defining the scope of the study : Research questions help researchers to narrow down the scope of their study and identify the specific issues they want to investigate.
  • Developing hypotheses: Research questions often lead to the development of hypotheses, which are testable predictions about the relationship between variables. Hypotheses provide a clear and focused direction for the study.
  • Designing the study : Research questions guide the design of the study, including the selection of participants, the collection of data, and the analysis of results.
  • Collecting data : Research questions inform the selection of appropriate methods for collecting data, such as surveys, interviews, or experiments.
  • Analyzing data : Research questions guide the analysis of data, including the selection of appropriate statistical tests and the interpretation of results.
  • Communicating results : Research questions help researchers to communicate the results of their study in a clear and concise manner. The research questions provide a framework for discussing the findings and drawing conclusions.

Characteristics of Research Questions

Characteristics of Research Questions are as follows:

  • Clear and Specific : A good research question should be clear and specific. It should clearly state what the research is trying to investigate and what kind of data is required.
  • Relevant : The research question should be relevant to the study and should address a current issue or problem in the field of research.
  • Testable : The research question should be testable through empirical evidence. It should be possible to collect data to answer the research question.
  • Concise : The research question should be concise and focused. It should not be too broad or too narrow.
  • Feasible : The research question should be feasible to answer within the constraints of the research design, time frame, and available resources.
  • Original : The research question should be original and should contribute to the existing knowledge in the field of research.
  • Significant : The research question should have significance and importance to the field of research. It should have the potential to provide new insights and knowledge to the field.
  • Ethical : The research question should be ethical and should not cause harm to any individuals or groups involved in the study.

Purpose of Research Questions

Research questions are the foundation of any research study as they guide the research process and provide a clear direction to the researcher. The purpose of research questions is to identify the scope and boundaries of the study, and to establish the goals and objectives of the research.

The main purpose of research questions is to help the researcher to focus on the specific area or problem that needs to be investigated. They enable the researcher to develop a research design, select the appropriate methods and tools for data collection and analysis, and to organize the results in a meaningful way.

Research questions also help to establish the relevance and significance of the study. They define the research problem, and determine the research methodology that will be used to address the problem. Research questions also help to determine the type of data that will be collected, and how it will be analyzed and interpreted.

Finally, research questions provide a framework for evaluating the results of the research. They help to establish the validity and reliability of the data, and provide a basis for drawing conclusions and making recommendations based on the findings of the study.

Advantages of Research Questions

There are several advantages of research questions in the research process, including:

  • Focus : Research questions help to focus the research by providing a clear direction for the study. They define the specific area of investigation and provide a framework for the research design.
  • Clarity : Research questions help to clarify the purpose and objectives of the study, which can make it easier for the researcher to communicate the research aims to others.
  • Relevance : Research questions help to ensure that the study is relevant and meaningful. By asking relevant and important questions, the researcher can ensure that the study will contribute to the existing body of knowledge and address important issues.
  • Consistency : Research questions help to ensure consistency in the research process by providing a framework for the development of the research design, data collection, and analysis.
  • Measurability : Research questions help to ensure that the study is measurable by defining the specific variables and outcomes that will be measured.
  • Replication : Research questions help to ensure that the study can be replicated by providing a clear and detailed description of the research aims, methods, and outcomes. This makes it easier for other researchers to replicate the study and verify the results.

Limitations of Research Questions

Limitations of Research Questions are as follows:

  • Subjectivity : Research questions are often subjective and can be influenced by personal biases and perspectives of the researcher. This can lead to a limited understanding of the research problem and may affect the validity and reliability of the study.
  • Inadequate scope : Research questions that are too narrow in scope may limit the breadth of the study, while questions that are too broad may make it difficult to focus on specific research objectives.
  • Unanswerable questions : Some research questions may not be answerable due to the lack of available data or limitations in research methods. In such cases, the research question may need to be rephrased or modified to make it more answerable.
  • Lack of clarity : Research questions that are poorly worded or ambiguous can lead to confusion and misinterpretation. This can result in incomplete or inaccurate data, which may compromise the validity of the study.
  • Difficulty in measuring variables : Some research questions may involve variables that are difficult to measure or quantify, making it challenging to draw meaningful conclusions from the data.
  • Lack of generalizability: Research questions that are too specific or limited in scope may not be generalizable to other contexts or populations. This can limit the applicability of the study’s findings and restrict its broader implications.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples


Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

Grad Coach

Research Question Examples 🧑🏻‍🏫

25+ Practical Examples & Ideas To Help You Get Started 

By: Derek Jansen (MBA) | October 2023

A well-crafted research question (or set of questions) sets the stage for a robust study and meaningful insights.  But, if you’re new to research, it’s not always clear what exactly constitutes a good research question. In this post, we’ll provide you with clear examples of quality research questions across various disciplines, so that you can approach your research project with confidence!

Research Question Examples

  • Psychology research questions
  • Business research questions
  • Education research questions
  • Healthcare research questions
  • Computer science research questions

Examples: Psychology

Let’s start by looking at some examples of research questions that you might encounter within the discipline of psychology.

How does sleep quality affect academic performance in university students?

This question is specific to a population (university students) and looks at a direct relationship between sleep and academic performance, both of which are quantifiable and measurable variables.

What factors contribute to the onset of anxiety disorders in adolescents?

The question narrows down the age group and focuses on identifying multiple contributing factors. There are various ways in which it could be approached from a methodological standpoint, including both qualitatively and quantitatively.

Do mindfulness techniques improve emotional well-being?

This is a focused research question aiming to evaluate the effectiveness of a specific intervention.

How does early childhood trauma impact adult relationships?

This research question targets a clear cause-and-effect relationship over a long timescale, making it focused but comprehensive.

Is there a correlation between screen time and depression in teenagers?

This research question focuses on an in-demand current issue and a specific demographic, allowing for a focused investigation. The key variables are clearly stated within the question and can be measured and analysed (i.e., high feasibility).

Free Webinar: How To Find A Dissertation Research Topic

Examples: Business/Management

Next, let’s look at some examples of well-articulated research questions within the business and management realm.

How do leadership styles impact employee retention?

This is an example of a strong research question because it directly looks at the effect of one variable (leadership styles) on another (employee retention), allowing from a strongly aligned methodological approach.

What role does corporate social responsibility play in consumer choice?

Current and precise, this research question can reveal how social concerns are influencing buying behaviour by way of a qualitative exploration.

Does remote work increase or decrease productivity in tech companies?

Focused on a particular industry and a hot topic, this research question could yield timely, actionable insights that would have high practical value in the real world.

How do economic downturns affect small businesses in the homebuilding industry?

Vital for policy-making, this highly specific research question aims to uncover the challenges faced by small businesses within a certain industry.

Which employee benefits have the greatest impact on job satisfaction?

By being straightforward and specific, answering this research question could provide tangible insights to employers.

Examples: Education

Next, let’s look at some potential research questions within the education, training and development domain.

How does class size affect students’ academic performance in primary schools?

This example research question targets two clearly defined variables, which can be measured and analysed relatively easily.

Do online courses result in better retention of material than traditional courses?

Timely, specific and focused, answering this research question can help inform educational policy and personal choices about learning formats.

What impact do US public school lunches have on student health?

Targeting a specific, well-defined context, the research could lead to direct changes in public health policies.

To what degree does parental involvement improve academic outcomes in secondary education in the Midwest?

This research question focuses on a specific context (secondary education in the Midwest) and has clearly defined constructs.

What are the negative effects of standardised tests on student learning within Oklahoma primary schools?

This research question has a clear focus (negative outcomes) and is narrowed into a very specific context.

Need a helping hand?

example of research questions in experimental research

Examples: Healthcare

Shifting to a different field, let’s look at some examples of research questions within the healthcare space.

What are the most effective treatments for chronic back pain amongst UK senior males?

Specific and solution-oriented, this research question focuses on clear variables and a well-defined context (senior males within the UK).

How do different healthcare policies affect patient satisfaction in public hospitals in South Africa?

This question is has clearly defined variables and is narrowly focused in terms of context.

Which factors contribute to obesity rates in urban areas within California?

This question is focused yet broad, aiming to reveal several contributing factors for targeted interventions.

Does telemedicine provide the same perceived quality of care as in-person visits for diabetes patients?

Ideal for a qualitative study, this research question explores a single construct (perceived quality of care) within a well-defined sample (diabetes patients).

Which lifestyle factors have the greatest affect on the risk of heart disease?

This research question aims to uncover modifiable factors, offering preventive health recommendations.

Research topic evaluator

Examples: Computer Science

Last but certainly not least, let’s look at a few examples of research questions within the computer science world.

What are the perceived risks of cloud-based storage systems?

Highly relevant in our digital age, this research question would align well with a qualitative interview approach to better understand what users feel the key risks of cloud storage are.

Which factors affect the energy efficiency of data centres in Ohio?

With a clear focus, this research question lays a firm foundation for a quantitative study.

How do TikTok algorithms impact user behaviour amongst new graduates?

While this research question is more open-ended, it could form the basis for a qualitative investigation.

What are the perceived risk and benefits of open-source software software within the web design industry?

Practical and straightforward, the results could guide both developers and end-users in their choices.

Remember, these are just examples…

In this post, we’ve tried to provide a wide range of research question examples to help you get a feel for what research questions look like in practice. That said, it’s important to remember that these are just examples and don’t necessarily equate to good research topics . If you’re still trying to find a topic, check out our topic megalist for inspiration.

example of research questions in experimental research

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

What is a research question?

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Get science-backed answers as you write with Paperpal's Research feature

How to Write a Research Question: Types and Examples 

research quetsion

The first step in any research project is framing the research question. It can be considered the core of any systematic investigation as the research outcomes are tied to asking the right questions. Thus, this primary interrogation point sets the pace for your research as it helps collect relevant and insightful information that ultimately influences your work.   

Typically, the research question guides the stages of inquiry, analysis, and reporting. Depending on the use of quantifiable or quantitative data, research questions are broadly categorized into quantitative or qualitative research questions. Both types of research questions can be used independently or together, considering the overall focus and objectives of your research.  

What is a research question?

A research question is a clear, focused, concise, and arguable question on which your research and writing are centered. 1 It states various aspects of the study, including the population and variables to be studied and the problem the study addresses. These questions also set the boundaries of the study, ensuring cohesion. 

Designing the research question is a dynamic process where the researcher can change or refine the research question as they review related literature and develop a framework for the study. Depending on the scale of your research, the study can include single or multiple research questions. 

A good research question has the following features: 

  • It is relevant to the chosen field of study. 
  • The question posed is arguable and open for debate, requiring synthesizing and analysis of ideas. 
  • It is focused and concisely framed. 
  • A feasible solution is possible within the given practical constraint and timeframe. 

A poorly formulated research question poses several risks. 1   

  • Researchers can adopt an erroneous design. 
  • It can create confusion and hinder the thought process, including developing a clear protocol.  
  • It can jeopardize publication efforts.  
  • It causes difficulty in determining the relevance of the study findings.  
  • It causes difficulty in whether the study fulfils the inclusion criteria for systematic review and meta-analysis. This creates challenges in determining whether additional studies or data collection is needed to answer the question.  
  • Readers may fail to understand the objective of the study. This reduces the likelihood of the study being cited by others. 

Now that you know “What is a research question?”, let’s look at the different types of research questions. 

Types of research questions

Depending on the type of research to be done, research questions can be classified broadly into quantitative, qualitative, or mixed-methods studies. Knowing the type of research helps determine the best type of research question that reflects the direction and epistemological underpinnings of your research. 

The structure and wording of quantitative 2 and qualitative research 3 questions differ significantly. The quantitative study looks at causal relationships, whereas the qualitative study aims at exploring a phenomenon. 

  • Quantitative research questions:  
  • Seeks to investigate social, familial, or educational experiences or processes in a particular context and/or location.  
  • Answers ‘how,’ ‘what,’ or ‘why’ questions. 
  • Investigates connections, relations, or comparisons between independent and dependent variables. 

Quantitative research questions can be further categorized into descriptive, comparative, and relationship, as explained in the Table below. 

  • Qualitative research questions  

Qualitative research questions are adaptable, non-directional, and more flexible. It concerns broad areas of research or more specific areas of study to discover, explain, or explore a phenomenon. These are further classified as follows: 

  • Mixed-methods studies  

Mixed-methods studies use both quantitative and qualitative research questions to answer your research question. Mixed methods provide a complete picture than standalone quantitative or qualitative research, as it integrates the benefits of both methods. Mixed methods research is often used in multidisciplinary settings and complex situational or societal research, especially in the behavioral, health, and social science fields. 

What makes a good research question

A good research question should be clear and focused to guide your research. It should synthesize multiple sources to present your unique argument, and should ideally be something that you are interested in. But avoid questions that can be answered in a few factual statements. The following are the main attributes of a good research question. 

  • Specific: The research question should not be a fishing expedition performed in the hopes that some new information will be found that will benefit the researcher. The central research question should work with your research problem to keep your work focused. If using multiple questions, they should all tie back to the central aim. 
  • Measurable: The research question must be answerable using quantitative and/or qualitative data or from scholarly sources to develop your research question. If such data is impossible to access, it is better to rethink your question. 
  • Attainable: Ensure you have enough time and resources to do all research required to answer your question. If it seems you will not be able to gain access to the data you need, consider narrowing down your question to be more specific. 
  • You have the expertise 
  • You have the equipment and resources 
  • Realistic: Developing your research question should be based on initial reading about your topic. It should focus on addressing a problem or gap in the existing knowledge in your field or discipline. 
  • Based on some sort of rational physics 
  • Can be done in a reasonable time frame 
  • Timely: The research question should contribute to an existing and current debate in your field or in society at large. It should produce knowledge that future researchers or practitioners can later build on. 
  • Novel 
  • Based on current technologies. 
  • Important to answer current problems or concerns. 
  • Lead to new directions. 
  • Important: Your question should have some aspect of originality. Incremental research is as important as exploring disruptive technologies. For example, you can focus on a specific location or explore a new angle. 
  • Meaningful whether the answer is “Yes” or “No.” Closed-ended, yes/no questions are too simple to work as good research questions. Such questions do not provide enough scope for robust investigation and discussion. A good research question requires original data, synthesis of multiple sources, and original interpretation and argumentation before providing an answer. 

Steps for developing a good research question

The importance of research questions cannot be understated. When drafting a research question, use the following frameworks to guide the components of your question to ease the process. 4  

  • Determine the requirements: Before constructing a good research question, set your research requirements. What is the purpose? Is it descriptive, comparative, or explorative research? Determining the research aim will help you choose the most appropriate topic and word your question appropriately. 
  • Select a broad research topic: Identify a broader subject area of interest that requires investigation. Techniques such as brainstorming or concept mapping can help identify relevant connections and themes within a broad research topic. For example, how to learn and help students learn. 
  • Perform preliminary investigation: Preliminary research is needed to obtain up-to-date and relevant knowledge on your topic. It also helps identify issues currently being discussed from which information gaps can be identified. 
  • Narrow your focus: Narrow the scope and focus of your research to a specific niche. This involves focusing on gaps in existing knowledge or recent literature or extending or complementing the findings of existing literature. Another approach involves constructing strong research questions that challenge your views or knowledge of the area of study (Example: Is learning consistent with the existing learning theory and research). 
  • Identify the research problem: Once the research question has been framed, one should evaluate it. This is to realize the importance of the research questions and if there is a need for more revising (Example: How do your beliefs on learning theory and research impact your instructional practices). 

How to write a research question

Those struggling to understand how to write a research question, these simple steps can help you simplify the process of writing a research question. 

Sample Research Questions

The following are some bad and good research question examples 

  • Example 1 
  • Example 2 


  • Thabane, L., Thomas, T., Ye, C., & Paul, J. (2009). Posing the research question: not so simple.  Canadian Journal of Anesthesia/Journal canadien d’anesthésie ,  56 (1), 71-79. 
  • Rutberg, S., & Bouikidis, C. D. (2018). Focusing on the fundamentals: A simplistic differentiation between qualitative and quantitative research.  Nephrology Nursing Journal ,  45 (2), 209-213. 
  • Kyngäs, H. (2020). Qualitative research and content analysis.  The application of content analysis in nursing science research , 3-11. 
  • Mattick, K., Johnston, J., & de la Croix, A. (2018). How to… write a good research question.  The clinical teacher ,  15 (2), 104-108. 
  • Fandino, W. (2019). Formulating a good research question: Pearls and pitfalls.  Indian Journal of Anaesthesia ,  63 (8), 611. 
  • Richardson, W. S., Wilson, M. C., Nishikawa, J., & Hayward, R. S. (1995). The well-built clinical question: a key to evidence-based decisions.  ACP journal club ,  123 (3), A12-A13 

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Scientific Writing Style Guides Explained
  • Ethical Research Practices For Research with Human Subjects
  • 8 Most Effective Ways to Increase Motivation for Thesis Writing 
  • 6 Tips for Post-Doc Researchers to Take Their Career to the Next Level

Transitive and Intransitive Verbs in the World of Research

Language and grammar rules for academic writing, you may also like, measuring academic success: definition & strategies for excellence, phd qualifying exam: tips for success , quillbot review: features, pricing, and free alternatives, what is an academic paper types and elements , 9 steps to publish a research paper, what are the different types of research papers, how to make translating academic papers less challenging, 6 tips for post-doc researchers to take their..., presenting research data effectively through tables and figures, ethics in science: importance, principles & guidelines .

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • A Quick Guide to Experimental Design | 5 Steps & Examples

A Quick Guide to Experimental Design | 5 Steps & Examples

Published on 11 April 2022 by Rebecca Bevans . Revised on 5 December 2022.

Experiments are used to study causal relationships . You manipulate one or more independent variables and measure their effect on one or more dependent variables.

Experimental design means creating a set of procedures to systematically test a hypothesis . A good experimental design requires a strong understanding of the system you are studying. 

There are five key steps in designing an experiment:

  • Consider your variables and how they are related
  • Write a specific, testable hypothesis
  • Design experimental treatments to manipulate your independent variable
  • Assign subjects to groups, either between-subjects or within-subjects
  • Plan how you will measure your dependent variable

For valid conclusions, you also need to select a representative sample and control any  extraneous variables that might influence your results. If if random assignment of participants to control and treatment groups is impossible, unethical, or highly difficult, consider an observational study instead.

Table of contents

Step 1: define your variables, step 2: write your hypothesis, step 3: design your experimental treatments, step 4: assign your subjects to treatment groups, step 5: measure your dependent variable, frequently asked questions about experimental design.

You should begin with a specific research question . We will work with two research question examples, one from health sciences and one from ecology:

To translate your research question into an experimental hypothesis, you need to define the main variables and make predictions about how they are related.

Start by simply listing the independent and dependent variables .

Then you need to think about possible extraneous and confounding variables and consider how you might control  them in your experiment.

Finally, you can put these variables together into a diagram. Use arrows to show the possible relationships between variables and include signs to show the expected direction of the relationships.

Diagram of the relationship between variables in a sleep experiment

Here we predict that increasing temperature will increase soil respiration and decrease soil moisture, while decreasing soil moisture will lead to decreased soil respiration.

Prevent plagiarism, run a free check.

Now that you have a strong conceptual understanding of the system you are studying, you should be able to write a specific, testable hypothesis that addresses your research question.

The next steps will describe how to design a controlled experiment . In a controlled experiment, you must be able to:

  • Systematically and precisely manipulate the independent variable(s).
  • Precisely measure the dependent variable(s).
  • Control any potential confounding variables.

If your study system doesn’t match these criteria, there are other types of research you can use to answer your research question.

How you manipulate the independent variable can affect the experiment’s external validity – that is, the extent to which the results can be generalised and applied to the broader world.

First, you may need to decide how widely to vary your independent variable.

  • just slightly above the natural range for your study region.
  • over a wider range of temperatures to mimic future warming.
  • over an extreme range that is beyond any possible natural variation.

Second, you may need to choose how finely to vary your independent variable. Sometimes this choice is made for you by your experimental system, but often you will need to decide, and this will affect how much you can infer from your results.

  • a categorical variable : either as binary (yes/no) or as levels of a factor (no phone use, low phone use, high phone use).
  • a continuous variable (minutes of phone use measured every night).

How you apply your experimental treatments to your test subjects is crucial for obtaining valid and reliable results.

First, you need to consider the study size : how many individuals will be included in the experiment? In general, the more subjects you include, the greater your experiment’s statistical power , which determines how much confidence you can have in your results.

Then you need to randomly assign your subjects to treatment groups . Each group receives a different level of the treatment (e.g. no phone use, low phone use, high phone use).

You should also include a control group , which receives no treatment. The control group tells us what would have happened to your test subjects without any experimental intervention.

When assigning your subjects to groups, there are two main choices you need to make:

  • A completely randomised design vs a randomised block design .
  • A between-subjects design vs a within-subjects design .


An experiment can be completely randomised or randomised within blocks (aka strata):

  • In a completely randomised design , every subject is assigned to a treatment group at random.
  • In a randomised block design (aka stratified random design), subjects are first grouped according to a characteristic they share, and then randomly assigned to treatments within those groups.

Sometimes randomisation isn’t practical or ethical , so researchers create partially-random or even non-random designs. An experimental design where treatments aren’t randomly assigned is called a quasi-experimental design .

Between-subjects vs within-subjects

In a between-subjects design (also known as an independent measures design or classic ANOVA design), individuals receive only one of the possible levels of an experimental treatment.

In medical or social research, you might also use matched pairs within your between-subjects design to make sure that each treatment group contains the same variety of test subjects in the same proportions.

In a within-subjects design (also known as a repeated measures design), every individual receives each of the experimental treatments consecutively, and their responses to each treatment are measured.

Within-subjects or repeated measures can also refer to an experimental design where an effect emerges over time, and individual responses are measured over time in order to measure this effect as it emerges.

Counterbalancing (randomising or reversing the order of treatments among subjects) is often used in within-subjects designs to ensure that the order of treatment application doesn’t influence the results of the experiment.

Finally, you need to decide how you’ll collect data on your dependent variable outcomes. You should aim for reliable and valid measurements that minimise bias or error.

Some variables, like temperature, can be objectively measured with scientific instruments. Others may need to be operationalised to turn them into measurable observations.

  • Ask participants to record what time they go to sleep and get up each day.
  • Ask participants to wear a sleep tracker.

How precisely you measure your dependent variable also affects the kinds of statistical analysis you can use on your data.

Experiments are always context-dependent, and a good experimental design will take into account all of the unique considerations of your study system to produce information that is both valid and relevant to your research question.

Experimental designs are a set of procedures that you plan in order to examine the relationship between variables that interest you.

To design a successful experiment, first identify:

  • A testable hypothesis
  • One or more independent variables that you will manipulate
  • One or more dependent variables that you will measure

When designing the experiment, first decide:

  • How your variable(s) will be manipulated
  • How you will control for any potential confounding or lurking variables
  • How many subjects you will include
  • How you will assign treatments to your subjects

The key difference between observational studies and experiments is that, done correctly, an observational study will never influence the responses or behaviours of participants. Experimental designs will have a treatment condition applied to at least a portion of participants.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word ‘between’ means that you’re comparing different conditions between groups, while the word ‘within’ means you’re comparing different conditions within the same group.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bevans, R. (2022, December 05). A Quick Guide to Experimental Design | 5 Steps & Examples. Scribbr. Retrieved 29 April 2024, from https://www.scribbr.co.uk/research-methods/guide-to-experimental-design/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

  • Affiliate Program


  • 台灣 (TAIWAN)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write a Good Research Question (w/ Examples)

example of research questions in experimental research

What is a Research Question?

A research question is the main question that your study sought or is seeking to answer. A clear research question guides your research paper or thesis and states exactly what you want to find out, giving your work a focus and objective. Learning  how to write a hypothesis or research question is the start to composing any thesis, dissertation, or research paper. It is also one of the most important sections of a research proposal . 

A good research question not only clarifies the writing in your study; it provides your readers with a clear focus and facilitates their understanding of your research topic, as well as outlining your study’s objectives. Before drafting the paper and receiving research paper editing (and usually before performing your study), you should write a concise statement of what this study intends to accomplish or reveal.

Research Question Writing Tips

Listed below are the important characteristics of a good research question:

A good research question should:

  • Be clear and provide specific information so readers can easily understand the purpose.
  • Be focused in its scope and narrow enough to be addressed in the space allowed by your paper
  • Be relevant and concise and express your main ideas in as few words as possible, like a hypothesis.
  • Be precise and complex enough that it does not simply answer a closed “yes or no” question, but requires an analysis of arguments and literature prior to its being considered acceptable. 
  • Be arguable or testable so that answers to the research question are open to scrutiny and specific questions and counterarguments.

Some of these characteristics might be difficult to understand in the form of a list. Let’s go into more detail about what a research question must do and look at some examples of research questions.

The research question should be specific and focused 

Research questions that are too broad are not suitable to be addressed in a single study. One reason for this can be if there are many factors or variables to consider. In addition, a sample data set that is too large or an experimental timeline that is too long may suggest that the research question is not focused enough.

A specific research question means that the collective data and observations come together to either confirm or deny the chosen hypothesis in a clear manner. If a research question is too vague, then the data might end up creating an alternate research problem or hypothesis that you haven’t addressed in your Introduction section .

The research question should be based on the literature 

An effective research question should be answerable and verifiable based on prior research because an effective scientific study must be placed in the context of a wider academic consensus. This means that conspiracy or fringe theories are not good research paper topics.

Instead, a good research question must extend, examine, and verify the context of your research field. It should fit naturally within the literature and be searchable by other research authors.

References to the literature can be in different citation styles and must be properly formatted according to the guidelines set forth by the publishing journal, university, or academic institution. This includes in-text citations as well as the Reference section . 

The research question should be realistic in time, scope, and budget

There are two main constraints to the research process: timeframe and budget.

A proper research question will include study or experimental procedures that can be executed within a feasible time frame, typically by a graduate doctoral or master’s student or lab technician. Research that requires future technology, expensive resources, or follow-up procedures is problematic.

A researcher’s budget is also a major constraint to performing timely research. Research at many large universities or institutions is publicly funded and is thus accountable to funding restrictions. 

The research question should be in-depth

Research papers, dissertations and theses , and academic journal articles are usually dozens if not hundreds of pages in length.

A good research question or thesis statement must be sufficiently complex to warrant such a length, as it must stand up to the scrutiny of peer review and be reproducible by other scientists and researchers.

Research Question Types

Qualitative and quantitative research are the two major types of research, and it is essential to develop research questions for each type of study. 

Quantitative Research Questions

Quantitative research questions are specific. A typical research question involves the population to be studied, dependent and independent variables, and the research design.

In addition, quantitative research questions connect the research question and the research design. In addition, it is not possible to answer these questions definitively with a “yes” or “no” response. For example, scientific fields such as biology, physics, and chemistry often deal with “states,” in which different quantities, amounts, or velocities drastically alter the relevance of the research.

As a consequence, quantitative research questions do not contain qualitative, categorical, or ordinal qualifiers such as “is,” “are,” “does,” or “does not.”

Categories of quantitative research questions

Qualitative research questions.

In quantitative research, research questions have the potential to relate to broad research areas as well as more specific areas of study. Qualitative research questions are less directional, more flexible, and adaptable compared with their quantitative counterparts. Thus, studies based on these questions tend to focus on “discovering,” “explaining,” “elucidating,” and “exploring.”

Categories of qualitative research questions

Quantitative and qualitative research question examples.

stacks of books in black and white; research question examples

Good and Bad Research Question Examples

Below are some good (and not-so-good) examples of research questions that researchers can use to guide them in crafting their own research questions.

Research Question Example 1

The first research question is too vague in both its independent and dependent variables. There is no specific information on what “exposure” means. Does this refer to comments, likes, engagement, or just how much time is spent on the social media platform?

Second, there is no useful information on what exactly “affected” means. Does the subject’s behavior change in some measurable way? Or does this term refer to another factor such as the user’s emotions?

Research Question Example 2

In this research question, the first example is too simple and not sufficiently complex, making it difficult to assess whether the study answered the question. The author could really only answer this question with a simple “yes” or “no.” Further, the presence of data would not help answer this question more deeply, which is a sure sign of a poorly constructed research topic.

The second research question is specific, complex, and empirically verifiable. One can measure program effectiveness based on metrics such as attendance or grades. Further, “bullying” is made into an empirical, quantitative measurement in the form of recorded disciplinary actions.

Steps for Writing a Research Question

Good research questions are relevant, focused, and meaningful. It can be difficult to come up with a good research question, but there are a few steps you can follow to make it a bit easier.

1. Start with an interesting and relevant topic

Choose a research topic that is interesting but also relevant and aligned with your own country’s culture or your university’s capabilities. Popular academic topics include healthcare and medical-related research. However, if you are attending an engineering school or humanities program, you should obviously choose a research question that pertains to your specific study and major.

Below is an embedded graph of the most popular research fields of study based on publication output according to region. As you can see, healthcare and the basic sciences receive the most funding and earn the highest number of publications. 

example of research questions in experimental research

2. Do preliminary research  

You can begin doing preliminary research once you have chosen a research topic. Two objectives should be accomplished during this first phase of research. First, you should undertake a preliminary review of related literature to discover issues that scholars and peers are currently discussing. With this method, you show that you are informed about the latest developments in the field.

Secondly, identify knowledge gaps or limitations in your topic by conducting a preliminary literature review . It is possible to later use these gaps to focus your research question after a certain amount of fine-tuning.

3. Narrow your research to determine specific research questions

You can focus on a more specific area of study once you have a good handle on the topic you want to explore. Focusing on recent literature or knowledge gaps is one good option. 

By identifying study limitations in the literature and overlooked areas of study, an author can carve out a good research question. The same is true for choosing research questions that extend or complement existing literature.

4. Evaluate your research question

Make sure you evaluate the research question by asking the following questions:

Is my research question clear?

The resulting data and observations that your study produces should be clear. For quantitative studies, data must be empirical and measurable. For qualitative, the observations should be clearly delineable across categories.

Is my research question focused and specific?

A strong research question should be specific enough that your methodology or testing procedure produces an objective result, not one left to subjective interpretation. Open-ended research questions or those relating to general topics can create ambiguous connections between the results and the aims of the study. 

Is my research question sufficiently complex?

The result of your research should be consequential and substantial (and fall sufficiently within the context of your field) to warrant an academic study. Simply reinforcing or supporting a scientific consensus is superfluous and will likely not be well received by most journal editors.  

reverse triangle chart, how to write a research question

Editing Your Research Question

Your research question should be fully formulated well before you begin drafting your research paper. However, you can receive English paper editing and proofreading services at any point in the drafting process. Language editors with expertise in your academic field can assist you with the content and language in your Introduction section or other manuscript sections. And if you need further assistance or information regarding paper compositions, in the meantime, check out our academic resources , which provide dozens of articles and videos on a variety of academic writing and publication topics.

Enago Academy

Experimental Research Design — 6 mistakes you should never make!

' src=

Since school days’ students perform scientific experiments that provide results that define and prove the laws and theorems in science. These experiments are laid on a strong foundation of experimental research designs.

An experimental research design helps researchers execute their research objectives with more clarity and transparency.

In this article, we will not only discuss the key aspects of experimental research designs but also the issues to avoid and problems to resolve while designing your research study.

Table of Contents

What Is Experimental Research Design?

Experimental research design is a framework of protocols and procedures created to conduct experimental research with a scientific approach using two sets of variables. Herein, the first set of variables acts as a constant, used to measure the differences of the second set. The best example of experimental research methods is quantitative research .

Experimental research helps a researcher gather the necessary data for making better research decisions and determining the facts of a research study.

When Can a Researcher Conduct Experimental Research?

A researcher can conduct experimental research in the following situations —

  • When time is an important factor in establishing a relationship between the cause and effect.
  • When there is an invariable or never-changing behavior between the cause and effect.
  • Finally, when the researcher wishes to understand the importance of the cause and effect.

Importance of Experimental Research Design

To publish significant results, choosing a quality research design forms the foundation to build the research study. Moreover, effective research design helps establish quality decision-making procedures, structures the research to lead to easier data analysis, and addresses the main research question. Therefore, it is essential to cater undivided attention and time to create an experimental research design before beginning the practical experiment.

By creating a research design, a researcher is also giving oneself time to organize the research, set up relevant boundaries for the study, and increase the reliability of the results. Through all these efforts, one could also avoid inconclusive results. If any part of the research design is flawed, it will reflect on the quality of the results derived.

Types of Experimental Research Designs

Based on the methods used to collect data in experimental studies, the experimental research designs are of three primary types:

1. Pre-experimental Research Design

A research study could conduct pre-experimental research design when a group or many groups are under observation after implementing factors of cause and effect of the research. The pre-experimental design will help researchers understand whether further investigation is necessary for the groups under observation.

Pre-experimental research is of three types —

  • One-shot Case Study Research Design
  • One-group Pretest-posttest Research Design
  • Static-group Comparison

2. True Experimental Research Design

A true experimental research design relies on statistical analysis to prove or disprove a researcher’s hypothesis. It is one of the most accurate forms of research because it provides specific scientific evidence. Furthermore, out of all the types of experimental designs, only a true experimental design can establish a cause-effect relationship within a group. However, in a true experiment, a researcher must satisfy these three factors —

  • There is a control group that is not subjected to changes and an experimental group that will experience the changed variables
  • A variable that can be manipulated by the researcher
  • Random distribution of the variables

This type of experimental research is commonly observed in the physical sciences.

3. Quasi-experimental Research Design

The word “Quasi” means similarity. A quasi-experimental design is similar to a true experimental design. However, the difference between the two is the assignment of the control group. In this research design, an independent variable is manipulated, but the participants of a group are not randomly assigned. This type of research design is used in field settings where random assignment is either irrelevant or not required.

The classification of the research subjects, conditions, or groups determines the type of research design to be used.

experimental research design

Advantages of Experimental Research

Experimental research allows you to test your idea in a controlled environment before taking the research to clinical trials. Moreover, it provides the best method to test your theory because of the following advantages:

  • Researchers have firm control over variables to obtain results.
  • The subject does not impact the effectiveness of experimental research. Anyone can implement it for research purposes.
  • The results are specific.
  • Post results analysis, research findings from the same dataset can be repurposed for similar research ideas.
  • Researchers can identify the cause and effect of the hypothesis and further analyze this relationship to determine in-depth ideas.
  • Experimental research makes an ideal starting point. The collected data could be used as a foundation to build new research ideas for further studies.

6 Mistakes to Avoid While Designing Your Research

There is no order to this list, and any one of these issues can seriously compromise the quality of your research. You could refer to the list as a checklist of what to avoid while designing your research.

1. Invalid Theoretical Framework

Usually, researchers miss out on checking if their hypothesis is logical to be tested. If your research design does not have basic assumptions or postulates, then it is fundamentally flawed and you need to rework on your research framework.

2. Inadequate Literature Study

Without a comprehensive research literature review , it is difficult to identify and fill the knowledge and information gaps. Furthermore, you need to clearly state how your research will contribute to the research field, either by adding value to the pertinent literature or challenging previous findings and assumptions.

3. Insufficient or Incorrect Statistical Analysis

Statistical results are one of the most trusted scientific evidence. The ultimate goal of a research experiment is to gain valid and sustainable evidence. Therefore, incorrect statistical analysis could affect the quality of any quantitative research.

4. Undefined Research Problem

This is one of the most basic aspects of research design. The research problem statement must be clear and to do that, you must set the framework for the development of research questions that address the core problems.

5. Research Limitations

Every study has some type of limitations . You should anticipate and incorporate those limitations into your conclusion, as well as the basic research design. Include a statement in your manuscript about any perceived limitations, and how you considered them while designing your experiment and drawing the conclusion.

6. Ethical Implications

The most important yet less talked about topic is the ethical issue. Your research design must include ways to minimize any risk for your participants and also address the research problem or question at hand. If you cannot manage the ethical norms along with your research study, your research objectives and validity could be questioned.

Experimental Research Design Example

In an experimental design, a researcher gathers plant samples and then randomly assigns half the samples to photosynthesize in sunlight and the other half to be kept in a dark box without sunlight, while controlling all the other variables (nutrients, water, soil, etc.)

By comparing their outcomes in biochemical tests, the researcher can confirm that the changes in the plants were due to the sunlight and not the other variables.

Experimental research is often the final form of a study conducted in the research process which is considered to provide conclusive and specific results. But it is not meant for every research. It involves a lot of resources, time, and money and is not easy to conduct, unless a foundation of research is built. Yet it is widely used in research institutes and commercial industries, for its most conclusive results in the scientific approach.

Have you worked on research designs? How was your experience creating an experimental design? What difficulties did you face? Do write to us or comment below and share your insights on experimental research designs!

Frequently Asked Questions

Randomization is important in an experimental research because it ensures unbiased results of the experiment. It also measures the cause-effect relationship on a particular group of interest.

Experimental research design lay the foundation of a research and structures the research to establish quality decision making process.

There are 3 types of experimental research designs. These are pre-experimental research design, true experimental research design, and quasi experimental research design.

The difference between an experimental and a quasi-experimental design are: 1. The assignment of the control group in quasi experimental research is non-random, unlike true experimental design, which is randomly assigned. 2. Experimental research group always has a control group; on the other hand, it may not be always present in quasi experimental research.

Experimental research establishes a cause-effect relationship by testing a theory or hypothesis using experimental groups or control variables. In contrast, descriptive research describes a study or a topic by defining the variables under it and answering the questions related to the same.

' src=

good and valuable

Very very good

Good presentation.

Rate this article Cancel Reply

Your email address will not be published.

example of research questions in experimental research

Enago Academy's Most Popular Articles

7 Step Guide for Optimizing Impactful Research Process

  • Publishing Research
  • Reporting Research

How to Optimize Your Research Process: A step-by-step guide

For researchers across disciplines, the path to uncovering novel findings and insights is often filled…

Launch of "Sony Women in Technology Award with Nature"

  • Industry News
  • Trending Now

Breaking Barriers: Sony and Nature unveil “Women in Technology Award”

Sony Group Corporation and the prestigious scientific journal Nature have collaborated to launch the inaugural…

Guide to Adhere Good Research Practice (FREE CHECKLIST)

Achieving Research Excellence: Checklist for good research practices

Academia is built on the foundation of trustworthy and high-quality research, supported by the pillars…


  • Promoting Research

Plain Language Summary — Communicating your research to bridge the academic-lay gap

Science can be complex, but does that mean it should not be accessible to the…

Journals Combat Image Manipulation with AI

Science under Surveillance: Journals adopt advanced AI to uncover image manipulation

Journals are increasingly turning to cutting-edge AI tools to uncover deceitful images published in manuscripts.…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

Research Recommendations – Guiding policy-makers for evidence-based decision making

example of research questions in experimental research

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

example of research questions in experimental research

What should universities' stance be on AI tools in research and academic writing?

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.53(4); 2010 Aug

Logo of canjsurg

Research questions, hypotheses and objectives

Patricia farrugia.

* Michael G. DeGroote School of Medicine, the

Bradley A. Petrisor

† Division of Orthopaedic Surgery and the

Forough Farrokhyar

‡ Departments of Surgery and

§ Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ont

Mohit Bhandari

There is an increasing familiarity with the principles of evidence-based medicine in the surgical community. As surgeons become more aware of the hierarchy of evidence, grades of recommendations and the principles of critical appraisal, they develop an increasing familiarity with research design. Surgeons and clinicians are looking more and more to the literature and clinical trials to guide their practice; as such, it is becoming a responsibility of the clinical research community to attempt to answer questions that are not only well thought out but also clinically relevant. The development of the research question, including a supportive hypothesis and objectives, is a necessary key step in producing clinically relevant results to be used in evidence-based practice. A well-defined and specific research question is more likely to help guide us in making decisions about study design and population and subsequently what data will be collected and analyzed. 1

Objectives of this article

In this article, we discuss important considerations in the development of a research question and hypothesis and in defining objectives for research. By the end of this article, the reader will be able to appreciate the significance of constructing a good research question and developing hypotheses and research objectives for the successful design of a research study. The following article is divided into 3 sections: research question, research hypothesis and research objectives.

Research question

Interest in a particular topic usually begins the research process, but it is the familiarity with the subject that helps define an appropriate research question for a study. 1 Questions then arise out of a perceived knowledge deficit within a subject area or field of study. 2 Indeed, Haynes suggests that it is important to know “where the boundary between current knowledge and ignorance lies.” 1 The challenge in developing an appropriate research question is in determining which clinical uncertainties could or should be studied and also rationalizing the need for their investigation.

Increasing one’s knowledge about the subject of interest can be accomplished in many ways. Appropriate methods include systematically searching the literature, in-depth interviews and focus groups with patients (and proxies) and interviews with experts in the field. In addition, awareness of current trends and technological advances can assist with the development of research questions. 2 It is imperative to understand what has been studied about a topic to date in order to further the knowledge that has been previously gathered on a topic. Indeed, some granting institutions (e.g., Canadian Institute for Health Research) encourage applicants to conduct a systematic review of the available evidence if a recent review does not already exist and preferably a pilot or feasibility study before applying for a grant for a full trial.

In-depth knowledge about a subject may generate a number of questions. It then becomes necessary to ask whether these questions can be answered through one study or if more than one study needed. 1 Additional research questions can be developed, but several basic principles should be taken into consideration. 1 All questions, primary and secondary, should be developed at the beginning and planning stages of a study. Any additional questions should never compromise the primary question because it is the primary research question that forms the basis of the hypothesis and study objectives. It must be kept in mind that within the scope of one study, the presence of a number of research questions will affect and potentially increase the complexity of both the study design and subsequent statistical analyses, not to mention the actual feasibility of answering every question. 1 A sensible strategy is to establish a single primary research question around which to focus the study plan. 3 In a study, the primary research question should be clearly stated at the end of the introduction of the grant proposal, and it usually specifies the population to be studied, the intervention to be implemented and other circumstantial factors. 4

Hulley and colleagues 2 have suggested the use of the FINER criteria in the development of a good research question ( Box 1 ). The FINER criteria highlight useful points that may increase the chances of developing a successful research project. A good research question should specify the population of interest, be of interest to the scientific community and potentially to the public, have clinical relevance and further current knowledge in the field (and of course be compliant with the standards of ethical boards and national research standards).

FINER criteria for a good research question

Adapted with permission from Wolters Kluwer Health. 2

Whereas the FINER criteria outline the important aspects of the question in general, a useful format to use in the development of a specific research question is the PICO format — consider the population (P) of interest, the intervention (I) being studied, the comparison (C) group (or to what is the intervention being compared) and the outcome of interest (O). 3 , 5 , 6 Often timing (T) is added to PICO ( Box 2 ) — that is, “Over what time frame will the study take place?” 1 The PICOT approach helps generate a question that aids in constructing the framework of the study and subsequently in protocol development by alluding to the inclusion and exclusion criteria and identifying the groups of patients to be included. Knowing the specific population of interest, intervention (and comparator) and outcome of interest may also help the researcher identify an appropriate outcome measurement tool. 7 The more defined the population of interest, and thus the more stringent the inclusion and exclusion criteria, the greater the effect on the interpretation and subsequent applicability and generalizability of the research findings. 1 , 2 A restricted study population (and exclusion criteria) may limit bias and increase the internal validity of the study; however, this approach will limit external validity of the study and, thus, the generalizability of the findings to the practical clinical setting. Conversely, a broadly defined study population and inclusion criteria may be representative of practical clinical practice but may increase bias and reduce the internal validity of the study.

PICOT criteria 1

A poorly devised research question may affect the choice of study design, potentially lead to futile situations and, thus, hamper the chance of determining anything of clinical significance, which will then affect the potential for publication. Without devoting appropriate resources to developing the research question, the quality of the study and subsequent results may be compromised. During the initial stages of any research study, it is therefore imperative to formulate a research question that is both clinically relevant and answerable.

Research hypothesis

The primary research question should be driven by the hypothesis rather than the data. 1 , 2 That is, the research question and hypothesis should be developed before the start of the study. This sounds intuitive; however, if we take, for example, a database of information, it is potentially possible to perform multiple statistical comparisons of groups within the database to find a statistically significant association. This could then lead one to work backward from the data and develop the “question.” This is counterintuitive to the process because the question is asked specifically to then find the answer, thus collecting data along the way (i.e., in a prospective manner). Multiple statistical testing of associations from data previously collected could potentially lead to spuriously positive findings of association through chance alone. 2 Therefore, a good hypothesis must be based on a good research question at the start of a trial and, indeed, drive data collection for the study.

The research or clinical hypothesis is developed from the research question and then the main elements of the study — sampling strategy, intervention (if applicable), comparison and outcome variables — are summarized in a form that establishes the basis for testing, statistical and ultimately clinical significance. 3 For example, in a research study comparing computer-assisted acetabular component insertion versus freehand acetabular component placement in patients in need of total hip arthroplasty, the experimental group would be computer-assisted insertion and the control/conventional group would be free-hand placement. The investigative team would first state a research hypothesis. This could be expressed as a single outcome (e.g., computer-assisted acetabular component placement leads to improved functional outcome) or potentially as a complex/composite outcome; that is, more than one outcome (e.g., computer-assisted acetabular component placement leads to both improved radiographic cup placement and improved functional outcome).

However, when formally testing statistical significance, the hypothesis should be stated as a “null” hypothesis. 2 The purpose of hypothesis testing is to make an inference about the population of interest on the basis of a random sample taken from that population. The null hypothesis for the preceding research hypothesis then would be that there is no difference in mean functional outcome between the computer-assisted insertion and free-hand placement techniques. After forming the null hypothesis, the researchers would form an alternate hypothesis stating the nature of the difference, if it should appear. The alternate hypothesis would be that there is a difference in mean functional outcome between these techniques. At the end of the study, the null hypothesis is then tested statistically. If the findings of the study are not statistically significant (i.e., there is no difference in functional outcome between the groups in a statistical sense), we cannot reject the null hypothesis, whereas if the findings were significant, we can reject the null hypothesis and accept the alternate hypothesis (i.e., there is a difference in mean functional outcome between the study groups), errors in testing notwithstanding. In other words, hypothesis testing confirms or refutes the statement that the observed findings did not occur by chance alone but rather occurred because there was a true difference in outcomes between these surgical procedures. The concept of statistical hypothesis testing is complex, and the details are beyond the scope of this article.

Another important concept inherent in hypothesis testing is whether the hypotheses will be 1-sided or 2-sided. A 2-sided hypothesis states that there is a difference between the experimental group and the control group, but it does not specify in advance the expected direction of the difference. For example, we asked whether there is there an improvement in outcomes with computer-assisted surgery or whether the outcomes worse with computer-assisted surgery. We presented a 2-sided test in the above example because we did not specify the direction of the difference. A 1-sided hypothesis states a specific direction (e.g., there is an improvement in outcomes with computer-assisted surgery). A 2-sided hypothesis should be used unless there is a good justification for using a 1-sided hypothesis. As Bland and Atlman 8 stated, “One-sided hypothesis testing should never be used as a device to make a conventionally nonsignificant difference significant.”

The research hypothesis should be stated at the beginning of the study to guide the objectives for research. Whereas the investigators may state the hypothesis as being 1-sided (there is an improvement with treatment), the study and investigators must adhere to the concept of clinical equipoise. According to this principle, a clinical (or surgical) trial is ethical only if the expert community is uncertain about the relative therapeutic merits of the experimental and control groups being evaluated. 9 It means there must exist an honest and professional disagreement among expert clinicians about the preferred treatment. 9

Designing a research hypothesis is supported by a good research question and will influence the type of research design for the study. Acting on the principles of appropriate hypothesis development, the study can then confidently proceed to the development of the research objective.

Research objective

The primary objective should be coupled with the hypothesis of the study. Study objectives define the specific aims of the study and should be clearly stated in the introduction of the research protocol. 7 From our previous example and using the investigative hypothesis that there is a difference in functional outcomes between computer-assisted acetabular component placement and free-hand placement, the primary objective can be stated as follows: this study will compare the functional outcomes of computer-assisted acetabular component insertion versus free-hand placement in patients undergoing total hip arthroplasty. Note that the study objective is an active statement about how the study is going to answer the specific research question. Objectives can (and often do) state exactly which outcome measures are going to be used within their statements. They are important because they not only help guide the development of the protocol and design of study but also play a role in sample size calculations and determining the power of the study. 7 These concepts will be discussed in other articles in this series.

From the surgeon’s point of view, it is important for the study objectives to be focused on outcomes that are important to patients and clinically relevant. For example, the most methodologically sound randomized controlled trial comparing 2 techniques of distal radial fixation would have little or no clinical impact if the primary objective was to determine the effect of treatment A as compared to treatment B on intraoperative fluoroscopy time. However, if the objective was to determine the effect of treatment A as compared to treatment B on patient functional outcome at 1 year, this would have a much more significant impact on clinical decision-making. Second, more meaningful surgeon–patient discussions could ensue, incorporating patient values and preferences with the results from this study. 6 , 7 It is the precise objective and what the investigator is trying to measure that is of clinical relevance in the practical setting.

The following is an example from the literature about the relation between the research question, hypothesis and study objectives:

Study: Warden SJ, Metcalf BR, Kiss ZS, et al. Low-intensity pulsed ultrasound for chronic patellar tendinopathy: a randomized, double-blind, placebo-controlled trial. Rheumatology 2008;47:467–71.

Research question: How does low-intensity pulsed ultrasound (LIPUS) compare with a placebo device in managing the symptoms of skeletally mature patients with patellar tendinopathy?

Research hypothesis: Pain levels are reduced in patients who receive daily active-LIPUS (treatment) for 12 weeks compared with individuals who receive inactive-LIPUS (placebo).

Objective: To investigate the clinical efficacy of LIPUS in the management of patellar tendinopathy symptoms.

The development of the research question is the most important aspect of a research project. A research project can fail if the objectives and hypothesis are poorly focused and underdeveloped. Useful tips for surgical researchers are provided in Box 3 . Designing and developing an appropriate and relevant research question, hypothesis and objectives can be a difficult task. The critical appraisal of the research question used in a study is vital to the application of the findings to clinical practice. Focusing resources, time and dedication to these 3 very important tasks will help to guide a successful research project, influence interpretation of the results and affect future publication efforts.

Tips for developing research questions, hypotheses and objectives for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Develop clear and well-defined primary and secondary (if needed) objectives.
  • Ensure that the research question and objectives are answerable, feasible and clinically relevant.

FINER = feasible, interesting, novel, ethical, relevant; PICOT = population (patients), intervention (for intervention studies only), comparison group, outcome of interest, time.

Competing interests: No funding was received in preparation of this paper. Dr. Bhandari was funded, in part, by a Canada Research Chair, McMaster University.

  • Experimental Research Designs: Types, Examples & Methods


Experimental research is the most familiar type of research design for individuals in the physical sciences and a host of other fields. This is mainly because experimental research is a classical scientific experiment, similar to those performed in high school science classes.

Imagine taking 2 samples of the same plant and exposing one of them to sunlight, while the other is kept away from sunlight. Let the plant exposed to sunlight be called sample A, while the latter is called sample B.

If after the duration of the research, we find out that sample A grows and sample B dies, even though they are both regularly wetted and given the same treatment. Therefore, we can conclude that sunlight will aid growth in all similar plants.

What is Experimental Research?

Experimental research is a scientific approach to research, where one or more independent variables are manipulated and applied to one or more dependent variables to measure their effect on the latter. The effect of the independent variables on the dependent variables is usually observed and recorded over some time, to aid researchers in drawing a reasonable conclusion regarding the relationship between these 2 variable types.

The experimental research method is widely used in physical and social sciences, psychology, and education. It is based on the comparison between two or more groups with a straightforward logic, which may, however, be difficult to execute.

Mostly related to a laboratory test procedure, experimental research designs involve collecting quantitative data and performing statistical analysis on them during research. Therefore, making it an example of quantitative research method .

What are The Types of Experimental Research Design?

The types of experimental research design are determined by the way the researcher assigns subjects to different conditions and groups. They are of 3 types, namely; pre-experimental, quasi-experimental, and true experimental research.

Pre-experimental Research Design

In pre-experimental research design, either a group or various dependent groups are observed for the effect of the application of an independent variable which is presumed to cause change. It is the simplest form of experimental research design and is treated with no control group.

Although very practical, experimental research is lacking in several areas of the true-experimental criteria. The pre-experimental research design is further divided into three types

  • One-shot Case Study Research Design

In this type of experimental study, only one dependent group or variable is considered. The study is carried out after some treatment which was presumed to cause change, making it a posttest study.

  • One-group Pretest-posttest Research Design: 

This research design combines both posttest and pretest study by carrying out a test on a single group before the treatment is administered and after the treatment is administered. With the former being administered at the beginning of treatment and later at the end.

  • Static-group Comparison: 

In a static-group comparison study, 2 or more groups are placed under observation, where only one of the groups is subjected to some treatment while the other groups are held static. All the groups are post-tested, and the observed differences between the groups are assumed to be a result of the treatment.

Quasi-experimental Research Design

  The word “quasi” means partial, half, or pseudo. Therefore, the quasi-experimental research bearing a resemblance to the true experimental research, but not the same.  In quasi-experiments, the participants are not randomly assigned, and as such, they are used in settings where randomization is difficult or impossible.

 This is very common in educational research, where administrators are unwilling to allow the random selection of students for experimental samples.

Some examples of quasi-experimental research design include; the time series, no equivalent control group design, and the counterbalanced design.

True Experimental Research Design

The true experimental research design relies on statistical analysis to approve or disprove a hypothesis. It is the most accurate type of experimental design and may be carried out with or without a pretest on at least 2 randomly assigned dependent subjects.

The true experimental research design must contain a control group, a variable that can be manipulated by the researcher, and the distribution must be random. The classification of true experimental design include:

  • The posttest-only Control Group Design: In this design, subjects are randomly selected and assigned to the 2 groups (control and experimental), and only the experimental group is treated. After close observation, both groups are post-tested, and a conclusion is drawn from the difference between these groups.
  • The pretest-posttest Control Group Design: For this control group design, subjects are randomly assigned to the 2 groups, both are presented, but only the experimental group is treated. After close observation, both groups are post-tested to measure the degree of change in each group.
  • Solomon four-group Design: This is the combination of the pretest-only and the pretest-posttest control groups. In this case, the randomly selected subjects are placed into 4 groups.

The first two of these groups are tested using the posttest-only method, while the other two are tested using the pretest-posttest method.

Examples of Experimental Research

Experimental research examples are different, depending on the type of experimental research design that is being considered. The most basic example of experimental research is laboratory experiments, which may differ in nature depending on the subject of research.

Administering Exams After The End of Semester

During the semester, students in a class are lectured on particular courses and an exam is administered at the end of the semester. In this case, the students are the subjects or dependent variables while the lectures are the independent variables treated on the subjects.

Only one group of carefully selected subjects are considered in this research, making it a pre-experimental research design example. We will also notice that tests are only carried out at the end of the semester, and not at the beginning.

Further making it easy for us to conclude that it is a one-shot case study research. 

Employee Skill Evaluation

Before employing a job seeker, organizations conduct tests that are used to screen out less qualified candidates from the pool of qualified applicants. This way, organizations can determine an employee’s skill set at the point of employment.

In the course of employment, organizations also carry out employee training to improve employee productivity and generally grow the organization. Further evaluation is carried out at the end of each training to test the impact of the training on employee skills, and test for improvement.

Here, the subject is the employee, while the treatment is the training conducted. This is a pretest-posttest control group experimental research example.

Evaluation of Teaching Method

Let us consider an academic institution that wants to evaluate the teaching method of 2 teachers to determine which is best. Imagine a case whereby the students assigned to each teacher is carefully selected probably due to personal request by parents or due to stubbornness and smartness.

This is a no equivalent group design example because the samples are not equal. By evaluating the effectiveness of each teacher’s teaching method this way, we may conclude after a post-test has been carried out.

However, this may be influenced by factors like the natural sweetness of a student. For example, a very smart student will grab more easily than his or her peers irrespective of the method of teaching.

What are the Characteristics of Experimental Research?  

Experimental research contains dependent, independent and extraneous variables. The dependent variables are the variables being treated or manipulated and are sometimes called the subject of the research.

The independent variables are the experimental treatment being exerted on the dependent variables. Extraneous variables, on the other hand, are other factors affecting the experiment that may also contribute to the change.

The setting is where the experiment is carried out. Many experiments are carried out in the laboratory, where control can be exerted on the extraneous variables, thereby eliminating them. 

Other experiments are carried out in a less controllable setting. The choice of setting used in research depends on the nature of the experiment being carried out.

  • Multivariable

Experimental research may include multiple independent variables, e.g. time, skills, test scores, etc.

Why Use Experimental Research Design?  

Experimental research design can be majorly used in physical sciences, social sciences, education, and psychology. It is used to make predictions and draw conclusions on a subject matter. 

Some uses of experimental research design are highlighted below.

  • Medicine: Experimental research is used to provide the proper treatment for diseases. In most cases, rather than directly using patients as the research subject, researchers take a sample of the bacteria from the patient’s body and are treated with the developed antibacterial

The changes observed during this period are recorded and evaluated to determine its effectiveness. This process can be carried out using different experimental research methods.

  • Education: Asides from science subjects like Chemistry and Physics which involves teaching students how to perform experimental research, it can also be used in improving the standard of an academic institution. This includes testing students’ knowledge on different topics, coming up with better teaching methods, and the implementation of other programs that will aid student learning.
  • Human Behavior: Social scientists are the ones who mostly use experimental research to test human behaviour. For example, consider 2 people randomly chosen to be the subject of the social interaction research where one person is placed in a room without human interaction for 1 year.

The other person is placed in a room with a few other people, enjoying human interaction. There will be a difference in their behaviour at the end of the experiment.

  • UI/UX: During the product development phase, one of the major aims of the product team is to create a great user experience with the product. Therefore, before launching the final product design, potential are brought in to interact with the product.

For example, when finding it difficult to choose how to position a button or feature on the app interface, a random sample of product testers are allowed to test the 2 samples and how the button positioning influences the user interaction is recorded.

What are the Disadvantages of Experimental Research?  

  • It is highly prone to human error due to its dependency on variable control which may not be properly implemented. These errors could eliminate the validity of the experiment and the research being conducted.
  • Exerting control of extraneous variables may create unrealistic situations. Eliminating real-life variables will result in inaccurate conclusions. This may also result in researchers controlling the variables to suit his or her personal preferences.
  • It is a time-consuming process. So much time is spent on testing dependent variables and waiting for the effect of the manipulation of dependent variables to manifest.
  • It is expensive. 
  • It is very risky and may have ethical complications that cannot be ignored. This is common in medical research, where failed trials may lead to a patient’s death or a deteriorating health condition.
  • Experimental research results are not descriptive.
  • Response bias can also be supplied by the subject of the conversation.
  • Human responses in experimental research can be difficult to measure. 

What are the Data Collection Methods in Experimental Research?  

Data collection methods in experimental research are the different ways in which data can be collected for experimental research. They are used in different cases, depending on the type of research being carried out.

1. Observational Study

This type of study is carried out over a long period. It measures and observes the variables of interest without changing existing conditions.

When researching the effect of social interaction on human behavior, the subjects who are placed in 2 different environments are observed throughout the research. No matter the kind of absurd behavior that is exhibited by the subject during this period, its condition will not be changed.

This may be a very risky thing to do in medical cases because it may lead to death or worse medical conditions.

2. Simulations

This procedure uses mathematical, physical, or computer models to replicate a real-life process or situation. It is frequently used when the actual situation is too expensive, dangerous, or impractical to replicate in real life.

This method is commonly used in engineering and operational research for learning purposes and sometimes as a tool to estimate possible outcomes of real research. Some common situation software are Simulink, MATLAB, and Simul8.

Not all kinds of experimental research can be carried out using simulation as a data collection tool . It is very impractical for a lot of laboratory-based research that involves chemical processes.

A survey is a tool used to gather relevant data about the characteristics of a population and is one of the most common data collection tools. A survey consists of a group of questions prepared by the researcher, to be answered by the research subject.

Surveys can be shared with the respondents both physically and electronically. When collecting data through surveys, the kind of data collected depends on the respondent, and researchers have limited control over it.

Formplus is the best tool for collecting experimental data using survey s. It has relevant features that will aid the data collection process and can also be used in other aspects of experimental research.

Differences between Experimental and Non-Experimental Research 

1. In experimental research, the researcher can control and manipulate the environment of the research, including the predictor variable which can be changed. On the other hand, non-experimental research cannot be controlled or manipulated by the researcher at will.

This is because it takes place in a real-life setting, where extraneous variables cannot be eliminated. Therefore, it is more difficult to conclude non-experimental studies, even though they are much more flexible and allow for a greater range of study fields.

2. The relationship between cause and effect cannot be established in non-experimental research, while it can be established in experimental research. This may be because many extraneous variables also influence the changes in the research subject, making it difficult to point at a particular variable as the cause of a particular change

3. Independent variables are not introduced, withdrawn, or manipulated in non-experimental designs, but the same may not be said about experimental research.


Experimental research designs are often considered to be the standard in research designs. This is partly due to the common misconception that research is equivalent to scientific experiments—a component of experimental research design.

In this research design, one or more subjects or dependent variables are randomly assigned to different treatments (i.e. independent variables manipulated by the researcher) and the results are observed to conclude. One of the uniqueness of experimental research is in its ability to control the effect of extraneous variables.

Experimental research is suitable for research whose goal is to examine cause-effect relationships, e.g. explanatory research. It can be conducted in the laboratory or field settings, depending on the aim of the research that is being carried out. 


Connect to Formplus, Get Started Now - It's Free!

  • examples of experimental research
  • experimental research methods
  • types of experimental research
  • busayo.longe


You may also like:

Simpson’s Paradox & How to Avoid it in Experimental Research

In this article, we are going to look at Simpson’s Paradox from its historical point and later, we’ll consider its effect in...

example of research questions in experimental research

Experimental Vs Non-Experimental Research: 15 Key Differences

Differences between experimental and non experimental research on definitions, types, examples, data collection tools, uses, advantages etc.

What is Experimenter Bias? Definition, Types & Mitigation

In this article, we will look into the concept of experimental bias and how it can be identified in your research

Response vs Explanatory Variables: Definition & Examples

In this article, we’ll be comparing the two types of variables, what they both mean and see some of their real-life applications in research

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

example of research questions in experimental research

Home Market Research

Experimental Research: What it is + Types of designs

Experimental Research Design

Any research conducted under scientifically acceptable conditions uses experimental methods. The success of experimental studies hinges on researchers confirming the change of a variable is based solely on the manipulation of the constant variable. The research should establish a notable cause and effect.

What is Experimental Research?

Experimental research is a study conducted with a scientific approach using two sets of variables. The first set acts as a constant, which you use to measure the differences of the second set. Quantitative research methods , for example, are experimental.

If you don’t have enough data to support your decisions, you must first determine the facts. This research gathers the data necessary to help you make better decisions.

You can conduct experimental research in the following situations:

  • Time is a vital factor in establishing a relationship between cause and effect.
  • Invariable behavior between cause and effect.
  • You wish to understand the importance of cause and effect.

Experimental Research Design Types

The classic experimental design definition is: “The methods used to collect data in experimental studies.”

There are three primary types of experimental design:

  • Pre-experimental research design
  • True experimental research design
  • Quasi-experimental research design

The way you classify research subjects based on conditions or groups determines the type of research design  you should use.

0 1. Pre-Experimental Design

A group, or various groups, are kept under observation after implementing cause and effect factors. You’ll conduct this research to understand whether further investigation is necessary for these particular groups.

You can break down pre-experimental research further into three types:

  • One-shot Case Study Research Design
  • One-group Pretest-posttest Research Design
  • Static-group Comparison

0 2. True Experimental Design

It relies on statistical analysis to prove or disprove a hypothesis, making it the most accurate form of research. Of the types of experimental design, only true design can establish a cause-effect relationship within a group. In a true experiment, three factors need to be satisfied:

  • There is a Control Group, which won’t be subject to changes, and an Experimental Group, which will experience the changed variables.
  • A variable that can be manipulated by the researcher
  • Random distribution

This experimental research method commonly occurs in the physical sciences.

0 3. Quasi-Experimental Design

The word “Quasi” indicates similarity. A quasi-experimental design is similar to an experimental one, but it is not the same. The difference between the two is the assignment of a control group. In this research, an independent variable is manipulated, but the participants of a group are not randomly assigned. Quasi-research is used in field settings where random assignment is either irrelevant or not required.

Importance of Experimental Design

Experimental research is a powerful tool for understanding cause-and-effect relationships. It allows us to manipulate variables and observe the effects, which is crucial for understanding how different factors influence the outcome of a study.

But the importance of experimental research goes beyond that. It’s a critical method for many scientific and academic studies. It allows us to test theories, develop new products, and make groundbreaking discoveries.

For example, this research is essential for developing new drugs and medical treatments. Researchers can understand how a new drug works by manipulating dosage and administration variables and identifying potential side effects.

Similarly, experimental research is used in the field of psychology to test theories and understand human behavior. By manipulating variables such as stimuli, researchers can gain insights into how the brain works and identify new treatment options for mental health disorders.

It is also widely used in the field of education. It allows educators to test new teaching methods and identify what works best. By manipulating variables such as class size, teaching style, and curriculum, researchers can understand how students learn and identify new ways to improve educational outcomes.

In addition, experimental research is a powerful tool for businesses and organizations. By manipulating variables such as marketing strategies, product design, and customer service, companies can understand what works best and identify new opportunities for growth.

Advantages of Experimental Research

When talking about this research, we can think of human life. Babies do their own rudimentary experiments (such as putting objects in their mouths) to learn about the world around them, while older children and teens do experiments at school to learn more about science.

Ancient scientists used this research to prove that their hypotheses were correct. For example, Galileo Galilei and Antoine Lavoisier conducted various experiments to discover key concepts in physics and chemistry. The same is true of modern experts, who use this scientific method to see if new drugs are effective, discover treatments for diseases, and create new electronic devices (among others).

It’s vital to test new ideas or theories. Why put time, effort, and funding into something that may not work?

This research allows you to test your idea in a controlled environment before marketing. It also provides the best method to test your theory thanks to the following advantages:

Advantages of experimental research

  • Researchers have a stronger hold over variables to obtain desired results.
  • The subject or industry does not impact the effectiveness of experimental research. Any industry can implement it for research purposes.
  • The results are specific.
  • After analyzing the results, you can apply your findings to similar ideas or situations.
  • You can identify the cause and effect of a hypothesis. Researchers can further analyze this relationship to determine more in-depth ideas.
  • Experimental research makes an ideal starting point. The data you collect is a foundation for building more ideas and conducting more action research .

Whether you want to know how the public will react to a new product or if a certain food increases the chance of disease, experimental research is the best place to start. Begin your research by finding subjects using  QuestionPro Audience  and other tools today.



example of research questions in experimental research

Like Never Seen Before: QuestionPro CX Product Updates – Quarter 1, 2024

Apr 29, 2024

NPS Survey Platform

NPS Survey Platform: Types, Tips, 11 Best Platforms & Tools

Apr 26, 2024

user journey vs user flow

User Journey vs User Flow: Differences and Similarities

gap analysis tools

Best 7 Gap Analysis Tools to Empower Your Business

Apr 25, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

19+ Experimental Design Examples (Methods + Types)

practical psychology logo

Ever wondered how scientists discover new medicines, psychologists learn about behavior, or even how marketers figure out what kind of ads you like? Well, they all have something in common: they use a special plan or recipe called an "experimental design."

Imagine you're baking cookies. You can't just throw random amounts of flour, sugar, and chocolate chips into a bowl and hope for the best. You follow a recipe, right? Scientists and researchers do something similar. They follow a "recipe" called an experimental design to make sure their experiments are set up in a way that the answers they find are meaningful and reliable.

Experimental design is the roadmap researchers use to answer questions. It's a set of rules and steps that researchers follow to collect information, or "data," in a way that is fair, accurate, and makes sense.

experimental design test tubes

Long ago, people didn't have detailed game plans for experiments. They often just tried things out and saw what happened. But over time, people got smarter about this. They started creating structured plans—what we now call experimental designs—to get clearer, more trustworthy answers to their questions.

In this article, we'll take you on a journey through the world of experimental designs. We'll talk about the different types, or "flavors," of experimental designs, where they're used, and even give you a peek into how they came to be.

What Is Experimental Design?

Alright, before we dive into the different types of experimental designs, let's get crystal clear on what experimental design actually is.

Imagine you're a detective trying to solve a mystery. You need clues, right? Well, in the world of research, experimental design is like the roadmap that helps you find those clues. It's like the game plan in sports or the blueprint when you're building a house. Just like you wouldn't start building without a good blueprint, researchers won't start their studies without a strong experimental design.

So, why do we need experimental design? Think about baking a cake. If you toss ingredients into a bowl without measuring, you'll end up with a mess instead of a tasty dessert.

Similarly, in research, if you don't have a solid plan, you might get confusing or incorrect results. A good experimental design helps you ask the right questions ( think critically ), decide what to measure ( come up with an idea ), and figure out how to measure it (test it). It also helps you consider things that might mess up your results, like outside influences you hadn't thought of.

For example, let's say you want to find out if listening to music helps people focus better. Your experimental design would help you decide things like: Who are you going to test? What kind of music will you use? How will you measure focus? And, importantly, how will you make sure that it's really the music affecting focus and not something else, like the time of day or whether someone had a good breakfast?

In short, experimental design is the master plan that guides researchers through the process of collecting data, so they can answer questions in the most reliable way possible. It's like the GPS for the journey of discovery!

History of Experimental Design

Around 350 BCE, people like Aristotle were trying to figure out how the world works, but they mostly just thought really hard about things. They didn't test their ideas much. So while they were super smart, their methods weren't always the best for finding out the truth.

Fast forward to the Renaissance (14th to 17th centuries), a time of big changes and lots of curiosity. People like Galileo started to experiment by actually doing tests, like rolling balls down inclined planes to study motion. Galileo's work was cool because he combined thinking with doing. He'd have an idea, test it, look at the results, and then think some more. This approach was a lot more reliable than just sitting around and thinking.

Now, let's zoom ahead to the 18th and 19th centuries. This is when people like Francis Galton, an English polymath, started to get really systematic about experimentation. Galton was obsessed with measuring things. Seriously, he even tried to measure how good-looking people were ! His work helped create the foundations for a more organized approach to experiments.

Next stop: the early 20th century. Enter Ronald A. Fisher , a brilliant British statistician. Fisher was a game-changer. He came up with ideas that are like the bread and butter of modern experimental design.

Fisher invented the concept of the " control group "—that's a group of people or things that don't get the treatment you're testing, so you can compare them to those who do. He also stressed the importance of " randomization ," which means assigning people or things to different groups by chance, like drawing names out of a hat. This makes sure the experiment is fair and the results are trustworthy.

Around the same time, American psychologists like John B. Watson and B.F. Skinner were developing " behaviorism ." They focused on studying things that they could directly observe and measure, like actions and reactions.

Skinner even built boxes—called Skinner Boxes —to test how animals like pigeons and rats learn. Their work helped shape how psychologists design experiments today. Watson performed a very controversial experiment called The Little Albert experiment that helped describe behaviour through conditioning—in other words, how people learn to behave the way they do.

In the later part of the 20th century and into our time, computers have totally shaken things up. Researchers now use super powerful software to help design their experiments and crunch the numbers.

With computers, they can simulate complex experiments before they even start, which helps them predict what might happen. This is especially helpful in fields like medicine, where getting things right can be a matter of life and death.

Also, did you know that experimental designs aren't just for scientists in labs? They're used by people in all sorts of jobs, like marketing, education, and even video game design! Yes, someone probably ran an experiment to figure out what makes a game super fun to play.

So there you have it—a quick tour through the history of experimental design, from Aristotle's deep thoughts to Fisher's groundbreaking ideas, and all the way to today's computer-powered research. These designs are the recipes that help people from all walks of life find answers to their big questions.

Key Terms in Experimental Design

Before we dig into the different types of experimental designs, let's get comfy with some key terms. Understanding these terms will make it easier for us to explore the various types of experimental designs that researchers use to answer their big questions.

Independent Variable : This is what you change or control in your experiment to see what effect it has. Think of it as the "cause" in a cause-and-effect relationship. For example, if you're studying whether different types of music help people focus, the kind of music is the independent variable.

Dependent Variable : This is what you're measuring to see the effect of your independent variable. In our music and focus experiment, how well people focus is the dependent variable—it's what "depends" on the kind of music played.

Control Group : This is a group of people who don't get the special treatment or change you're testing. They help you see what happens when the independent variable is not applied. If you're testing whether a new medicine works, the control group would take a fake pill, called a placebo , instead of the real medicine.

Experimental Group : This is the group that gets the special treatment or change you're interested in. Going back to our medicine example, this group would get the actual medicine to see if it has any effect.

Randomization : This is like shaking things up in a fair way. You randomly put people into the control or experimental group so that each group is a good mix of different kinds of people. This helps make the results more reliable.

Sample : This is the group of people you're studying. They're a "sample" of a larger group that you're interested in. For instance, if you want to know how teenagers feel about a new video game, you might study a sample of 100 teenagers.

Bias : This is anything that might tilt your experiment one way or another without you realizing it. Like if you're testing a new kind of dog food and you only test it on poodles, that could create a bias because maybe poodles just really like that food and other breeds don't.

Data : This is the information you collect during the experiment. It's like the treasure you find on your journey of discovery!

Replication : This means doing the experiment more than once to make sure your findings hold up. It's like double-checking your answers on a test.

Hypothesis : This is your educated guess about what will happen in the experiment. It's like predicting the end of a movie based on the first half.

Steps of Experimental Design

Alright, let's say you're all fired up and ready to run your own experiment. Cool! But where do you start? Well, designing an experiment is a bit like planning a road trip. There are some key steps you've got to take to make sure you reach your destination. Let's break it down:

  • Ask a Question : Before you hit the road, you've got to know where you're going. Same with experiments. You start with a question you want to answer, like "Does eating breakfast really make you do better in school?"
  • Do Some Homework : Before you pack your bags, you look up the best places to visit, right? In science, this means reading up on what other people have already discovered about your topic.
  • Form a Hypothesis : This is your educated guess about what you think will happen. It's like saying, "I bet this route will get us there faster."
  • Plan the Details : Now you decide what kind of car you're driving (your experimental design), who's coming with you (your sample), and what snacks to bring (your variables).
  • Randomization : Remember, this is like shuffling a deck of cards. You want to mix up who goes into your control and experimental groups to make sure it's a fair test.
  • Run the Experiment : Finally, the rubber hits the road! You carry out your plan, making sure to collect your data carefully.
  • Analyze the Data : Once the trip's over, you look at your photos and decide which ones are keepers. In science, this means looking at your data to see what it tells you.
  • Draw Conclusions : Based on your data, did you find an answer to your question? This is like saying, "Yep, that route was faster," or "Nope, we hit a ton of traffic."
  • Share Your Findings : After a great trip, you want to tell everyone about it, right? Scientists do the same by publishing their results so others can learn from them.
  • Do It Again? : Sometimes one road trip just isn't enough. In the same way, scientists often repeat their experiments to make sure their findings are solid.

So there you have it! Those are the basic steps you need to follow when you're designing an experiment. Each step helps make sure that you're setting up a fair and reliable way to find answers to your big questions.

Let's get into examples of experimental designs.

1) True Experimental Design


In the world of experiments, the True Experimental Design is like the superstar quarterback everyone talks about. Born out of the early 20th-century work of statisticians like Ronald A. Fisher, this design is all about control, precision, and reliability.

Researchers carefully pick an independent variable to manipulate (remember, that's the thing they're changing on purpose) and measure the dependent variable (the effect they're studying). Then comes the magic trick—randomization. By randomly putting participants into either the control or experimental group, scientists make sure their experiment is as fair as possible.

No sneaky biases here!

True Experimental Design Pros

The pros of True Experimental Design are like the perks of a VIP ticket at a concert: you get the best and most trustworthy results. Because everything is controlled and randomized, you can feel pretty confident that the results aren't just a fluke.

True Experimental Design Cons

However, there's a catch. Sometimes, it's really tough to set up these experiments in a real-world situation. Imagine trying to control every single detail of your day, from the food you eat to the air you breathe. Not so easy, right?

True Experimental Design Uses

The fields that get the most out of True Experimental Designs are those that need super reliable results, like medical research.

When scientists were developing COVID-19 vaccines, they used this design to run clinical trials. They had control groups that received a placebo (a harmless substance with no effect) and experimental groups that got the actual vaccine. Then they measured how many people in each group got sick. By comparing the two, they could say, "Yep, this vaccine works!"

So next time you read about a groundbreaking discovery in medicine or technology, chances are a True Experimental Design was the VIP behind the scenes, making sure everything was on point. It's been the go-to for rigorous scientific inquiry for nearly a century, and it's not stepping off the stage anytime soon.

2) Quasi-Experimental Design

So, let's talk about the Quasi-Experimental Design. Think of this one as the cool cousin of True Experimental Design. It wants to be just like its famous relative, but it's a bit more laid-back and flexible. You'll find quasi-experimental designs when it's tricky to set up a full-blown True Experimental Design with all the bells and whistles.

Quasi-experiments still play with an independent variable, just like their stricter cousins. The big difference? They don't use randomization. It's like wanting to divide a bag of jelly beans equally between your friends, but you can't quite do it perfectly.

In real life, it's often not possible or ethical to randomly assign people to different groups, especially when dealing with sensitive topics like education or social issues. And that's where quasi-experiments come in.

Quasi-Experimental Design Pros

Even though they lack full randomization, quasi-experimental designs are like the Swiss Army knives of research: versatile and practical. They're especially popular in fields like education, sociology, and public policy.

For instance, when researchers wanted to figure out if the Head Start program , aimed at giving young kids a "head start" in school, was effective, they used a quasi-experimental design. They couldn't randomly assign kids to go or not go to preschool, but they could compare kids who did with kids who didn't.

Quasi-Experimental Design Cons

Of course, quasi-experiments come with their own bag of pros and cons. On the plus side, they're easier to set up and often cheaper than true experiments. But the flip side is that they're not as rock-solid in their conclusions. Because the groups aren't randomly assigned, there's always that little voice saying, "Hey, are we missing something here?"

Quasi-Experimental Design Uses

Quasi-Experimental Design gained traction in the mid-20th century. Researchers were grappling with real-world problems that didn't fit neatly into a laboratory setting. Plus, as society became more aware of ethical considerations, the need for flexible designs increased. So, the quasi-experimental approach was like a breath of fresh air for scientists wanting to study complex issues without a laundry list of restrictions.

In short, if True Experimental Design is the superstar quarterback, Quasi-Experimental Design is the versatile player who can adapt and still make significant contributions to the game.

3) Pre-Experimental Design

Now, let's talk about the Pre-Experimental Design. Imagine it as the beginner's skateboard you get before you try out for all the cool tricks. It has wheels, it rolls, but it's not built for the professional skatepark.

Similarly, pre-experimental designs give researchers a starting point. They let you dip your toes in the water of scientific research without diving in head-first.

So, what's the deal with pre-experimental designs?

Pre-Experimental Designs are the basic, no-frills versions of experiments. Researchers still mess around with an independent variable and measure a dependent variable, but they skip over the whole randomization thing and often don't even have a control group.

It's like baking a cake but forgetting the frosting and sprinkles; you'll get some results, but they might not be as complete or reliable as you'd like.

Pre-Experimental Design Pros

Why use such a simple setup? Because sometimes, you just need to get the ball rolling. Pre-experimental designs are great for quick-and-dirty research when you're short on time or resources. They give you a rough idea of what's happening, which you can use to plan more detailed studies later.

A good example of this is early studies on the effects of screen time on kids. Researchers couldn't control every aspect of a child's life, but they could easily ask parents to track how much time their kids spent in front of screens and then look for trends in behavior or school performance.

Pre-Experimental Design Cons

But here's the catch: pre-experimental designs are like that first draft of an essay. It helps you get your ideas down, but you wouldn't want to turn it in for a grade. Because these designs lack the rigorous structure of true or quasi-experimental setups, they can't give you rock-solid conclusions. They're more like clues or signposts pointing you in a certain direction.

Pre-Experimental Design Uses

This type of design became popular in the early stages of various scientific fields. Researchers used them to scratch the surface of a topic, generate some initial data, and then decide if it's worth exploring further. In other words, pre-experimental designs were the stepping stones that led to more complex, thorough investigations.

So, while Pre-Experimental Design may not be the star player on the team, it's like the practice squad that helps everyone get better. It's the starting point that can lead to bigger and better things.

4) Factorial Design

Now, buckle up, because we're moving into the world of Factorial Design, the multi-tasker of the experimental universe.

Imagine juggling not just one, but multiple balls in the air—that's what researchers do in a factorial design.

In Factorial Design, researchers are not satisfied with just studying one independent variable. Nope, they want to study two or more at the same time to see how they interact.

It's like cooking with several spices to see how they blend together to create unique flavors.

Factorial Design became the talk of the town with the rise of computers. Why? Because this design produces a lot of data, and computers are the number crunchers that help make sense of it all. So, thanks to our silicon friends, researchers can study complicated questions like, "How do diet AND exercise together affect weight loss?" instead of looking at just one of those factors.

Factorial Design Pros

This design's main selling point is its ability to explore interactions between variables. For instance, maybe a new study drug works really well for young people but not so great for older adults. A factorial design could reveal that age is a crucial factor, something you might miss if you only studied the drug's effectiveness in general. It's like being a detective who looks for clues not just in one room but throughout the entire house.

Factorial Design Cons

However, factorial designs have their own bag of challenges. First off, they can be pretty complicated to set up and run. Imagine coordinating a four-way intersection with lots of cars coming from all directions—you've got to make sure everything runs smoothly, or you'll end up with a traffic jam. Similarly, researchers need to carefully plan how they'll measure and analyze all the different variables.

Factorial Design Uses

Factorial designs are widely used in psychology to untangle the web of factors that influence human behavior. They're also popular in fields like marketing, where companies want to understand how different aspects like price, packaging, and advertising influence a product's success.

And speaking of success, the factorial design has been a hit since statisticians like Ronald A. Fisher (yep, him again!) expanded on it in the early-to-mid 20th century. It offered a more nuanced way of understanding the world, proving that sometimes, to get the full picture, you've got to juggle more than one ball at a time.

So, if True Experimental Design is the quarterback and Quasi-Experimental Design is the versatile player, Factorial Design is the strategist who sees the entire game board and makes moves accordingly.

5) Longitudinal Design

pill bottle

Alright, let's take a step into the world of Longitudinal Design. Picture it as the grand storyteller, the kind who doesn't just tell you about a single event but spins an epic tale that stretches over years or even decades. This design isn't about quick snapshots; it's about capturing the whole movie of someone's life or a long-running process.

You know how you might take a photo every year on your birthday to see how you've changed? Longitudinal Design is kind of like that, but for scientific research.

With Longitudinal Design, instead of measuring something just once, researchers come back again and again, sometimes over many years, to see how things are going. This helps them understand not just what's happening, but why it's happening and how it changes over time.

This design really started to shine in the latter half of the 20th century, when researchers began to realize that some questions can't be answered in a hurry. Think about studies that look at how kids grow up, or research on how a certain medicine affects you over a long period. These aren't things you can rush.

The famous Framingham Heart Study , started in 1948, is a prime example. It's been studying heart health in a small town in Massachusetts for decades, and the findings have shaped what we know about heart disease.

Longitudinal Design Pros

So, what's to love about Longitudinal Design? First off, it's the go-to for studying change over time, whether that's how people age or how a forest recovers from a fire.

Longitudinal Design Cons

But it's not all sunshine and rainbows. Longitudinal studies take a lot of patience and resources. Plus, keeping track of participants over many years can be like herding cats—difficult and full of surprises.

Longitudinal Design Uses

Despite these challenges, longitudinal studies have been key in fields like psychology, sociology, and medicine. They provide the kind of deep, long-term insights that other designs just can't match.

So, if the True Experimental Design is the superstar quarterback, and the Quasi-Experimental Design is the flexible athlete, then the Factorial Design is the strategist, and the Longitudinal Design is the wise elder who has seen it all and has stories to tell.

6) Cross-Sectional Design

Now, let's flip the script and talk about Cross-Sectional Design, the polar opposite of the Longitudinal Design. If Longitudinal is the grand storyteller, think of Cross-Sectional as the snapshot photographer. It captures a single moment in time, like a selfie that you take to remember a fun day. Researchers using this design collect all their data at one point, providing a kind of "snapshot" of whatever they're studying.

In a Cross-Sectional Design, researchers look at multiple groups all at the same time to see how they're different or similar.

This design rose to popularity in the mid-20th century, mainly because it's so quick and efficient. Imagine wanting to know how people of different ages feel about a new video game. Instead of waiting for years to see how opinions change, you could just ask people of all ages what they think right now. That's Cross-Sectional Design for you—fast and straightforward.

You'll find this type of research everywhere from marketing studies to healthcare. For instance, you might have heard about surveys asking people what they think about a new product or political issue. Those are usually cross-sectional studies, aimed at getting a quick read on public opinion.

Cross-Sectional Design Pros

So, what's the big deal with Cross-Sectional Design? Well, it's the go-to when you need answers fast and don't have the time or resources for a more complicated setup.

Cross-Sectional Design Cons

Remember, speed comes with trade-offs. While you get your results quickly, those results are stuck in time. They can't tell you how things change or why they're changing, just what's happening right now.

Cross-Sectional Design Uses

Also, because they're so quick and simple, cross-sectional studies often serve as the first step in research. They give scientists an idea of what's going on so they can decide if it's worth digging deeper. In that way, they're a bit like a movie trailer, giving you a taste of the action to see if you're interested in seeing the whole film.

So, in our lineup of experimental designs, if True Experimental Design is the superstar quarterback and Longitudinal Design is the wise elder, then Cross-Sectional Design is like the speedy running back—fast, agile, but not designed for long, drawn-out plays.

7) Correlational Design

Next on our roster is the Correlational Design, the keen observer of the experimental world. Imagine this design as the person at a party who loves people-watching. They don't interfere or get involved; they just observe and take mental notes about what's going on.

In a correlational study, researchers don't change or control anything; they simply observe and measure how two variables relate to each other.

The correlational design has roots in the early days of psychology and sociology. Pioneers like Sir Francis Galton used it to study how qualities like intelligence or height could be related within families.

This design is all about asking, "Hey, when this thing happens, does that other thing usually happen too?" For example, researchers might study whether students who have more study time get better grades or whether people who exercise more have lower stress levels.

One of the most famous correlational studies you might have heard of is the link between smoking and lung cancer. Back in the mid-20th century, researchers started noticing that people who smoked a lot also seemed to get lung cancer more often. They couldn't say smoking caused cancer—that would require a true experiment—but the strong correlation was a red flag that led to more research and eventually, health warnings.

Correlational Design Pros

This design is great at proving that two (or more) things can be related. Correlational designs can help prove that more detailed research is needed on a topic. They can help us see patterns or possible causes for things that we otherwise might not have realized.

Correlational Design Cons

But here's where you need to be careful: correlational designs can be tricky. Just because two things are related doesn't mean one causes the other. That's like saying, "Every time I wear my lucky socks, my team wins." Well, it's a fun thought, but those socks aren't really controlling the game.

Correlational Design Uses

Despite this limitation, correlational designs are popular in psychology, economics, and epidemiology, to name a few fields. They're often the first step in exploring a possible relationship between variables. Once a strong correlation is found, researchers may decide to conduct more rigorous experimental studies to examine cause and effect.

So, if the True Experimental Design is the superstar quarterback and the Longitudinal Design is the wise elder, the Factorial Design is the strategist, and the Cross-Sectional Design is the speedster, then the Correlational Design is the clever scout, identifying interesting patterns but leaving the heavy lifting of proving cause and effect to the other types of designs.

8) Meta-Analysis

Last but not least, let's talk about Meta-Analysis, the librarian of experimental designs.

If other designs are all about creating new research, Meta-Analysis is about gathering up everyone else's research, sorting it, and figuring out what it all means when you put it together.

Imagine a jigsaw puzzle where each piece is a different study. Meta-Analysis is the process of fitting all those pieces together to see the big picture.

The concept of Meta-Analysis started to take shape in the late 20th century, when computers became powerful enough to handle massive amounts of data. It was like someone handed researchers a super-powered magnifying glass, letting them examine multiple studies at the same time to find common trends or results.

You might have heard of the Cochrane Reviews in healthcare . These are big collections of meta-analyses that help doctors and policymakers figure out what treatments work best based on all the research that's been done.

For example, if ten different studies show that a certain medicine helps lower blood pressure, a meta-analysis would pull all that information together to give a more accurate answer.

Meta-Analysis Pros

The beauty of Meta-Analysis is that it can provide really strong evidence. Instead of relying on one study, you're looking at the whole landscape of research on a topic.

Meta-Analysis Cons

However, it does have some downsides. For one, Meta-Analysis is only as good as the studies it includes. If those studies are flawed, the meta-analysis will be too. It's like baking a cake: if you use bad ingredients, it doesn't matter how good your recipe is—the cake won't turn out well.

Meta-Analysis Uses

Despite these challenges, meta-analyses are highly respected and widely used in many fields like medicine, psychology, and education. They help us make sense of a world that's bursting with information by showing us the big picture drawn from many smaller snapshots.

So, in our all-star lineup, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, the Factorial Design is the strategist, the Cross-Sectional Design is the speedster, and the Correlational Design is the scout, then the Meta-Analysis is like the coach, using insights from everyone else's plays to come up with the best game plan.

9) Non-Experimental Design

Now, let's talk about a player who's a bit of an outsider on this team of experimental designs—the Non-Experimental Design. Think of this design as the commentator or the journalist who covers the game but doesn't actually play.

In a Non-Experimental Design, researchers are like reporters gathering facts, but they don't interfere or change anything. They're simply there to describe and analyze.

Non-Experimental Design Pros

So, what's the deal with Non-Experimental Design? Its strength is in description and exploration. It's really good for studying things as they are in the real world, without changing any conditions.

Non-Experimental Design Cons

Because a non-experimental design doesn't manipulate variables, it can't prove cause and effect. It's like a weather reporter: they can tell you it's raining, but they can't tell you why it's raining.

The downside? Since researchers aren't controlling variables, it's hard to rule out other explanations for what they observe. It's like hearing one side of a story—you get an idea of what happened, but it might not be the complete picture.

Non-Experimental Design Uses

Non-Experimental Design has always been a part of research, especially in fields like anthropology, sociology, and some areas of psychology.

For instance, if you've ever heard of studies that describe how people behave in different cultures or what teens like to do in their free time, that's often Non-Experimental Design at work. These studies aim to capture the essence of a situation, like painting a portrait instead of taking a snapshot.

One well-known example you might have heard about is the Kinsey Reports from the 1940s and 1950s, which described sexual behavior in men and women. Researchers interviewed thousands of people but didn't manipulate any variables like you would in a true experiment. They simply collected data to create a comprehensive picture of the subject matter.

So, in our metaphorical team of research designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, and Meta-Analysis is the coach, then Non-Experimental Design is the sports journalist—always present, capturing the game, but not part of the action itself.

10) Repeated Measures Design

white rat

Time to meet the Repeated Measures Design, the time traveler of our research team. If this design were a player in a sports game, it would be the one who keeps revisiting past plays to figure out how to improve the next one.

Repeated Measures Design is all about studying the same people or subjects multiple times to see how they change or react under different conditions.

The idea behind Repeated Measures Design isn't new; it's been around since the early days of psychology and medicine. You could say it's a cousin to the Longitudinal Design, but instead of looking at how things naturally change over time, it focuses on how the same group reacts to different things.

Imagine a study looking at how a new energy drink affects people's running speed. Instead of comparing one group that drank the energy drink to another group that didn't, a Repeated Measures Design would have the same group of people run multiple times—once with the energy drink, and once without. This way, you're really zeroing in on the effect of that energy drink, making the results more reliable.

Repeated Measures Design Pros

The strong point of Repeated Measures Design is that it's super focused. Because it uses the same subjects, you don't have to worry about differences between groups messing up your results.

Repeated Measures Design Cons

But the downside? Well, people can get tired or bored if they're tested too many times, which might affect how they respond.

Repeated Measures Design Uses

A famous example of this design is the "Little Albert" experiment, conducted by John B. Watson and Rosalie Rayner in 1920. In this study, a young boy was exposed to a white rat and other stimuli several times to see how his emotional responses changed. Though the ethical standards of this experiment are often criticized today, it was groundbreaking in understanding conditioned emotional responses.

In our metaphorical lineup of research designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, and Non-Experimental Design is the journalist, then Repeated Measures Design is the time traveler—always looping back to fine-tune the game plan.

11) Crossover Design

Next up is Crossover Design, the switch-hitter of the research world. If you're familiar with baseball, you'll know a switch-hitter is someone who can bat both right-handed and left-handed.

In a similar way, Crossover Design allows subjects to experience multiple conditions, flipping them around so that everyone gets a turn in each role.

This design is like the utility player on our team—versatile, flexible, and really good at adapting.

The Crossover Design has its roots in medical research and has been popular since the mid-20th century. It's often used in clinical trials to test the effectiveness of different treatments.

Crossover Design Pros

The neat thing about this design is that it allows each participant to serve as their own control group. Imagine you're testing two new kinds of headache medicine. Instead of giving one type to one group and another type to a different group, you'd give both kinds to the same people but at different times.

Crossover Design Cons

What's the big deal with Crossover Design? Its major strength is in reducing the "noise" that comes from individual differences. Since each person experiences all conditions, it's easier to see real effects. However, there's a catch. This design assumes that there's no lasting effect from the first condition when you switch to the second one. That might not always be true. If the first treatment has a long-lasting effect, it could mess up the results when you switch to the second treatment.

Crossover Design Uses

A well-known example of Crossover Design is in studies that look at the effects of different types of diets—like low-carb vs. low-fat diets. Researchers might have participants follow a low-carb diet for a few weeks, then switch them to a low-fat diet. By doing this, they can more accurately measure how each diet affects the same group of people.

In our team of experimental designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, and Repeated Measures Design is the time traveler, then Crossover Design is the versatile utility player—always ready to adapt and play multiple roles to get the most accurate results.

12) Cluster Randomized Design

Meet the Cluster Randomized Design, the team captain of group-focused research. In our imaginary lineup of experimental designs, if other designs focus on individual players, then Cluster Randomized Design is looking at how the entire team functions.

This approach is especially common in educational and community-based research, and it's been gaining traction since the late 20th century.

Here's how Cluster Randomized Design works: Instead of assigning individual people to different conditions, researchers assign entire groups, or "clusters." These could be schools, neighborhoods, or even entire towns. This helps you see how the new method works in a real-world setting.

Imagine you want to see if a new anti-bullying program really works. Instead of selecting individual students, you'd introduce the program to a whole school or maybe even several schools, and then compare the results to schools without the program.

Cluster Randomized Design Pros

Why use Cluster Randomized Design? Well, sometimes it's just not practical to assign conditions at the individual level. For example, you can't really have half a school following a new reading program while the other half sticks with the old one; that would be way too confusing! Cluster Randomization helps get around this problem by treating each "cluster" as its own mini-experiment.

Cluster Randomized Design Cons

There's a downside, too. Because entire groups are assigned to each condition, there's a risk that the groups might be different in some important way that the researchers didn't account for. That's like having one sports team that's full of veterans playing against a team of rookies; the match wouldn't be fair.

Cluster Randomized Design Uses

A famous example is the research conducted to test the effectiveness of different public health interventions, like vaccination programs. Researchers might roll out a vaccination program in one community but not in another, then compare the rates of disease in both.

In our metaphorical research team, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, and Crossover Design is the utility player, then Cluster Randomized Design is the team captain—always looking out for the group as a whole.

13) Mixed-Methods Design

Say hello to Mixed-Methods Design, the all-rounder or the "Renaissance player" of our research team.

Mixed-Methods Design uses a blend of both qualitative and quantitative methods to get a more complete picture, just like a Renaissance person who's good at lots of different things. It's like being good at both offense and defense in a sport; you've got all your bases covered!

Mixed-Methods Design is a fairly new kid on the block, becoming more popular in the late 20th and early 21st centuries as researchers began to see the value in using multiple approaches to tackle complex questions. It's the Swiss Army knife in our research toolkit, combining the best parts of other designs to be more versatile.

Here's how it could work: Imagine you're studying the effects of a new educational app on students' math skills. You might use quantitative methods like tests and grades to measure how much the students improve—that's the 'numbers part.'

But you also want to know how the students feel about math now, or why they think they got better or worse. For that, you could conduct interviews or have students fill out journals—that's the 'story part.'

Mixed-Methods Design Pros

So, what's the scoop on Mixed-Methods Design? The strength is its versatility and depth; you're not just getting numbers or stories, you're getting both, which gives a fuller picture.

Mixed-Methods Design Cons

But, it's also more challenging. Imagine trying to play two sports at the same time! You have to be skilled in different research methods and know how to combine them effectively.

Mixed-Methods Design Uses

A high-profile example of Mixed-Methods Design is research on climate change. Scientists use numbers and data to show temperature changes (quantitative), but they also interview people to understand how these changes are affecting communities (qualitative).

In our team of experimental designs, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, Crossover Design is the utility player, and Cluster Randomized Design is the team captain, then Mixed-Methods Design is the Renaissance player—skilled in multiple areas and able to bring them all together for a winning strategy.

14) Multivariate Design

Now, let's turn our attention to Multivariate Design, the multitasker of the research world.

If our lineup of research designs were like players on a basketball court, Multivariate Design would be the player dribbling, passing, and shooting all at once. This design doesn't just look at one or two things; it looks at several variables simultaneously to see how they interact and affect each other.

Multivariate Design is like baking a cake with many ingredients. Instead of just looking at how flour affects the cake, you also consider sugar, eggs, and milk all at once. This way, you understand how everything works together to make the cake taste good or bad.

Multivariate Design has been a go-to method in psychology, economics, and social sciences since the latter half of the 20th century. With the advent of computers and advanced statistical software, analyzing multiple variables at once became a lot easier, and Multivariate Design soared in popularity.

Multivariate Design Pros

So, what's the benefit of using Multivariate Design? Its power lies in its complexity. By studying multiple variables at the same time, you can get a really rich, detailed understanding of what's going on.

Multivariate Design Cons

But that complexity can also be a drawback. With so many variables, it can be tough to tell which ones are really making a difference and which ones are just along for the ride.

Multivariate Design Uses

Imagine you're a coach trying to figure out the best strategy to win games. You wouldn't just look at how many points your star player scores; you'd also consider assists, rebounds, turnovers, and maybe even how loud the crowd is. A Multivariate Design would help you understand how all these factors work together to determine whether you win or lose.

A well-known example of Multivariate Design is in market research. Companies often use this approach to figure out how different factors—like price, packaging, and advertising—affect sales. By studying multiple variables at once, they can find the best combination to boost profits.

In our metaphorical research team, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, Crossover Design is the utility player, Cluster Randomized Design is the team captain, and Mixed-Methods Design is the Renaissance player, then Multivariate Design is the multitasker—juggling many variables at once to get a fuller picture of what's happening.

15) Pretest-Posttest Design

Let's introduce Pretest-Posttest Design, the "Before and After" superstar of our research team. You've probably seen those before-and-after pictures in ads for weight loss programs or home renovations, right?

Well, this design is like that, but for science! Pretest-Posttest Design checks out what things are like before the experiment starts and then compares that to what things are like after the experiment ends.

This design is one of the classics, a staple in research for decades across various fields like psychology, education, and healthcare. It's so simple and straightforward that it has stayed popular for a long time.

In Pretest-Posttest Design, you measure your subject's behavior or condition before you introduce any changes—that's your "before" or "pretest." Then you do your experiment, and after it's done, you measure the same thing again—that's your "after" or "posttest."

Pretest-Posttest Design Pros

What makes Pretest-Posttest Design special? It's pretty easy to understand and doesn't require fancy statistics.

Pretest-Posttest Design Cons

But there are some pitfalls. For example, what if the kids in our math example get better at multiplication just because they're older or because they've taken the test before? That would make it hard to tell if the program is really effective or not.

Pretest-Posttest Design Uses

Let's say you're a teacher and you want to know if a new math program helps kids get better at multiplication. First, you'd give all the kids a multiplication test—that's your pretest. Then you'd teach them using the new math program. At the end, you'd give them the same test again—that's your posttest. If the kids do better on the second test, you might conclude that the program works.

One famous use of Pretest-Posttest Design is in evaluating the effectiveness of driver's education courses. Researchers will measure people's driving skills before and after the course to see if they've improved.

16) Solomon Four-Group Design

Next up is the Solomon Four-Group Design, the "chess master" of our research team. This design is all about strategy and careful planning. Named after Richard L. Solomon who introduced it in the 1940s, this method tries to correct some of the weaknesses in simpler designs, like the Pretest-Posttest Design.

Here's how it rolls: The Solomon Four-Group Design uses four different groups to test a hypothesis. Two groups get a pretest, then one of them receives the treatment or intervention, and both get a posttest. The other two groups skip the pretest, and only one of them receives the treatment before they both get a posttest.

Sound complicated? It's like playing 4D chess; you're thinking several moves ahead!

Solomon Four-Group Design Pros

What's the pro and con of the Solomon Four-Group Design? On the plus side, it provides really robust results because it accounts for so many variables.

Solomon Four-Group Design Cons

The downside? It's a lot of work and requires a lot of participants, making it more time-consuming and costly.

Solomon Four-Group Design Uses

Let's say you want to figure out if a new way of teaching history helps students remember facts better. Two classes take a history quiz (pretest), then one class uses the new teaching method while the other sticks with the old way. Both classes take another quiz afterward (posttest).

Meanwhile, two more classes skip the initial quiz, and then one uses the new method before both take the final quiz. Comparing all four groups will give you a much clearer picture of whether the new teaching method works and whether the pretest itself affects the outcome.

The Solomon Four-Group Design is less commonly used than simpler designs but is highly respected for its ability to control for more variables. It's a favorite in educational and psychological research where you really want to dig deep and figure out what's actually causing changes.

17) Adaptive Designs

Now, let's talk about Adaptive Designs, the chameleons of the experimental world.

Imagine you're a detective, and halfway through solving a case, you find a clue that changes everything. You wouldn't just stick to your old plan; you'd adapt and change your approach, right? That's exactly what Adaptive Designs allow researchers to do.

In an Adaptive Design, researchers can make changes to the study as it's happening, based on early results. In a traditional study, once you set your plan, you stick to it from start to finish.

Adaptive Design Pros

This method is particularly useful in fast-paced or high-stakes situations, like developing a new vaccine in the middle of a pandemic. The ability to adapt can save both time and resources, and more importantly, it can save lives by getting effective treatments out faster.

Adaptive Design Cons

But Adaptive Designs aren't without their drawbacks. They can be very complex to plan and carry out, and there's always a risk that the changes made during the study could introduce bias or errors.

Adaptive Design Uses

Adaptive Designs are most often seen in clinical trials, particularly in the medical and pharmaceutical fields.

For instance, if a new drug is showing really promising results, the study might be adjusted to give more participants the new treatment instead of a placebo. Or if one dose level is showing bad side effects, it might be dropped from the study.

The best part is, these changes are pre-planned. Researchers lay out in advance what changes might be made and under what conditions, which helps keep everything scientific and above board.

In terms of applications, besides their heavy usage in medical and pharmaceutical research, Adaptive Designs are also becoming increasingly popular in software testing and market research. In these fields, being able to quickly adjust to early results can give companies a significant advantage.

Adaptive Designs are like the agile startups of the research world—quick to pivot, keen to learn from ongoing results, and focused on rapid, efficient progress. However, they require a great deal of expertise and careful planning to ensure that the adaptability doesn't compromise the integrity of the research.

18) Bayesian Designs

Next, let's dive into Bayesian Designs, the data detectives of the research universe. Named after Thomas Bayes, an 18th-century statistician and minister, this design doesn't just look at what's happening now; it also takes into account what's happened before.

Imagine if you were a detective who not only looked at the evidence in front of you but also used your past cases to make better guesses about your current one. That's the essence of Bayesian Designs.

Bayesian Designs are like detective work in science. As you gather more clues (or data), you update your best guess on what's really happening. This way, your experiment gets smarter as it goes along.

In the world of research, Bayesian Designs are most notably used in areas where you have some prior knowledge that can inform your current study. For example, if earlier research shows that a certain type of medicine usually works well for a specific illness, a Bayesian Design would include that information when studying a new group of patients with the same illness.

Bayesian Design Pros

One of the major advantages of Bayesian Designs is their efficiency. Because they use existing data to inform the current experiment, often fewer resources are needed to reach a reliable conclusion.

Bayesian Design Cons

However, they can be quite complicated to set up and require a deep understanding of both statistics and the subject matter at hand.

Bayesian Design Uses

Bayesian Designs are highly valued in medical research, finance, environmental science, and even in Internet search algorithms. Their ability to continually update and refine hypotheses based on new evidence makes them particularly useful in fields where data is constantly evolving and where quick, informed decisions are crucial.

Here's a real-world example: In the development of personalized medicine, where treatments are tailored to individual patients, Bayesian Designs are invaluable. If a treatment has been effective for patients with similar genetics or symptoms in the past, a Bayesian approach can use that data to predict how well it might work for a new patient.

This type of design is also increasingly popular in machine learning and artificial intelligence. In these fields, Bayesian Designs help algorithms "learn" from past data to make better predictions or decisions in new situations. It's like teaching a computer to be a detective that gets better and better at solving puzzles the more puzzles it sees.

19) Covariate Adaptive Randomization

old person and young person

Now let's turn our attention to Covariate Adaptive Randomization, which you can think of as the "matchmaker" of experimental designs.

Picture a soccer coach trying to create the most balanced teams for a friendly match. They wouldn't just randomly assign players; they'd take into account each player's skills, experience, and other traits.

Covariate Adaptive Randomization is all about creating the most evenly matched groups possible for an experiment.

In traditional randomization, participants are allocated to different groups purely by chance. This is a pretty fair way to do things, but it can sometimes lead to unbalanced groups.

Imagine if all the professional-level players ended up on one soccer team and all the beginners on another; that wouldn't be a very informative match! Covariate Adaptive Randomization fixes this by using important traits or characteristics (called "covariates") to guide the randomization process.

Covariate Adaptive Randomization Pros

The benefits of this design are pretty clear: it aims for balance and fairness, making the final results more trustworthy.

Covariate Adaptive Randomization Cons

But it's not perfect. It can be complex to implement and requires a deep understanding of which characteristics are most important to balance.

Covariate Adaptive Randomization Uses

This design is particularly useful in medical trials. Let's say researchers are testing a new medication for high blood pressure. Participants might have different ages, weights, or pre-existing conditions that could affect the results.

Covariate Adaptive Randomization would make sure that each treatment group has a similar mix of these characteristics, making the results more reliable and easier to interpret.

In practical terms, this design is often seen in clinical trials for new drugs or therapies, but its principles are also applicable in fields like psychology, education, and social sciences.

For instance, in educational research, it might be used to ensure that classrooms being compared have similar distributions of students in terms of academic ability, socioeconomic status, and other factors.

Covariate Adaptive Randomization is like the wise elder of the group, ensuring that everyone has an equal opportunity to show their true capabilities, thereby making the collective results as reliable as possible.

20) Stepped Wedge Design

Let's now focus on the Stepped Wedge Design, a thoughtful and cautious member of the experimental design family.

Imagine you're trying out a new gardening technique, but you're not sure how well it will work. You decide to apply it to one section of your garden first, watch how it performs, and then gradually extend the technique to other sections. This way, you get to see its effects over time and across different conditions. That's basically how Stepped Wedge Design works.

In a Stepped Wedge Design, all participants or clusters start off in the control group, and then, at different times, they 'step' over to the intervention or treatment group. This creates a wedge-like pattern over time where more and more participants receive the treatment as the study progresses. It's like rolling out a new policy in phases, monitoring its impact at each stage before extending it to more people.

Stepped Wedge Design Pros

The Stepped Wedge Design offers several advantages. Firstly, it allows for the study of interventions that are expected to do more good than harm, which makes it ethically appealing.

Secondly, it's useful when resources are limited and it's not feasible to roll out a new treatment to everyone at once. Lastly, because everyone eventually receives the treatment, it can be easier to get buy-in from participants or organizations involved in the study.

Stepped Wedge Design Cons

However, this design can be complex to analyze because it has to account for both the time factor and the changing conditions in each 'step' of the wedge. And like any study where participants know they're receiving an intervention, there's the potential for the results to be influenced by the placebo effect or other biases.

Stepped Wedge Design Uses

This design is particularly useful in health and social care research. For instance, if a hospital wants to implement a new hygiene protocol, it might start in one department, assess its impact, and then roll it out to other departments over time. This allows the hospital to adjust and refine the new protocol based on real-world data before it's fully implemented.

In terms of applications, Stepped Wedge Designs are commonly used in public health initiatives, organizational changes in healthcare settings, and social policy trials. They are particularly useful in situations where an intervention is being rolled out gradually and it's important to understand its impacts at each stage.

21) Sequential Design

Next up is Sequential Design, the dynamic and flexible member of our experimental design family.

Imagine you're playing a video game where you can choose different paths. If you take one path and find a treasure chest, you might decide to continue in that direction. If you hit a dead end, you might backtrack and try a different route. Sequential Design operates in a similar fashion, allowing researchers to make decisions at different stages based on what they've learned so far.

In a Sequential Design, the experiment is broken down into smaller parts, or "sequences." After each sequence, researchers pause to look at the data they've collected. Based on those findings, they then decide whether to stop the experiment because they've got enough information, or to continue and perhaps even modify the next sequence.

Sequential Design Pros

This allows for a more efficient use of resources, as you're only continuing with the experiment if the data suggests it's worth doing so.

One of the great things about Sequential Design is its efficiency. Because you're making data-driven decisions along the way, you can often reach conclusions more quickly and with fewer resources.

Sequential Design Cons

However, it requires careful planning and expertise to ensure that these "stop or go" decisions are made correctly and without bias.

Sequential Design Uses

In terms of its applications, besides healthcare and medicine, Sequential Design is also popular in quality control in manufacturing, environmental monitoring, and financial modeling. In these areas, being able to make quick decisions based on incoming data can be a big advantage.

This design is often used in clinical trials involving new medications or treatments. For example, if early results show that a new drug has significant side effects, the trial can be stopped before more people are exposed to it.

On the flip side, if the drug is showing promising results, the trial might be expanded to include more participants or to extend the testing period.

Think of Sequential Design as the nimble athlete of experimental designs, capable of quick pivots and adjustments to reach the finish line in the most effective way possible. But just like an athlete needs a good coach, this design requires expert oversight to make sure it stays on the right track.

22) Field Experiments

Last but certainly not least, let's explore Field Experiments—the adventurers of the experimental design world.

Picture a scientist leaving the controlled environment of a lab to test a theory in the real world, like a biologist studying animals in their natural habitat or a social scientist observing people in a real community. These are Field Experiments, and they're all about getting out there and gathering data in real-world settings.

Field Experiments embrace the messiness of the real world, unlike laboratory experiments, where everything is controlled down to the smallest detail. This makes them both exciting and challenging.

Field Experiment Pros

On one hand, the results often give us a better understanding of how things work outside the lab.

While Field Experiments offer real-world relevance, they come with challenges like controlling for outside factors and the ethical considerations of intervening in people's lives without their knowledge.

Field Experiment Cons

On the other hand, the lack of control can make it harder to tell exactly what's causing what. Yet, despite these challenges, they remain a valuable tool for researchers who want to understand how theories play out in the real world.

Field Experiment Uses

Let's say a school wants to improve student performance. In a Field Experiment, they might change the school's daily schedule for one semester and keep track of how students perform compared to another school where the schedule remained the same.

Because the study is happening in a real school with real students, the results could be very useful for understanding how the change might work in other schools. But since it's the real world, lots of other factors—like changes in teachers or even the weather—could affect the results.

Field Experiments are widely used in economics, psychology, education, and public policy. For example, you might have heard of the famous "Broken Windows" experiment in the 1980s that looked at how small signs of disorder, like broken windows or graffiti, could encourage more serious crime in neighborhoods. This experiment had a big impact on how cities think about crime prevention.

From the foundational concepts of control groups and independent variables to the sophisticated layouts like Covariate Adaptive Randomization and Sequential Design, it's clear that the realm of experimental design is as varied as it is fascinating.

We've seen that each design has its own special talents, ideal for specific situations. Some designs, like the Classic Controlled Experiment, are like reliable old friends you can always count on.

Others, like Sequential Design, are flexible and adaptable, making quick changes based on what they learn. And let's not forget the adventurous Field Experiments, which take us out of the lab and into the real world to discover things we might not see otherwise.

Choosing the right experimental design is like picking the right tool for the job. The method you choose can make a big difference in how reliable your results are and how much people will trust what you've discovered. And as we've learned, there's a design to suit just about every question, every problem, and every curiosity.

So the next time you read about a new discovery in medicine, psychology, or any other field, you'll have a better understanding of the thought and planning that went into figuring things out. Experimental design is more than just a set of rules; it's a structured way to explore the unknown and answer questions that can change the world.

Related posts:

  • Experimental Psychologist Career (Salary + Duties + Interviews)
  • 40+ Famous Psychologists (Images + Biographies)
  • 11+ Psychology Experiment Ideas (Goals + Methods)
  • The Little Albert Experiment
  • 41+ White Collar Job Examples (Salary + Path)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources





Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

  • How it works

A Complete Guide to Experimental Research

Published by Carmen Troy at August 14th, 2021 , Revised On August 25, 2023

A Quick Guide to Experimental Research

Experimental research refers to the experiments conducted in the laboratory or observation under controlled conditions. Researchers try to find out the cause-and-effect relationship between two or more variables. 

The subjects/participants in the experiment are selected and observed. They receive treatments such as changes in room temperature, diet, atmosphere, or given a new drug to observe the changes. Experiments can vary from personal and informal natural comparisons. It includes three  types of variables ;

  • Independent variable
  • Dependent variable
  • Controlled variable

Before conducting experimental research, you need to have a clear understanding of the experimental design. A true experimental design includes  identifying a problem , formulating a  hypothesis , determining the number of variables, selecting and assigning the participants,  types of research designs , meeting ethical values, etc.

There are many  types of research  methods that can be classified based on:

  • The nature of the problem to be studied
  • Number of participants (individual or groups)
  • Number of groups involved (Single group or multiple groups)
  • Types of data collection methods (Qualitative/Quantitative/Mixed methods)
  • Number of variables (single independent variable/ factorial two independent variables)
  • The experimental design

Types of Experimental Research

Types of Experimental Research

Laboratory Experiment  

It is also called experimental research. This type of research is conducted in the laboratory. A researcher can manipulate and control the variables of the experiment.

Example: Milgram’s experiment on obedience.

Field Experiment

Field experiments are conducted in the participants’ open field and the environment by incorporating a few artificial changes. Researchers do not have control over variables under measurement. Participants know that they are taking part in the experiment.

Natural Experiments

The experiment is conducted in the natural environment of the participants. The participants are generally not informed about the experiment being conducted on them.

Examples: Estimating the health condition of the population. Did the increase in tobacco prices decrease the sale of tobacco? Did the usage of helmets decrease the number of head injuries of the bikers?


A quasi-experiment is an experiment that takes advantage of natural occurrences. Researchers cannot assign random participants to groups.

Example: Comparing the academic performance of the two schools.

Does your Research Methodology Have the Following?

  • Great Research/Sources
  • Perfect Language
  • Accurate Sources

If not, we can help. Our panel of experts makes sure to keep the 3 pillars of Research Methodology strong.


How to Conduct Experimental Research?

Step 1. identify and define the problem.

You need to identify a problem as per your field of study and describe your  research question .

Example: You want to know about the effects of social media on the behavior of youngsters. It would help if you found out how much time students spend on the internet daily.

Example: You want to find out the adverse effects of junk food on human health. It would help if you found out how junk food frequent consumption can affect an individual’s health.

Step 2. Determine the Number of Levels of Variables

You need to determine the number of  variables . The independent variable is the predictor and manipulated by the researcher. At the same time, the dependent variable is the result of the independent variable.

In the first example, we predicted that increased social media usage negatively correlates with youngsters’ negative behaviour.

In the second example, we predicted the positive correlation between a balanced diet and a good healthy and negative relationship between junk food consumption and multiple health issues.

Step 3. Formulate the Hypothesis

One of the essential aspects of experimental research is formulating a hypothesis . A researcher studies the cause and effect between the independent and dependent variables and eliminates the confounding variables. A  null hypothesis is when there is no significant relationship between the dependent variable and the participants’ independent variables. A researcher aims to disprove the theory. H0 denotes it.  The  Alternative hypothesis  is the theory that a researcher seeks to prove.  H1or HA denotes it. 

Why should you use a Plagiarism Detector for your Paper?

It ensures:

  • Original work
  • Structure and Clarity
  • Zero Spelling Errors
  • No Punctuation Faults

Plagiarism Detector for your Paper

Step 4. Selection and Assignment of the Subjects

It’s an essential feature that differentiates the experimental design from other research designs . You need to select the number of participants based on the requirements of your experiment. Then the participants are assigned to the treatment group. There should be a control group without any treatment to study the outcomes without applying any changes compared to the experimental group.

Randomisation:  The participants are selected randomly and assigned to the experimental group. It is known as probability sampling. If the selection is not random, it’s considered non-probability sampling.

Stratified sampling : It’s a type of random selection of the participants by dividing them into strata and randomly selecting them from each level. 

Matching:   Even though participants are selected randomly, they can be assigned to the various comparison groups. Another procedure for selecting the participants is ‘matching.’ The participants are selected from the controlled group to match the experimental groups’ participants in all aspects based on the dependent variables.  

What is Replicability?

When a researcher uses the same methodology  and subject groups to carry out the experiments, it’s called ‘replicability.’ The  results will be similar each time. Researchers usually replicate their own work to strengthen external validity.

Step 5. Select a Research Design

You need to select a  research design  according to the requirements of your experiment. There are many types of experimental designs as follows.

Step 6. Meet Ethical and Legal Requirements

  • Participants of the research should not be harmed.
  • The dignity and confidentiality of the research should be maintained.
  • The consent of the participants should be taken before experimenting.
  • The privacy of the participants should be ensured.
  • Research data should remain confidential.
  • The anonymity of the participants should be ensured.
  • The rules and objectives of the experiments should be followed strictly.
  • Any wrong information or data should be avoided.

Tips for Meeting the Ethical Considerations

To meet the ethical considerations, you need to ensure that.

  • Participants have the right to withdraw from the experiment.
  • They should be aware of the required information about the experiment.
  • It would help if you avoided offensive or unacceptable language while framing the questions of interviews, questionnaires, or Focus groups.
  • You should ensure the privacy and anonymity of the participants.
  • You should acknowledge the sources and authors in your dissertation using any referencing styles such as APA/MLA/Harvard referencing style.

Step 7. Collect and Analyse Data.

Collect the data  by using suitable data collection according to your experiment’s requirement, such as observations,  case studies ,  surveys ,  interviews , questionnaires, etc. Analyse the obtained information.

Step 8. Present and Conclude the Findings of the Study.

Write the report of your research. Present, conclude, and explain the outcomes of your study .  

Frequently Asked Questions

What is the first step in conducting an experimental research.

The first step in conducting experimental research is to define your research question or hypothesis. Clearly outline the purpose and expectations of your experiment to guide the entire research process.

You May Also Like

There may be two kinds of errors that can occur when testing your hypothesis. These errors are known as the Type 1 error and the Type 2 error.

The authenticity of dissertation is largely influenced by the research method employed. Here we present the most notable research methods for dissertation.

T-distribution describes the probability of data. Although it looks similar to a normal distribution with a bell curve, it has a lower height and a broader curve.






  • How It Works

helpful professor logo

10 Real-Life Experimental Research Examples

experimental reseasrch examples and definition, explained below

Experimental research is research that involves using a scientific approach to examine research variables.

Below are some famous experimental research examples. Some of these studies were conducted quite a long time ago. Some were so controversial that they would never be attempted today. And some were so unethical that they would never be permitted again.

A few of these studies have also had very practical implications for modern society involving criminal investigations, the impact of television and the media, and the power of authority figures.

Examples of Experimental Research

1. pavlov’s dog: classical conditioning.

Dr. Ivan Pavlov was a physiologist studying animal digestive systems in the 1890s. In one study, he presented food to a dog and then collected its salivatory juices via a tube attached to the inside of the animal’s mouth.

As he was conducting his experiments, an annoying thing kept happening; every time his assistant would enter the lab with a bowl of food for the experiment, the dog would start to salivate at the sound of the assistant’s footsteps.

Although this disrupted his experimental procedures, eventually, it dawned on Pavlov that something else was to be learned from this problem.

Pavlov learned that animals could be conditioned into responding on a physiological level to various stimuli, such as food, or even the sound of the assistant bringing the food down the hall.

Hence, the creation of the theory of classical conditioning. One of the most influential theories in psychology still to this day.

2. Bobo Doll Experiment: Observational Learning

Dr. Albert Bandura conducted one of the most influential studies in psychology in the 1960s at Stanford University.

His intention was to demonstrate that cognitive processes play a fundamental role in learning. At the time, Behaviorism was the predominant theoretical perspective, which completely rejected all inferences to constructs not directly observable .

So, Bandura made two versions of a video. In version #1, an adult behaved aggressively with a Bobo doll by throwing it around the room and striking it with a wooden mallet. In version #2, the adult played gently with the doll by carrying it around to different parts of the room and pushing it gently.

After showing children one of the two versions, they were taken individually to a room that had a Bobo doll. Their behavior was observed and the results indicated that children that watched version #1 of the video were far more aggressive than those that watched version #2.

Not only did Bandura’s Bobo doll study form the basis of his social learning theory, it also helped start the long-lasting debate about the harmful effects of television on children.

Worth Checking Out: What’s the Difference between Experimental and Observational Studies?

3. The Asch Study: Conformity  

Dr. Solomon Asch was interested in conformity and the power of group pressure. His study was quite simple. Different groups of students were shown lines of varying lengths and asked, “which line is longest.”

However, out of each group, only one was an actual participant. All of the others in the group were working with Asch and instructed to say that one of the shorter lines was actually the longest.

Nearly every time, the real participant gave an answer that was clearly wrong, but the same as the rest of the group.

The study is one of the most famous in psychology because it demonstrated the power of social pressure so clearly.  

4. Car Crash Experiment: Leading Questions

In 1974, Dr. Elizabeth Loftus and her undergraduate student John Palmer designed a study to examine how fallible human judgement is under certain conditions.

They showed groups of research participants videos that depicted accidents between two cars. Later, the participants were asked to estimate the rate of speed of the cars.

Here’s the interesting part. All participants were asked the same question with the exception of a single word: “How fast were the two cars going when they ______into each other?” The word in the blank varied in its implied severity.

Participants’ estimates were completely affected by the word in the blank. When the word “smashed” was used, participants estimated the cars were going much faster than when the word “contacted” was used. 

This line of research has had a huge impact on law enforcement interrogation practices, line-up procedures, and the credibility of eyewitness testimony .

5. The 6 Universal Emotions

The research by Dr. Paul Ekman has been influential in the study of emotions. His early research revealed that all human beings, regardless of culture, experience the same 6 basic emotions: happiness, sadness, disgust, fear, surprise, and anger.

In the late 1960s, Ekman traveled to Papua New Guinea. He approached a tribe of people that were extremely isolated from modern culture. With the help of a guide, he would describe different situations to individual members and take a photo of their facial expressions.

The situations included: if a good friend had come; their child had just died; they were about to get into a fight; or had just stepped on a dead pig.

The facial expressions of this highly isolated tribe were nearly identical to those displayed by people in his studies in California.

6. The Little Albert Study: Development of Phobias  

Dr. John Watson and Dr. Rosalie Rayner sought to demonstrate how irrational fears were developed.

Their study involved showing a white rat to an infant. Initially, the child had no fear of the rat. However, the researchers then began to create a loud noise each time they showed the child the rat by striking a steel bar with a hammer.

Eventually, the child started to cry and feared the white rat. The child also developed a fear of other white, furry objects such as white rabbits and a Santa’s beard.

This study is famous because it demonstrated one way in which phobias are developed in humans, and also because it is now considered highly unethical for its mistreatment of children, lack of study debriefing , and intent to instil fear.  

7. A Class Divided: Discrimination

Perhaps one of the most famous psychological experiments of all time was not conducted by a psychologist. In 1968, third grade teacher Jane Elliott conducted one of the most famous studies on discrimination in history. It took place shortly after the assassination of Dr. Martin Luther King, Jr.

She divided her class into two groups: brown-eyed and blue-eyed students. On the first day of the experiment, she announced the blue-eyed group as superior. They received extra privileges and were told not to intermingle with the brown-eyed students.

They instantly became happier, more self-confident, and started performing better academically.

The next day, the roles were reversed. The brown-eyed students were announced as superior and given extra privileges. Their behavior changed almost immediately and exhibited the same patterns as the other group had the day before.

This study was a remarkable demonstration of the harmful effects of discrimination.

8. The Milgram Study: Obedience to Authority

Dr. Stanley Milgram conducted one of the most influential experiments on authority and obedience in 1961 at Yale University.

Participants were told they were helping study the effects of punishment on learning. Their job was to administer an electric shock to another participant each time they made an error on a test. The other participant was actually an actor in another room that only pretended to be shocked.

However, each time a mistake was made, the level of shock was supposed to increase, eventually reaching quite high voltage levels. When the real participants expressed reluctance to administer the next level of shock, the experimenter, who served as the authority figure in the room, pressured the participant to deliver the next level of shock.

The results of this study were truly astounding. A surprisingly high percentage of participants continued to deliver the shocks to the highest level possible despite the very strong objections by the “other participant.”

This study demonstrated the power of authority figures.

9. The Marshmallow Test: Delay of Gratification

The Marshmallow Test was designed by Dr. Walter Mischel to examine the role of delay of gratification and academic success.

Children ages 4-6 years old were seated at a table with one marshmallow placed in front of them. The experimenter explained that if they did not eat the marshmallow, they would receive a second one. They could then eat both.

The children that were able to delay gratification the longest were rated as significantly more competent later in life and earned higher SAT scores than children that could not withstand the temptation.  

The study has since been conceptually replicated by other researchers that have revealed additional factors involved in delay of gratification and academic achievement.

10. Stanford Prison Study: Deindividuation

Dr. Philip Zimbardo conducted one of the most famous psychological studies of all time in 1971. The purpose of the study was to investigate how the power structure in some situations can lead people to behave in ways highly uncharacteristic of their usual behavior.

College students were recruited to participate in the study. Some were randomly assigned to play the role of prison guard. The others were actually “arrested” by real police officers. They were blindfolded and taken to the basement of the university’s psychology building which had been converted to look like a prison.

Although the study was supposed to last 2 weeks, it had to be halted due to the abusive actions of the guards.

The study demonstrated that people will behave in ways they never thought possible when placed in certain roles and power structures. Although the Stanford Prison Study is so well-known for what it revealed about human nature, it is also famous because of the numerous violations of ethical principles.

The studies above are varied and focused on many different aspects of human behavior . However, each example of experimental research listed above has had a lasting impact on society. Some have had tremendous sway in how very practical matters are conducted, such as criminal investigations and legal proceedings.

Psychology is a field of study that is often not fully understood by the general public. When most people hear the term “psychology,” they think of a therapist that listens carefully to the revealing statements of a patient. The therapist then tries to help their patient learn to cope with many of life’s challenges. Nothing wrong with that.

In reality however, most psychologists are researchers. They spend most of their time designing and conducting experiments to enhance our understanding of the human condition.

Asch SE. (1956). Studies of independence and conformity: I. A minority of one against a unanimous majority . Psychological Monographs: General and Applied, 70 (9),1-70. https://doi.org/doi:10.1037/h0093718

Bandura A. (1965). Influence of models’ reinforcement contingencies on the acquisition of imitative responses. Journal of Personality and Social Psychology, 1 (6), 589-595. https://doi.org/doi:10.1037/h0022070

Beck, H. P., Levinson, S., & Irons, G. (2009). Finding little Albert: A journey to John B. Watson’s infant laboratory.  American Psychologist, 64(7),  605-614.

Ekman, P. & Friesen, W. V. (1971).  Constants Across Cultures in the Face and motion .  Journal of Personality and Social Psychology, 17(2) , 124-129.

Loftus, E. F., & Palmer, J. C. (1974). Reconstruction of automobile destruction: An example of

the interaction between language and memory. Journal of Verbal Learning and Verbal

Behavior, 13 (5), 585–589.

Milgram S (1965). Some Conditions of Obedience and Disobedience to Authority. Human Relations, 18(1), 57–76.

Mischel, W., & Ebbesen, E. B. (1970). Attention in delay of gratification . Journal of Personality and Social Psychology, 16 (2), 329-337.

Pavlov, I.P. (1927). Conditioned Reflexes . London: Oxford University Press.

Watson, J. & Rayner, R. (1920). Conditioned emotional reactions.  Journal of Experimental Psychology, 3 , 1-14. Zimbardo, P., Haney, C., Banks, W. C., & Jaffe, D. (1971). The Stanford Prison Experiment: A simulation study of the psychology of imprisonment . Stanford University, Stanford Digital Repository, Stanford.


Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 5 Top Tips for Succeeding at University
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 50 Durable Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 100 Consumer Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 30 Globalization Pros and Cons

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

example of research questions in experimental research

Yearly paid plans are up to 65% off for the spring sale. Limited time only! 🌸

  • Form Builder
  • Survey Maker
  • AI Form Generator
  • AI Survey Tool
  • AI Quiz Maker
  • Store Builder
  • WordPress Plugin

example of research questions in experimental research

HubSpot CRM

example of research questions in experimental research

Google Sheets

example of research questions in experimental research

Google Analytics

example of research questions in experimental research

Microsoft Excel

example of research questions in experimental research

  • Popular Forms
  • Job Application Form Template
  • Rental Application Form Template
  • Hotel Accommodation Form Template
  • Online Registration Form Template
  • Employment Application Form Template
  • Application Forms
  • Booking Forms
  • Consent Forms
  • Contact Forms
  • Donation Forms
  • Customer Satisfaction Surveys
  • Employee Satisfaction Surveys
  • Evaluation Surveys
  • Feedback Surveys
  • Market Research Surveys
  • Personality Quiz Template
  • Geography Quiz Template
  • Math Quiz Template
  • Science Quiz Template
  • Vocabulary Quiz Template

Try without registration Quick Start

Read engaging stories, how-to guides, learn about forms.app features.

Inspirational ready-to-use templates for getting started fast and powerful.

Spot-on guides on how to use forms.app and make the most out of it.

example of research questions in experimental research

See the technical measures we take and learn how we keep your data safe and secure.

  • Integrations
  • Help Center
  • Sign In Sign Up Free
  • What is experimental research: Definition, types & examples

What is experimental research: Definition, types & examples

Defne Çobanoğlu

Life and its secrets can only be proven right or wrong with experimentation. You can speculate and theorize all you wish, but as William Blake once said, “ The true method of knowledge is experiment. ”

It may be a long process and time-consuming, but it is rewarding like no other. And there are multiple ways and methods of experimentation that can help shed light on matters. In this article, we explained the definition, types of experimental research, and some experimental research examples . Let us get started with the definition!

  • What is experimental research?

Experimental research is the process of carrying out a study conducted with a scientific approach using two or more variables. In other words, it is when you gather two or more variables and compare and test them in controlled environments. 

With experimental research, researchers can also collect detailed information about the participants by doing pre-tests and post-tests to learn even more information about the process. With the result of this type of study, the researcher can make conscious decisions. 

The more control the researcher has over the internal and extraneous variables, the better it is for the results. There may be different circumstances when a balanced experiment is not possible to conduct. That is why are are different research designs to accommodate the needs of researchers.

  • 3 Types of experimental research designs

There is more than one dividing point in experimental research designs that differentiates them from one another. These differences are about whether or not there are pre-tests or post-tests done and how the participants are divided into groups. These differences decide which experimental research design is used.

Types of experimental research designs

Types of experimental research designs

1 - Pre-experimental design

This is the most basic method of experimental study. The researcher doing pre-experimental research evaluates a group of dependent variables after changing the independent variables . The results of this scientific method are not satisfactory, and future studies are planned accordingly. The pre-experimental research can be divided into three types:

A. One shot case study research design

Only one variable is considered in this one-shot case study design. This research method is conducted in the post-test part of a study, and the aim is to observe the changes in the effect of the independent variable.

B. One group pre-test post-test research design

In this type of research, a single group is given a pre-test before a study is conducted and a post-test after the study is conducted. The aim of this one-group pre-test post-test research design is to combine and compare the data collected during these tests. 

C. Static-group comparison

In a static group comparison, 2 or more groups are included in a study where only a group of participants is subjected to a new treatment and the other group of participants is held static. After the study is done, both groups do a post-test evaluation, and the changes are seen as results.

2 - Quasi-experimental design

This research type is quite similar to the experimental design; however, it changes in a few aspects. Quasi-experimental research is done when experimentation is needed for accurate data, but it is not possible to do one because of some limitations. Because you can not deliberately deprive someone of medical treatment or give someone harm, some experiments are ethically impossible. In this experimentation method, the researcher can only manipulate some variables. There are three types of quasi-experimental design:

A. Nonequivalent group designs

A nonequivalent group design is used when participants can not be divided equally and randomly for ethical reasons. Because of this, different variables will be more than one, unlike true experimental research.

B. Regression discontinuity

In this type of research design, the researcher does not divide a group into two to make a study, instead, they make use of a natural threshold or pre-existing dividing point. Only participants below or above the threshold get the treatment, and as the divide is minimal, the difference would be minimal as well.

C. Natural Experiments

In natural experiments, random or irregular assignment of patients makes up control and study groups. And they exist in natural scenarios. Because of this reason, they do not qualify as true experiments as they are based on observation.

3 - True experimental design

In true experimental research, the variables, groups, and settings should be identical to the textbook definition. Grouping of the participant are divided randomly, and controlled variables are chosen carefully. Every aspect of a true experiment should be carefully designed and acted out. And only the results of a true experiment can really be fully accurate . A true experimental design can be divided into 3 parts:

A. Post-test only control group design

In this experimental design, the participants are divided into two groups randomly. They are called experimental and control groups. Only the experimental group gets the treatment, while the other one does not. After the experiment and observation, both groups are given a post-test, and a conclusion is drawn from the results.

B. Pre-test post-test control group

In this method, the participants are divided into two groups once again. Also, only the experimental group gets the treatment. And this time, they are given both pre-tests and post-tests with multiple research methods. Thanks to these multiple tests, the researchers can make sure the changes in the experimental group are directly related to the treatment.

C. Solomon four-group design

This is the most comprehensive method of experimentation. The participants are randomly divided into 4 groups. These four groups include all possible permutations by including both control and non-control groups and post-test or pre-test and post-test control groups. This method enhances the quality of the data.

  • Advantages and disadvantages of experimental research

Just as with any other study, experimental research also has its positive and negative sides. It is up to the researchers to be mindful of these facts before starting their studies. Let us see some advantages and disadvantages of experimental research:

Advantages of experimental research:

  • All the variables are in the researchers’ control, and that means the researcher can influence the experiment according to the research question’s requirements.
  • As you can easily control the variables in the experiment, you can specify the results as much as possible.
  • The results of the study identify a cause-and-effect relation .
  • The results can be as specific as the researcher wants.
  • The result of an experimental design opens the doors for future related studies.

Disadvantages of experimental research:

  • Completing an experiment may take years and even decades, so the results will not be as immediate as some of the other research types.
  • As it involves many steps, participants, and researchers, it may be too expensive for some groups.
  • The possibility of researchers making mistakes and having a bias is high. It is important to stay impartial
  • Human behavior and responses can be difficult to measure unless it is specifically experimental research in psychology.
  • Examples of experimental research

When one does experimental research, that experiment can be about anything. As the variables and environments can be controlled by the researcher, it is possible to have experiments about pretty much any subject. It is especially crucial that it gives critical insight into the cause-and-effect relationships of various elements. Now let us see some important examples of experimental research:

An example of experimental research in science:

When scientists make new medicines or come up with a new type of treatment, they have to test those thoroughly to make sure the results will be unanimous and effective for every individual. In order to make sure of this, they can test the medicine on different people or creatures in different dosages and in different frequencies. They can double-check all the results and have crystal clear results.

An example of experimental research in marketing:

The ideal goal of a marketing product, advertisement, or campaign is to attract attention and create positive emotions in the target audience. Marketers can focus on different elements in different campaigns, change the packaging/outline, and have a different approach. Only then can they be sure about the effectiveness of their approaches. Some methods they can work with are A/B testing, online surveys , or focus groups .

  • Frequently asked questions about experimental research

Is experimental research qualitative or quantitative?

Experimental research can be both qualitative and quantitative according to the nature of the study. Experimental research is quantitative when it provides numerical and provable data. The experiment is qualitative when it provides researchers with participants' experiences, attitudes, or the context in which the experiment is conducted.

What is the difference between quasi-experimental research and experimental research?

In true experimental research, the participants are divided into groups randomly and evenly so as to have an equal distinction. However, in quasi-experimental research, the participants can not be divided equally for ethical or practical reasons. They are chosen non-randomly or by using a pre-existing threshold.

  • Wrapping it up

The experimentation process can be long and time-consuming but highly rewarding as it provides valuable as well as both qualitative and quantitative data. It is a valuable part of research methods and gives insight into the subjects to let people make conscious decisions.

In this article, we have gathered experimental research definition, experimental research types, examples, and pros & cons to work as a guide for your next study. You can also make a successful experiment using pre-test and post-test methods and analyze the findings. For further information on different research types and for all your research information, do not forget to visit our other articles!

Defne is a content writer at forms.app. She is also a translator specializing in literary translation. Defne loves reading, writing, and translating professionally and as a hobby. Her expertise lies in survey research, research methodologies, content writing, and translation.

  • Form Features
  • Data Collection

Table of Contents

Related posts.

100+ Remarketing statistics for your business to use

100+ Remarketing statistics for your business to use

Fatih Özkan

10+ proven strategies to recruit volunteers for nonprofits

10+ proven strategies to recruit volunteers for nonprofits

Sevgi Soylu

Rental forms 101: Essentials you need to know

Rental forms 101: Essentials you need to know

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

What Are Americans’ Top Foreign Policy Priorities?

Protecting the u.s. from terrorism and reducing the flow of illegal drugs are top issues overall, but democrats and republicans have very different priorities, table of contents.

  • Differences by partisanship
  • Differences by age
  • Acknowledgments
  • The American Trends Panel survey methodology

example of research questions in experimental research

Pew Research Center conducted this analysis to better understand Americans’ long-range foreign policy priorities. For this analysis, we surveyed 3,600 U.S. adults from April 1 to April 7, 2024. Everyone who took part in this survey is a member of the Center’s American Trends Panel (ATP), an online survey panel that is recruited through national, random sampling of residential addresses. This way nearly all U.S. adults have a chance of selection. The survey is weighted to be representative of the U.S. adult population by gender, race, ethnicity, partisan affiliation, education and other categories. Read more about the ATP’s methodology .

Here are the questions used for this analysis, along with responses, and its methodology .

Americans have a lot on their plates in 2024, including an important election to determine who will remain or become again president. But the world does not stop for a U.S. election, and multiple conflicts around the world as well as other issues of global prominence continue to concern Americans.

A bar chart showing that, in the United States, younger adults and Democrats are more likely to view the United Nations positively.

When asked to prioritize the long-range foreign policy goals of the United States, the majority of Americans say preventing terrorist attacks (73%), keeping illegal drugs out of the country (64%) and preventing the spread of weapons of mass destruction (63%) are top priorities. Over half of Americans also see maintaining the U.S. military advantage over other countries (53%) and preventing the spread of infectious diseases (52%) as primary foreign policy responsibilities.

About half of Americans say limiting the power and influence of Russia and China are top priorities. A recent annual threat assessment from the U.S. intelligence community focused heavily on those countries’ strengthening military relationship and their ability to shape the global narrative against U.S. interests.

Fewer than half of Americans say dealing with global climate change (44%) and getting other countries to assume more of the costs of maintaining world order (42%) are top priorities. The partisan gaps on these two issues are quite large:

  • 70% of Democrats and Democratic-leaning independents say climate change should be a top priority, while 15% of Republicans and Republican leaners say this.
  • 54% of Republicans say getting other countries to assume more of the costs of maintaining world order should be a top priority, compared with 33% of Democrats.

About four-in-ten Americans see limiting the power and influence of North Korea and Iran as top priorities. (The survey was conducted before Iran’s large-scale missile attack on Israel on April 13.) And about a third say the same about the U.S. being a leader in artificial intelligence, a technology that governments around the world are increasingly concerned about .

When it comes to goals that focus on international engagement, like strengthening the United Nations and NATO or finding a solution to the Israeli-Palestinian conflict, fewer than a third of Americans mark these as top foreign policy priorities.

Related: Fewer Americans view the United Nations favorably than in 2023

Only about a quarter of Americans prioritize promoting human rights in other countries, leading other countries in space exploration and reducing military commitments overseas. And similar shares say supporting Ukraine (23%) and Israel (22%) are top issues.

At the bottom of this list of foreign policy priorities are promoting global democracy ( a major policy push from the Biden administration ) and aiding refugees fleeing violence around the world – about two-in-ten Americans describe these as top concerns. These assessments come amid a recent global surge in asylum claims . Still, in Center surveys, democracy promotion has typically been at the bottom of Americans’ list of foreign policy priorities, even dating back to George W. Bush’s and Barack Obama’s administrations .

Overall, a majority of Americans say that all 22 long-range foreign policy goals we asked about should be given at least some priority. Still, about three-in-ten Americans say supporting Israel (31%), promoting democracy (28%) and supporting Ukraine (27%) should be given no priority.

A table showing the change in priority Americans give to foreign policy issues between 2018, 2021 and 2024

The long-range foreign policy priority questions were also asked in 2018 and 2021, and since then there have been some significant shifts in responses:

  • Since 2018, the public has become significantly more likely to say limiting the power and influence of China (+17 percentage points) and finding a solution to the Israeli-Palestinian conflict (+11) are top foreign policy priorities.
  • Americans have also increased the emphasis they place on limiting the power and influence of Russia, particularly in the wake of the Russian invasion of Ukraine (+8 points since 2021).
  • On the decline since 2018 are strengthening the UN and aiding refugees (-8 points each), reducing foreign military commitments (-6), and promoting and defending human rights in other countries (-5).
  • Preventing the spread of infectious diseases is down 19 percentage points since 2021 – during the height of the COVID-19 pandemic – and about back to where it was in 2018.

These are among the findings from a Pew Research Center survey conducted April 1-7, 2024.

The survey of 3,600 U.S. adults shows that foreign policy remains a partisan issue. Republicans prioritize the prevention of terrorism, reducing the flow of illegal drugs into the country, and maintaining a military advantage over other nations. Meanwhile, Democrats prioritize dealing with climate change and preventing the spread of weapons of mass destruction (WMDs), but also preventing terrorist attacks.

A bar chart showing that 83% of Americans say President Joe Biden should be focusing on domestic policy more than foreign policy

There are also stark age differences on many of the policy goals mentioned, but for the most part, young adults are less likely than older Americans to say the issues we asked about are top priorities. The exceptions are dealing with climate change, reducing military commitments overseas, and promoting and defending human rights abroad – on these issues, 18- to 29-year-olds are significantly more likely than older Americans to assign top priority.

Even with these priorities, foreign policy generally takes the backset to domestic policy for most Americans: 83% say it is more important for President Joe Biden to focus on domestic policy, compared with 14% who say he should focus on foreign policy.

Americans are even less likely to prioritize international affairs than they were in 2019, when 74% wanted then-President Donald Trump to focus on domestic policy and 23% said he should focus on foreign policy.

Americans’ foreign policy priorities differ greatly by party. The largest divide, by a significant margin, is the 55 percentage point gap between Democrats and Republicans on dealing with global climate change (70% vs. 15%, respectively, see it as a top priority).

A dotplot showing large differences in the priority Republicans and Democrats give to different long-range foreign policy goals

Supporting Ukraine, aiding refugees, reducing the spread of diseases, protecting human rights, and strengthening the UN are also issues on which Democrats are at least 20 points more likely than Republicans to prioritize. For example, 63% of Democrats say reducing the spread of infectious diseases is a top priority, compared with 41% of Republicans.

Republicans prioritize supporting Israel, reducing the flow of illegal drugs and maintaining a military advantage over other countries – among other security and hard power issues – significantly more than Democrats do. For example, more than half of Republicans (54%) say getting other countries to assume more of the costs of maintaining world order should be a top focus in foreign policy. Only a third of Democrats say the same.

The priority assigned to several issues is divided even further by ideology within parties. Take support for Israel and Ukraine as examples. Supporting Israel is generally a higher priority for Republicans than Democrats, but within the Republican Party, 48% of conservatives say it’s a top concern, while 18% of moderates and liberals agree. Previous Center research shows that conservative Republicans are especially likely to favor military aid to Israel .

Supporting Ukraine, something Democrats emphasize more than Republicans, is a top priority particularly for liberal Democrats (47%), while about three-in-ten moderate and conservative Democrats agree (29%). Democrats have also shown more willingness than Republicans to provide aid to Ukraine in its conflict with Russia.

A line chart showing that Democrats are more likely to say finding a solution to the conflict between Israelis and Palestinians is a top priority than they were in 2018, while the share of Republicans stayed about the same

Generally, the partisan differences on the importance of several foreign policy issues have gotten smaller since 2021 , when most of these questions were last fielded. This is especially true for items related to the relative power of major countries, like the U.S. maintaining a military advantage and limiting the power and influence of both Russia and China.

However, finding a solution to the conflict between Israelis and Palestinians – a priority that saw no partisan difference at all when it was last asked about in 2018 – has an emerging partisan gap today. The share of Democrats who call this a top priority has more than doubled, while the share of Republicans has changed little.

Age differences persist on foreign policy issues. Older Americans prioritize most of the issues we asked about at higher rates than those ages 18 t0 29.

A dotplot showing that older Americans are significantly more likely to assign most foreign policy goals top priority than young adults

On four issues, there is at least a 40 percentage point gap between Americans ages 65 and older and young adults ages 18 to 29. The oldest Americans are more likely to prioritize reducing the flow of illegal drugs, limiting the power and influence of China and Iran, and maintaining a U.S. military advantage.

Those in the oldest age group are also more concerned than their younger counterparts on an additional 11 issues, ranging from support for Israel to U.S. leadership in space exploration.

For their part, young adults are more likely to say dealing with global climate change, reducing U.S. military commitments overseas, and promoting and defending human rights in other countries should be top foreign policy priorities.

Even starker patterns appear when looking at partisanship within two age groups – adults ages 18 to 49 and those 50 and older.

Among Democrats, older adults place particularly high priority on supporting Ukraine, strengthening NATO, and limiting the power and influence of Russia amid its war with Ukraine. Older Democrats are also more likely than younger ones to prioritize preventing the development of WMDs, curbing the spread of diseases, strengthening the UN and promoting democracy around the world, among other issues.

Among Republicans, those ages 50 and older are more likely than those ages 18 to 49 to prioritize supporting Israel, limiting the power and influence of Iran and China, getting other countries to assume more foreign policy costs, reducing the amount of illegal drugs entering the U.S., preventing terrorism, and maintaining a military advantage.

Sign up for our weekly newsletter

Fresh data delivery Saturday mornings

Sign up for The Briefing

Weekly updates on the world of news & information

  • Environment & Climate
  • Global Health
  • Human Rights
  • International Affairs
  • United Nations
  • War & International Conflict

A growing share of Americans have little or no confidence in Netanyahu

Fewer americans view the united nations favorably than in 2023, rising numbers of americans say jews and muslims face a lot of discrimination, younger americans stand out in their views of the israel-hamas war, how u.s. muslims are experiencing the israel-hamas war, most popular, report materials.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy


  1. Overview of Research Methodology

    example of research questions in experimental research

  2. How to Write a Good Research Question (w/ Examples)

    example of research questions in experimental research

  3. Experimental research

    example of research questions in experimental research

  4. 😍 Great research questions examples. Developing Research Questions

    example of research questions in experimental research

  5. Selection of a Research Problem Presentation

    example of research questions in experimental research

  6. Experimental Research

    example of research questions in experimental research



  2. Tips for Writing Research Objectives, Research Questions and Research Hypotheses from Model

  3. TIDIRC: Implementation Strategies

  4. Common problems in experiments

  5. Understanding Research Methods in Education

  6. Experiment design (with full sample test answer)


  1. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  2. Research Questions

    Definition: Research questions are the specific questions that guide a research study or inquiry. These questions help to define the scope of the research and provide a clear focus for the study. Research questions are usually developed at the beginning of a research project and are designed to address a particular research problem or objective.

  3. Research Question Examples ‍

    A well-crafted research question (or set of questions) sets the stage for a robust study and meaningful insights. But, if you're new to research, it's not always clear what exactly constitutes a good research question. In this post, we'll provide you with clear examples of quality research questions across various disciplines, so that you can approach your research project with confidence!

  4. Writing Strong Research Questions

    A good research question is essential to guide your research paper, dissertation, or thesis. All research questions should be: Focused on a single problem or issue. Researchable using primary and/or secondary sources. Feasible to answer within the timeframe and practical constraints. Specific enough to answer thoroughly.

  5. How to Write a Research Question: Types and Examples

    Choose a broad topic, such as "learner support" or "social media influence" for your study. Select topics of interest to make research more enjoyable and stay motivated. Preliminary research. The goal is to refine and focus your research question. The following strategies can help: Skim various scholarly articles.

  6. Guide to Experimental Design

    Step 1: Define your variables. You should begin with a specific research question. We will work with two research question examples, one from health sciences and one from ecology: Example question 1: Phone use and sleep. You want to know how phone use before bedtime affects sleep patterns.

  7. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  8. Research Design

    Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Frequently asked questions.

  9. A Quick Guide to Experimental Design

    Step 1: Define your variables. You should begin with a specific research question. We will work with two research question examples, one from health sciences and one from ecology: Example question 1: Phone use and sleep. You want to know how phone use before bedtime affects sleep patterns.

  10. How to Craft a Strong Research Question (With Research Question Examples)

    Assess your chosen research question using the FINER criteria that helps you evaluate whether the research is Feasible, Interesting, Novel, Ethical, and Relevant. 1. Formulate the final research question, while ensuring it is clear, well-written, and addresses all the key elements of a strong research question.

  11. How to Write a Good Research Question (w/ Examples)

    It can be difficult to come up with a good research question, but there are a few steps you can follow to make it a bit easier. 1. Start with an interesting and relevant topic. Choose a research topic that is interesting but also relevant and aligned with your own country's culture or your university's capabilities.

  12. How to Write a Research Question in 2024: Types, Steps, and Examples

    The examples of research questions provided in this guide have illustrated what good research questions look like. The key points outlined below should help researchers in the pursuit: The development of a research question is an iterative process that involves continuously updating one's knowledge on the topic and refining ideas at all ...

  13. PDF Research Questions and Hypotheses

    Research Questions and Hypotheses. I. nvestigators place signposts to carry the reader through a plan for a study. The first signpost is the purpose statement, which establishes the central direction for the study. From the broad, general purpose state- ment, the researcher narrows the focus to specific questions to be answered or predictions ...

  14. Exploring Experimental Research: Methodologies, Designs, and

    Experimental research serves as a fundamental scientific method aimed at unraveling. cause-and-effect relationships between variables across various disciplines. This. paper delineates the key ...

  15. Experimental Research Designs: Types, Examples & Advantages

    There are 3 types of experimental research designs. These are pre-experimental research design, true experimental research design, and quasi experimental research design. 1. The assignment of the control group in quasi experimental research is non-random, unlike true experimental design, which is randomly assigned. 2.

  16. Research questions, hypotheses and objectives

    Research question. Interest in a particular topic usually begins the research process, but it is the familiarity with the subject that helps define an appropriate research question for a study. 1 Questions then arise out of a perceived knowledge deficit within a subject area or field of study. 2 Indeed, Haynes suggests that it is important to know "where the boundary between current ...

  17. Experimental Research Design

    The design of research is fraught with complicated and crucial decisions. Researchers must decide which research questions to address, which theoretical perspective will guide the research, how to measure key constructs reliably and accurately, who or what to sample and observe, how many people/places/things need to be sampled in order to achieve adequate statistical power, and which data ...

  18. Experimental Research Designs: Types, Examples & Methods

    The most basic example of experimental research is laboratory experiments, which may differ in nature depending on the subject of research. ... A survey consists of a group of questions prepared by the researcher, to be answered by the research subject. Surveys can be shared with the respondents both physically and electronically. When ...

  19. Experimental Research: What it is + Types of designs

    The classic experimental design definition is: "The methods used to collect data in experimental studies.". There are three primary types of experimental design: The way you classify research subjects based on conditions or groups determines the type of research design you should use. 01. Pre-Experimental Design.

  20. 19+ Experimental Design Examples (Methods + Types)

    These designs are the recipes that help people from all walks of life find answers to their big questions. Key Terms in Experimental Design. ... A famous example is the research conducted to test the effectiveness of different public health interventions, like vaccination programs. Researchers might roll out a vaccination program in one ...

  21. A Complete Guide to Experimental Research

    Collect the data by using suitable data collection according to your experiment's requirement, such as observations, case studies , surveys , interviews, questionnaires, etc. Analyse the obtained information. Step 8. Present and Conclude the Findings of the Study. Write the report of your research.

  22. 10 Real-Life Experimental Research Examples (2024)

    Examples of Experimental Research. 1. Pavlov's Dog: Classical Conditioning. Pavlovs Dogs. Dr. Ivan Pavlov was a physiologist studying animal digestive systems in the 1890s. In one study, he presented food to a dog and then collected its salivatory juices via a tube attached to the inside of the animal's mouth.

  23. What is experimental research: Definition, types & examples

    An example of experimental research in marketing: The ideal goal of a marketing product, advertisement, or campaign is to attract attention and create positive emotions in the target audience. Marketers can focus on different elements in different campaigns, change the packaging/outline, and have a different approach.

  24. Writing Survey Questions

    For example, in one of Pew Research Center's questions about abortion, half of the sample is asked whether abortion should be "legal in all cases, legal in most cases, illegal in most cases, illegal in all cases," while the other half of the sample is asked the same question with the response categories read in reverse order, starting ...

  25. Crime in the U.S.: Key questions answered

    For example, Republicans and Republican-leaning independents are much more likely than Democrats and Democratic leaners to say reducing crime should be a top priority for the president and Congress this year (68% vs. 47%), according to a recent Pew Research Center survey. How does crime in the U.S. differ by demographic characteristics?

  26. Methodology: 2022-23 survey of Asian Americans

    The overall response rate for the Asian American sample in the Pew Research Center survey was 13.3% (17.0% x 77.9%). Analysis of Asians living in poverty Survey analysis of Asian adults living in poverty is based on 561 respondents of the 2022-23 survey of Asian Americans whose approximate family income falls at or below the 2022 federal ...

  27. Asian Americans and 'model minority' stereotype

    ABOUT PEW RESEARCH CENTER Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions.

  28. Americans' Top Foreign Policy Priorities in 2024

    Americans have a lot on their plates in 2024, including an important election to determine who will remain or become again president. But the world does not stop for a U.S. election, and multiple conflicts around the world as well as other issues of global prominence continue to concern Americans.. When asked to prioritize the long-range foreign policy goals of the United States, the majority ...